
The Class Blueprint: Visually Supporting
the Understanding of Classes

Stéphane Ducasse and Michele Lanza, Member, IEEE

Abstract—Understanding source code is an important task in the maintenance of software systems. Legacy systems are not only

limited to procedural languages, but are also written in object-oriented languages. In such a context, understanding classes is a key

activity as they are the cornerstone of the object-oriented paradigm and the primary abstraction from which applications are built. Such

an understanding is however difficult to obtain because of reasons such as the presence of late binding and inheritance. A first level of

class understanding consists of the understanding of its overall structure, the control flow among its methods, and the accesses on its

attributes. We propose a novel visualization of classes called class blueprint that is based on a semantically enriched visualization of

the internal structure of classes. This visualization allows a software engineer to build a first mental model of a class that he validates

via opportunistic code-reading. Furthermore, we have identified visual patterns that represent recurrent situations and as such convey

additional information to the viewer. The contributions of this article are the class blueprint, a novel visualization of the internal structure

of classes, the identification of visual patterns, and the definition of a vocabulary based on these visual patterns. We have performed

several case studies of which one is presented in depth, and validated the usefulness of the approach in a controlled experiment.

Index Terms—Object-oriented programming, software visualization, reverse engineering, visual patterns, smalltalk.

�

1 INTRODUCTION

IT has been measured that, in the maintenance phase,
software professionals spend at least half of their time

analyzing software to understand it [1] and that code
reading is a viable verification and testing strategy [2], [3].
Sommerville [4] and Davis [5] estimate that the main-
tenance of a software system accounts for 50 to 75 percent of
its overall cost. These findings show that understanding
source code is an important task in the maintenance of
software systems.

Legacy systems are not only limited to procedural

languages, but are also written in object-oriented languages.

Contrary to what one may think, the object-oriented

programming paradigm has exacerbated this problem,

since in object-oriented systems the domain model of the

application is distributed across the whole system and the

behavior is distributed accross inheritance hierarchies with

late-binding [6], [7], [8].
Reading object-oriented code is more difficult than

reading procedural code [9]: In addition to the difficulties

introduced by the technical aspects of object-oriented

languages such as inheritance and polymorphism [6], the

reading order of a class’ source code is not relevant as it was

in most of the procedural languages where the order of the

procedures was important and the use of forward declara-

tions required. This lack of reading order is emphasized in

languages such as Smalltalk, a language based upon a
powerful integrated development environment (IDE) in
which the concept of source files is used only for external
code storage, but seldom for code editing. Moreover, even
for file-based languages like Java, IDEs such as Eclipse1 are
literally eclipsing the importance of source files and putting
forward a code browsing practice as in Smalltalk.

Understanding classes is of key importance as they are
the cornerstone of the object-oriented paradigm and the
primary abstraction from which applications are built.
Therefore, there is a definitive need to support the
understanding of classes and their internal structure. In
the past, work has been done to support the under-
standing of object-oriented applications [10], [11], [12].
Some other work focused on analyzing the impact of
graphical notation to support program understanding
based on control-flow [3]. Such approaches are powerful
for supporting the identification of design patterns, but
too generic and not fine-grained enough for the specific
purpose of class understanding.

In this article, we present an approach to ease the
understanding of classes by visualizing a semantically
augmented call and access-graph of the methods and
attributes of classes. Our approach only takes into account
the internal static structure of a class and focuses on the way
methods call each other and access attributes, and the way
the classes use inheritance, i.e., we leave out the runtime
behavior of a system.

We have coined the term class blueprint, a visualization of
a semantically augmented call-graph and its specific
semantics-based layout. The objective of our visualization
is to help a programmer to develop a mental model of the
classes he browses and to offer support for reconstructing
the logical flow of method calls. Our approach targets the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005 1

. S. Ducasse is with the Software Composition Group, Institute of Applied
Mathematics and Computer Science, University of Bern, Neunrueckstrasse
10, 3012 Bern, Switzerland. E-mail: ducasse@iam.unibe.ch.

. M. Lanza is with the Faculty of Informatics, University of Lugano, Via G.
Buffi 13, 6900 Lugano, Switzerland. E-mail: michele.lanza@unisi.ch.

Manuscript received 1 June 2004; revised 8 Oct. 2004; accepted 22 Dec. 2004;
published online 20 Jan. 2005.
Recommended for acceptance by J. Knight.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0103-0604. 1. See http://www.eclipse.org/ for more information.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

understanding of a class in terms of its call-graph and
internal structure. Our approach does not magically
provide a detailed understanding of a class’ functionality,
which can however be obtained by reading the pertinent
source code as needed, i.e., our tool points the user to the
corresponding source code that needs to be read. Besides
the presentation of the technical aspects that the class
blueprint implies, we establish a vocabulary that we
developed based on the insights we obtained during several
case studies. This vocabulary identifies the most common
and specific visual patterns, i.e., recurrent graphical situa-
tions we encountered during the validation of this work.
We believe that this vocabulary can be the basis of a
language (in a similar vein to the use of design patterns)
that software engineers can use when communicating with
each other. The results presented in this article are language
independent as we base our work on FAMIX [13], a
language independent metamodel for object-oriented
source code representation. Most of our experiences have
been conducted on applications developed in Smalltalk,
although we applied our approach on case studies written
in C++ and Java as well.

The contributions of this article2 are the following: the
definition of the class blueprint, a semantically augmented
visualization of the internal structure of classes, the
identification of visual patterns that represent recurring
situations, and the definition of a vocabulary based on these
visual patterns.

2 THE CHALLENGE OF SUPPORTING CLASS

UNDERSTANDING

As our overall objective is to help software engineers to
build a mental image of a class, we restrict ourselves to
methods, method invocations, attributes, and attribute
accesses. According to the program cognition model
vocabulary proposed by Littman et al. [15], we support an
approach of understanding that is opportunistic in the sense
that it is not based on a systematic line-by-line understanding
but as needed, i.e., the viewer chooses what he wants to look
at. Moreover, to locate our approch in the general context of
cognitive models [15], [16], our approach is intended to
support the implementation plans at the language level, i.e.,
working at code chunks, here, classes and methods.

Mayrhauser and Vans mention that the cognition
processes work at all levels of abstraction simultaneously
as programmers build a mental model of the code [16]. Our
approach is based on the visual identification of hotspots at
the class level or hierarchy level which then are verified
with opportunistic code reading. In this sense, our claim is
not that graphical visualization is better than text reading
even if we believe that our approach eases the process [17].
Our approach creates a synergistic context between the two
in which the class blueprint view reveals the way classes are
built, and helps to raise hypotheses or questions that are
then verified by reading some piece of code.

2.1 Class Understanding

Classes are difficult to understand because of the following
reasons:

1. Contrary to procedural languages, the method
definition order in a file is not important [9]. There
is no simple and apparent top-down call decom-
position. This problem is emphasized in the context
of integrated development environments (IDE),
which disconnect the method definitions from their
physical storage medium.

2. Classes are organized in inheritance hierarchies in
which at each level behavior can be added, over-
ridden, or extended. Understanding how a subclass
fits within the context of its parent is complex
because late-binding provides a powerful instru-
ment to build template and hook methods that allow
children behavior to be called in the context of their
ancestors. The presence of late-binding leads to
“yoyo effects” when one is trying to follow the call-
flow [6], [8].

In our approach, we display methods, attributes, method
invocations, and attribute accesses. We only consider the
call-flow and not the control-flow of the methods. Further-
more, since classes do not stand alone, but exist within
inheritance hierarchies, our approach supports the under-
standing of a class within an inheritance tree. Working at a
call-flow level also supports the late-binding property of
object-oriented programming in which a subclass can define
methods that are called by superclass methods in replace-
ment of their own methods.

For the visualization itself, the solution we propose takes
into account the physical limits of a screen, i.e., a class
blueprint must fit in one or exceptionally two screens of
normal size. Bertin [18] assessed that one of the good
practices in information visualization is to offer the viewer
visualizations that can be grasped at one glance (e.g.,
without the need for scrolling or moving around). Further-
more, the colors used in our visualizations also follow
visual guidelines suggested by Bertin [18], Tufte [19], and
Ware [20], e.g., we take into account that the human brain is
capable of processing less than a dozen distinct colors.

The work presented in this article emerged from
industrial code reverse engineering projects and is the
result of several refinements to maximize the ease of
understanding. In addition to the industrial case studies
on which we are not allowed to report, we performed case
studies on open-source software: 1) Squeak, an open source
multimedia Smalltalk which has been developed over the
last years (1,800 classes) [21], 2) Duploc, a code duplication
detection tool (160 classes), and 3) Moose, our own
reengineering environment (200 classes).

In this paper, we use as a case study the Jun framework:
Jun is a freely available 3D graphic multimedia library that
supports topology and geometry. We analyzed version 398,
which consists of more than 700 classes, 15,000 methods,
and 2,000 attributes. The interesting aspect of Jun is its
variety: It models a wide spectrum of domains including
different format readers and writers, different composite
structures (HTML, VRML), various complex rendering

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

2. An early version of this work has been published in the ACM
OOPSLA 2001 Proceedings [14]; in the present work, we refined our
approach, validated it with new case studies, and completely revised the
pattern language.

algorithms, even a Prolog interpreter, and a Lisp compiler

and interpreter. Jun is a mature and professionally devel-

oped system.3

3 THE CLASS BLUEPRINT

A class blueprint is a semantically augmented visualization

of the internal structure of a class, displaying an enriched

call-graph with a semantics-based layout. It is augmented in

various aspects:

. A class blueprint is structured according to layers
that group the methods and attributes.

. The nodes representing a class’ methods and
attributes are colored according to semantic infor-
mation, e.g., whether a method is abstract, over-
riding other methods, returning constant values, etc.

. The nodes vary in size depending on source code
metrics information.

3.1 The Layered Structure of a Class Blueprint

A class blueprint decomposes a class into layers and assigns

its attributes and methods to each layer based on the

heuristics described below. The following rules are system-

atically applied to produce the Class Blueprint visualiza-

tion. In Fig. 1a, we see an empty template of a class

blueprint.

The layers support a call-graph notion in the sense that a

method node on the left connected with another node on

the right is either invoking or accessing the node on the

right that represents a method or an attribute. From left to

right we identify the following layers: initialization layer,

external interface layer, internal implementation layer, accessor

layer, and attribute layer. The first three layers and the

methods contained therein are placed from left to right

according to the method invocation sequence, i.e., if method

m1 invokes method m2, m2 is placed to the right of m1 and

connected with an edge.

For each layer we present the conditions that methods

must fulfill in order to belong to a certain layer. The layers

have been chosen according to a notion of time-flow and a

notion of encapsulation. The time-flow is the execution of

the methods, which visually is expressed in a layering from

left to right, i.e., the external, public, part of the class is

displayed on the left, while the internal (later executed) part

is displayed on the right. Note that this choice is supported

by the reading order of western cultures which goes from

left to right. The notion of encapsulation is visualized by

separating state (to the right) from behavior (to the left), and

distinguishing the public (to the left) from the private part

(to the right) of the class’ behavior. Added to this only the

actual source code elements are visualized, i.e., we do not

represent artificial elements resulting from a combination/

abstraction of source code elements.

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 3

3. See http://www.srainc.com/Jun/ for more information.

Fig. 1. (a) A class blueprint decomposes a class into layers. (b) A graphical representation of methods and attributes using metrics: The metrics are

mapped on the width and the height of a node. (c) The methods and attributes are positioned according to the layer they have been assigned to.

(d) The caller has outgoing edges at the bottom, while the callee has ingoing edges at the top.

A class blueprint contains the following layers:

1. Initialization Layer. The methods contained in this
first layer are responsible for creating an object and
initializing the values of the attributes of the object.
A method belongs to this layer if one of the
following conditions holds:

. The method name contains the substring “in-
itialize” or “init.”

. The method is a constructor.

. For Smalltalk code, where methods can be
clustered in method protocols, if the methods
are placed within protocols whose name con-
tains the substring “initialize.”

In this layer, there should also be the static

initializers for Java, however, we do not take them

into account, as they are not covered by our FAMIX

metamodel [13].
2. External Interface Layer. The methods contained in

this layer represent the interface of a class to the
outside world. A method belongs to this layer if one
the following conditions holds:

. It is invoked by methods of the initialization
layer.

. In languages like Java and C++ which support
modifiers (e.g., public, protected, private), it is
declared as public or protected.

. It is not invoked by other methods within the
same class, e.g., it is a method invoked from
outside of the class by methods of collaborator
classes or subclasses. Should the method be
invoked both inside and outside the class, it is
placed within the implementation layer.

We do not include accessor methods to this layer,

but to a dedicated layer as we show later on. We

consider the methods of this layer to be the entry

points to the functionality provided by the class.
3. Internal Implementation Layer. The methods con-

tained in this layer represent the core of a class and
are not supposed to be visible to the outside world.
A method belongs to this layer if one of the
following conditions holds:

. In languages like Java and C++ if it is declared
as private.

. The method is invoked by at least one method
defined in the same class.

4. Accessor Layer. This layer is composed of accessor
methods, i.e., methods whose sole task is to get and
set the values of attributes.

5. Attribute Layer. The attribute layer contains all
attributes of the class. The attributes are connected to
the methods in the other layers by means of access
relationships.

3.2 Representing Methods and Attributes

We represent methods and attributes using colored boxes

(nodes) of various size and position them within the layers

presented previously. We map metrics information on the

size of the method and attribute nodes and map semantic
information on their colors.

Mapping metrics information on size. The width and
height of the nodes reflect metric measurements of the
represented entities, as illustrated in Fig. 1b. This approach
has been developed in the context of our previous research
on polymetric views [22].

Method nodes. In the context of a class blueprint, the
metrics used for the method nodes are lines of code for the
height and the number of invocations for the width.

Attribute nodes. The metrics used for the attribute nodes
are the number of direct accesses from methods within the
class for the width and the number of direct accesses from
outside of the class for the height. The choice of these
measures allows one to identify how attributes are accessed.

Representing the call direction. In Fig. 1d, we see how
we distinguish a caller from a callee: The caller has outgoing
edges at the bottom, while the callee has ingoing edges at
the top. Furthermore, the blueprint layout algorithm places
the callee to the right of a caller.

Mapping semantic information on color. The call-graph
is augmented not only by the size of its nodes but also by
their color. In a class blueprint, the colors of nodes and
edges represent semantic information extracted from the
source code analysis. The colors play therefore an important
role in conveying added information, as Bertin [18] and
Tufte [19] have extensively discussed. Table 1 presents the
semantic information we add to a class blueprint and the
associated colors.

Certain semantic information such as whether a method
is delegating to another object is computed by analyzing the
method abstract syntax tree (AST) and by identifying
certain patterns based on exact matches. For example, we
qualify as delegating, a method invoking exactly the same
method on an attribute (pattern 2) or a method invocation
(pattern 1). In addition to those patterns, we consider also
the case when the method is returning a value using ^ in
Smalltalk (patterns 3 and 4). Note that such an analysis is
language dependent but does not pose any problem in
practice.

Pattern 1: delegating to invocation result.

methodX

self yyy methodX

Pattern 2: delegating to an attribute.

methodX

instVarY methodX

Pattern 3: delegating to an attribute with return.

methodX

^ self yyy methodX

Pattern 4: delegating to invocation result with return.

methodX

^ instVarY methodX

Pattern 5: Abstract method.

methodX

self subclassResponsibility

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

The fact that a method is abstract is also extracted from
the analysis of the method AST as in Smalltalk the only way
to specify that a method is abstract is to invoke the method
subclassResponsibility (see Pattern 5). For Java and C++,
specific explicit language constructs make the analysis
simpler.

Note that the color associations shown in Table 1 are not
mutually exclusive. Therefore, a node could have more than
one color assigned to it. In such a case, the color determined
by the source code analysis takes precedence over the color
given by the layer a certain node belongs to, as this
information conveys usually more semantics.

3.3 The Layout Algorithm of a Class Blueprint

The algorithm used to layout the nodes in a class blueprint

first assigns the nodes to their layers and then sequentially

lays out the layers. Within each of the first three layers,

nodes are placed using a horizontal tree layout algorithm: If

method m1 invokes method m2, m2 is placed to the right of

m1 and both are connected by an edge which represents the

invocation relationship. In case a method m1 accesses an

attribute a1, the edge connecting m1 and a1 represents an

access relationship, as is denoted by the color of the edge. In

the last two layers, the nodes are placed using a vertical line

layout, i.e., the nodes are placed vertically below each other.

Although the layout algorithm can be considered simple, it

shows acceptable results in terms of visual quality and is

further supported by the fact that the user can interact with

the visualization in case he wants to focus on a certain part

of it. The complex structure of a method invocation graph

allows for cycles because of recursive calls; therefore, the

tree layout algorithm used as part of the overall blueprint

layout is not only cycle-resistant, but even able to display

the cycles as shown in Fig. 1d.
In Fig. 1c, we see a template blueprint. We see that there

are two initialization methods and three interface methods.
We also see that three of its accessors are not invoked and,

therefore, unused and that one of the attributes is not

accessed by the methods of this class. The next section

presents two real class blueprints in detail.

4 DETAILING CLASS BLUEPRINTS

To show how the class blueprint visualization allows one to

represent a condensed view of a class’ methods, call flow,

and attribute accesses, we describe in detail two classes

implementing two different domain entities of the Jun

framework: The first one defines the concept of a 3D graph

for OpenGL mapping and the second is a rendering

algorithm. We present the blueprints and some piece of

code to show how the graphical representation is extracted

from the source code and how the graphical representation

reflects the code it represents, building a trustable model.

To help the reader to understand the first blueprint, we also

show on the right of the figure a blueprint without metrics

in which the method names are shown on the boxes that

represent them. The left part of Fig. 2 shows the blueprint of

the class JunOpenGL3dGraphAbstract which we describe

hereafter. As the named blueprint on the right in Fig. 2

shows, this kind of representation does not scale well in

practice.
The code shown is Smalltalk code, however being fluent

in Smalltalk is not important as we are only concerned with

method invocations and attribute accesses.4 Note that some

of the figures may contain several visual patterns whose

discussion does not always precede the figures. However,

the captions of the figures make use of the complete visual

pattern vocabulary presented in this paper.

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 5

TABLE 1
In a Class Blueprint, Semantic Information is Mapped on the Colors of the Nodes and Edges

4. In Smalltalk, attributes as local variables are read simply by using the
attribute name in an expression. They are written using the := construct. In a
first approximation, messages follow the pattern receiver methodName1:
arg1 name2: arg2 which is equivalent to the C++ syntax receiver.method-
Name1name2(arg1, arg2). Hence, bidiagNorm := self bidiagonalize: super-
Diag assigns in the variable bidiagNorm the result of the method
bidiagonalize.

4.1 Example 1: An Abstract Class

The class blueprint shown in Fig. 2 has the following
structure:

. One initialization layer method. This method called
initialize is positioned on the left. As shown, it
extends (invokes) a superclass method with the
same name; hence, the node color is orange. It
accesses directly two attributes as the cyan line
shows it. The code of the method initialize is the
following one:

initialize

super initialize.

displayObject := nil.

displayColor := nil

. Several external interface layer methods. Note that
many of them have a yellow color, i.e., they delegate
the functionality. The following method asPointAr-
ray is a delegating method.

asPointArray

^ self displayObject asPointArray

The reader may be intrigued by the fact that there
are yellow nodes (hence, delegating methods) with-
out any edges: they do not invoke any methods
within this class nor do they access any attribute.
This is the case of the lispCons method whose code
is shown hereafter. Such methods delegate calls to
them to the metaclass. This happens because of
Smalltalk semantics that specify that any class is an
instance of its metaclass. It is good practice to factor
constants at the metaclass level as in the present
case. A similar situation would occur in Java when a
method delegates to a static variable. We decided
not to introduce a specific analysis to cope with this
Smalltalk specific point to let our approach be as
general as possible.

lispCons

^ self class lispCons

The five gray nodes in the interface layer are

methods returning constant values as illustrated by

the following method isArc. This method illustrates a

typical practice to share a default behavior among

the hierarchy of classes.

isArc

^ false

. A small internal implementation layer with two

sublayers. Here, we show that the blueprint

granularity resides at the method level, as the

visualization does not specifically represent control

flow constructs. The method displayObject per-

forms a lazy initialization, i.e., it initializes the

attributes only when the attributes are accessed
and acts as an abstract template method by calling

the method createDisplayObject which is abstract

and, thus, represented as a cyan node. The method

createDisplayObject should then be redefined in

the subclasses.

displayObject

displayObject isNil ifTrue: [displayObject := self

createDisplayObject].

^ displayObject

createDisplayObject

^ self subclassResponsibility

. Two accessors. There is a read-accessor, color,
displayed as the red accessor node and a write-
accessor, setValue: displayed as the rightmost orange
accessor node.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 2. Left: An actual class blueprint visualization of the class JunOpenGL3dGraphAbstract, a class which represents 3D-graphs in OpenGL.
Right: The same class displayed with method names for illustrating how the methods call each other.

. Two attributes. Note that the read-accessor reads
one attribute, while the write-accessor writes the
other one. However, no method uses the write-
accessor. The attributes are also directly accessed:
The initialize method accesses both, while two other
methods do also directly access the attributes which
is an inconsistent coding practice.

4.2 Example 2: An Algorithm

The second class blueprint presented in Fig. 4a displays the
class JunSVD implementing the algorithm of the same
name. Looking at the blueprint we get the following
information.

. No initialization layer method. The left layer is
empty.

. Three external interface layer methods. Two of
them access directly the attributes of the class. We
also see that the second external interface layer
method is actually an entry point to all the methods
in the internal implementation layer.

. An internal implementation layer composed of

nine methods in five sublayers. The class is actually

written in a clearly structured way. Therefore, the

class blueprint can also be used to infer a reading

order of the methods contained in this class. The

blueprint shows us that the node Awhich represents

the method compute (shown hereafter) invokes the
methods bidiagonalize:, epsilon, and diagonalize:

with:

compute

| superDiag bidiagNorm eps |

m := matrix rowSize.

n := matrix columnSize.

u := (matrix species unit: m) asDouble.

v := (matrix species unit: n) asDouble.

sig := Array new: n.

superDiag := Array new: n.

bidiagNorm := self bidiagonalize: superDiag.

eps := self epsilon* bidiagNorm.

self diagonalize: superDiag with: eps.

. Three read accessor methods. Although three read-

accessors have been defined, they are not used by
methods of this class because they do not have any

ingoing edges that would exemplify their use.
. Six attributes. All the attributes in this class are

accessed by several methods, i.e., all the state of the

class is accessed by the methods. The blueprint also

reveals that the attributes are heavily accessed. The

nodes marked as A, B, and C consistently access all

the attributes matrix, n, m, sig, v, and u. To under-

stand how this particular behavior is possible, we
show the code of the method generalizedInverse (C).

After reading the code, we understand easily that

this particular behavior for a class is normal for an

algorithm and we mentally acknowledge that the

other methods are built in a similar fashion.

generalizedInverse

| sp |

sp := matrix species new: n by: m.

sp doIJ: [:each :i :j | sp row: i column: j put:

((i = j and: [(sig at: j) isZero not])

ifTrue: [(sig at: j) reciprocal]

ifFalse: [0.0d])].

^ (v product: sp) product: u transpose

This example shows that the blueprint visualization

conveys information which is otherwise hard to notice: All

attributes are accessed by the class’ methods. This is an

example of how the approach supports opportunistic code

reading: First, the reader is intrigued by the regularity of the

accesses, then he reads one method and understands that

the methods implement algorithms. He can now extrapolate

this knowledge to the other methods of the class.

4.3 Class Blueprints and Inheritance

Understanding classes in the presence of inheritance is
difficult as the flow of the program is not local to a single
class but distributed over hierarchies, as mentioned by Wild
[6] and Lange [11]. In the context of inheritance, we
visualize every class blueprint separately and put the
subclasses below the superclasses according to a simple
tree layout.

In Fig. 3a, we see a concrete inheritance hierarchy of class
blueprints. The superclass defines some behavior that is
then specialized by each of the three subclasses named
JunColorChoiceHSB, JunColorChoiceSBH, JunColorChoi-
ceHBS. The blueprint of this hierarchy reveals that the
subclasses have been developed to satisfy the implementa-
tion needs of the superclass: They do not define any extra
behavior, it is the superclass that must be analyzed to
understand the whole hierarchy.

We see that the root class defines several abstract
methods (denoted by the cyan color) that represent color
components such as brightness, hue, and color and which
are overridden (denoted by the brown color) in the three
small subclasses. As there is the same number of brown
nodes than cyan one, there is a good chance that the
subclasses are concrete classes.

The method named color (A) is a template method that
calls three abstract methods as confirmed by the definition
of the method color hereafter.

color

^ ColorValue hue: self hue saturation:

self saturation brightness: self brightness

We see that the methods xy: (B), and xy (C) play a central
role in the design of the class as they are both called by
several of the methods of each subclass, as confirmed by the
following method of the class JunColorChoiceSBH:

JunColorChoiceSBH brightness: value

((value isKindOf: Number) and: [0.0 <= value and:

[value <= 1.0]])

ifTrue: [self xy: self xy x @ 1 - value]

This example shows again that the blueprint visualiza-
tion conveys information which is otherwise hard to notice,

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 7

for example, the fact that all the subclasses of the root
classes implement only methods which override methods in
the superclass, or it helps to detect the template method
design pattern present in the root class.

These examples show how the blueprints help a software
engineer to 1) build a mental image of the class in terms of

method invocations and state access, 2) understand the
class/subclass roles, and 3) identify key methods.

Blueprints act as revealers in the sense that they raise
questions, support hypotheses, or clearly show important
information. When questions are raised, code reading helps
confirming the information provided by the visualization.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 3. (a) A class blueprint visualization of an inheritance hierarchy with the class JunColorChoice as root class. The root class contains an Interface

visual pattern, while each of the subclasses is a pure Overrider. Furthermore, each subclass is a pure Siamese Twin. (b) A class blueprint

visualization of an inheritance hierarchy with the class JunPrologEntity as root class.

Fig. 4. (a) A blueprint visualization of the class JunSVD. This class blueprint shows visual patterns of the type Single Entry, Structured Flow, and All
State. (b) The blueprint of the class JunSourceCodeSaver contains a Large Implementation, a Single Entry, and a Structured Flow visual pattern at
the bottom. (c) The root class is a combination of a nearly pure Interface and a Constant Definer visual pattern, while the subclass (JunAngle) is a
combination of a Wide Interface and a Funnel visual pattern. (d) The class blueprint of the class JunJfifColorComponent: It contains a Data Storage
and a Three Layers visual pattern. (e) The class blueprint of the class JunBmpImageStream with two Single Entry visual patterns.

Code reading is not always necessary, but used sparingly
on identified methods. There is a definitive synergy
between the visual images generated by the blueprint and
the code reading. Class blueprints allow one to characterize
classes but also represent an important communication
means, as we present in the coming sections.

5 A PATTERN VOCABULARY BASED ON THE

CLASS BLUEPRINT

While the approach is already an excellent vehicle to
support the understanding of classes, it also provides the
basis to develop a visual vocabulary that enables program-
mers to communicate recurrent situations they encounter.
Indeed, recurrent situations in the code produce similar
visual patterns in terms of node colors and flow structure.
These visual patterns stem from the experiences we
obtained while applying our approach on industrial case
studies. We subdivide the discussion of the visual patterns
in two separate sections depending on the context in which
a blueprint is presented:

1. Single class perspective, where we look at a single
blueprint without considering surrounding sub or
superclasses (Section 6).

2. Inheritance perspective, where we extend the
context to the inheritance hierarchy where the class
resides (Section 7).

We use the term pure class blueprint when it is composed
of only one and exclusively one visual pattern.

Even if some of the visual patterns could be automati-
cally identified by our tool, the identification of visual
patterns is mainly based on a human interpretation of a
blueprint. There are advantages and disadvantages to
letting a software engineer identify visual patterns: The
advantages are that the human mind can deal with
nonregular information and still extract useful pieces,
which is important in a reengineering context. The dis-
advantages are that the software engineer needs expertise in
analyzing a class blueprint and that he may wrongly
interpret the visual patterns. However, this is not a great
problem as the code mapping is simple and the engineer
can quickly look at the code to confirm his hypothesis. In
the future, we want to evaluate how to automate the
identification of nonregular and trivial visual patterns and
whether this is worth the effort.

6 SINGLE CLASS VISUAL PATTERNS

In this part, we present the visual patterns that blueprints
contain without considering surrounding sub and super-
classes. One class blueprint may contain several visual
patterns. The visual patterns in this section are grouped
according to the following criteria: size, distribution layer,
semantics, call-flow, and state usage. This grouping is not
strict and is mainly used to ease the reading of the paper.

6.1 Size-Based Visual Patterns

Four simple visual patterns describe classes regarding their
size: Single, Micro, Large Implementation, and Giant.

Single. This visual pattern is composed of one node. It
describes classes that only consist of one method (see the
root class of the hierarchy in Fig. 3b). This happens in the
following cases:

1. The class in question represents dead code or has not
been completely implemented yet.

2. It is the result of code sharing among hierarchies. It
often represents methods defining single default
values or testing methods in the form of isSome-
thing() as shown by the following method definition.
See the discussion of the Single Constant Definer
visual pattern for more details. The single method of
the root class in Fig. 3b has the following definition:

JunPrologEntity >> isJunPrologEntity

^ true

When the method is not a method simply defining a
constant but has a certain complexity, it is worth to
look at it as it represents common behavior shared
among several classes and often used to distinguish
between several kinds of classes.

3. This may occur when classes are subclasses of large
classes of which they specialize only a limited
default behavior or constant definitions.

Micro. This visual pattern is composed of only a couple
of nodes. It describes a small class that is composed of only
a couple of methods (see bottom class to the left of Fig. 3b).
This often occurs in subclasses that specialize behavior.

Giant. A really large number of nodes and invocations
composes the entire blueprint. This visual pattern describes
a huge class that is composed of hundreds of methods.
Normally, the blueprint layout algorithm is not efficient
enough to support the understanding of such classes,
although visual patterns are still recognizable. Such classes
can have a complex initialization structure producing very
long methods. Due to space restrictions, we omit an
example figure for this blueprint. Usually, classes revealing
a Giant visual pattern are classes having too much
responsibilities and requiring further inspection.

Large Implementation. This visual pattern is character-
ized by implementation layers containing many nodes often
structured in several sublayers. The overall percentage in
nodes number and screen space of the implementation layer
dominates all the other layers. It describes classes that have
a large implementation decomposed in several methods
with numberous invocations between those methods. In
Fig. 4b, we see that the class JunSourceCodeSaver has a
small public interface and a large internal implementation
layer with large methods and six internal implementation
sublayers. The role of this class is to save the code of the
application in a proprietary format.

6.2 Layer Distribution-Based Visual Patterns

Three visual patterns Three Layers, Wide Interface, and
Interface are based on the distribution of methods in the
blueprint layers.

Three Layers. Graphically, this visual pattern is com-
posed of three to four colored bands with few nodes: One or
two white bands for the interface layer, one red for the
accessor, and one blue for attributes. This visual pattern

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 9

describes classes that have few methods, some accessors,
and some attributes. Usually these classes are small and
implement primitive behavior and access to data. In Fig. 3b,
we see that the class annotated as A belongs to this category.

Interface. Graphically the visual pattern presents one
predominant interface layer. It occurs when a class acts as
an interface, which is frequent for abstract superclasses. It
also occurs when the class acts as a pool of constants. In
Smalltalk, there is no construct for defining constant values,
therefore class methods are often used to return constant
values. Such classes can also contain a Constant Definer
visual pattern as shown by the top class blueprint in Fig. 4c.

Wide Interface. Graphically this visual pattern is
composed of a large interface layer compared to the other
layers. A Wide Interface blueprint is one that offers many
entry points to its functionality proportionally to its
implementation layer (see bottom class in Fig. 4c and to a
certain extent Fig. 2). Examples of such classes are GUI
classes with many buttons on the user interface which
implement a method for every button the user can press.

6.3 Semantics-Based Visual Patterns

In a class blueprint, we map semantic information to node
and edge colors. We identify the visual patterns Delegate,
Data Storage, Constant Definer, Accessor User, Direct Access,
and Access Mixture by looking at which colors are present in
a blueprint and where the nodes with those colors are
located.

Delegate. Graphically this visual pattern is composed of
yellow nodes often found in the interface layer. Delegate
describes a class that defines delegating methods, i.e., it
forwards invocations to attributes or to accessor invoca-
tions. A Delegate can be an indication for design patterns
such as Facade orWrapper. The class annotated as B in Fig. 3b
and the class in Fig. 2 present both a Delegate visual pattern.

Data Storage. This pattern presents mainly two layers,
one red of accessors and one blue of attributes. It may
happen to have one extra method to initialize the attributes.
The Data Storage visual pattern describes a class which
mainly defines accessors to attributes. Such a class usually
does not implement any complex behavior, but is merely
used for data storage and retrieval. The implementation
layer is often empty. Looking for duplicated logic in the
clients of such classes is usually a good way to reduce
duplicated code and to enforce the Law of Demeter [23],
[24]. Fig. 4d shows a class presenting some aspects of the
Data Storage visual pattern, but is not limited to this. This
class could also be categorized as a Three Layers even if the
number of accessors is important compared to the other
methods defined. Not being able to exactly categorize the
class is not a problem as the key point is that the reengineer
now knows that the class seems to act as a data repository
with some extra behavior. Reading briefly the method
nextSample (the biggest method node in this blueprint),
confirms this hypothesis as this method generates new
colors using the attributes of the object.

Constant Definer. This pattern is composed of gray
nodes often residing in the interface layer. It describes a
class that defines methods returning constant values such
as integers, Booleans, or strings. Pure Constant Definer
blueprints are rare as a class is seldom limited to define

constants. The root class in Fig. 4c and the one in Fig. 2 both
contain a Constant Definer pattern.

Accessor User / Direct Access / Access Mixture. These
three visual patterns are linked to the consistency with
which edges arrive to attributes and accessors. These three
visual patterns are mutually exclusive and describe the use
of accessors in classes. In the case of Accessor User, two
accessors (the getter and the setter) have been consistently
defined for every attribute in the class and the attributes
are not accessed directly. In the case of Direct Access, no
accessors at all have been defined, and the attributes are
always accessed directly. In the case of Access Mixture,
there is an inconsistent definition and use of the accessors.
These visual patterns reveal the programming styles and
whether they are followed. It is an important information
when lazy initialization has to be introduced in the class as
all the accesses to the state should be done via a single
method implementing the lazy schema. In Fig. 3b, the class
blueprint A shows an Accessor User visual pattern, i.e., for
every attribute there are two accessors and the attributes
are only accessed via the accessors. In Fig. 3b, the class C is
an example of a Direct Access visual pattern, while within
the same hierarchy the class blueprint E shows a Access
Mixture visual pattern, indicating a possible lack of coding
conventions.

6.4 Call-Flow-Based Visual Patterns

Based on the call-flow between the methods, we identify the
following visual patterns: Single Entry, Method Clumps, and
Funnel.

Single Entry. Graphically, this pattern is composed of a
minimal, often limited to one node, interface layer but
connected to all the nodes of the larger implementation
layers. Single Entry describes a class which has very few or
only one method in the external interface layer acting as
entry point to the functionality of the class. It then has a
large implementation layer with several levels of calls. Such
classes are designed to deliver only little yet complex
functionality. Classes that implement a specific algorithm
(e.g., parsers) show this visual pattern. Fig. 4e shows two
Single Entry visual patterns in one class blueprint. The two
distinctive entry points are the root nodes of two separate
method invocation trees. We deduce that the class provides
for two separate functionalities, which are probably com-
plementary (they access the same attributes).

Structured Flow. This pattern presents a cluster of
methods structured in a deep and often narrow invocation
tree. This pattern reveals that the developer has decom-
posed an implementation into methods that invoke each
other and possibly reuse some parts. It supports the reading
of the methods. A typical example is the decomposition of a
complex algorithm into pieces. The bottom of the class
blueprint in Fig. 4b shows a well pronounced Structured
Flow visual pattern.

Method Clumps. This pattern is composed of one large or
huge node surrounded by some tiny nodes. It contains
clusters of methods, each with one very large method that is
calling many small methods. The large method is not
structured following a functional decomposition. Fig. 5a
shows two Method Clumps patterns, the large nodes
represent methods having more than 100 lines of code.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

They are the direct translation of the GNU diff algorithm
written in C. To give an idea of the disproportionality
between those methods and the small ones, note that the
average number of lines of a Smalltalk method is seven [25].

Funnel. This pattern is composed of an inverse (right-to-
left) tree of nodes whose root is on the right, forming a
funnel. Funnel describes a group of methods that all
converge toward a final functionality. It often occurs when
a complex data structure is used that can be accessed by
various interfaces. Identifying the final functionality is often
the key to understanding how data abstraction is used in
the class. Fig. 5b and the bottom blueprint in Fig. 4c present
Funnel patterns.

6.5 State Usage-Based Visual Patterns

The way the attributes of a class are accessed by the
methods creates visual patterns that provide important
semantic information about the class. Three highly identifi-
able and recurrent blueprints occur: Sharing Entries,
Splittable State, and All State.

Sharing Entries. The attribute nodes are accessed
uniformly by groups of method nodes. This pattern
represents the fact that multiple methods access the same
state, and reveals a certain cohesion of the class regarding
its state management. An example of such a pattern is seen
in Fig. 5b where nearly all methods access the third attribute
from the top. Fig. 4e presents Sharing Entries patterns as the
two groups of method forming the Single Entry pattern
access the same state.

Splittable State. This pattern presents two, rarely more,
clearly separated groups of method nodes accessing two
distincts set of attribute (blue) nodes. It occurs when a class
is composed of several groups of methods each accessing

only a subset of the class state. Classes presenting this

visual pattern are showing a low cohesion and may be split

if necessary. This pattern occurs with classes such as user

interface classes, whose main purpose is to group together

indepent classes. Splittable State is rare, we included it in

this section because it complements the other two blue-

prints presented here. We could not find one in the Jun case

study, therefore omit a figure.
All State. This pattern presents groups of method nodes

that have edges arriving to all the attribute nodes (blue). It is

semantically orthogonal to the other two and describes the

fact that a group of methods accesses all the attributes of a

class. When the class presents a Single Entry it often

presents also the All State blueprint. The inverse is not true.

Fig. 4e shows an example where we see that all the

attributes in the class are accessed by the two methods

annotated as A. This remarkable behavior is also exhibited

by the Fig. 4a and the bottom blueprints in Fig. 5d.

7 VISUAL PATTERNS IN THE CONTEXT OF

INHERITANCE

The blueprints support class understanding within the

context of their inheritance hierarchy. Within hierarchies

some specific and recurrent visual patterns occur as well.
Micro Specializer. This pattern shows a small class

blueprint composed of a couple of short methods, i.e.

mostly small brown or orange nodes. It denotes a small

class that defines overriding and/or extending methods.

Such classes are mainly used to specialize well identified

behavior and they benefit from the structure and behavior

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 11

Fig. 5. (a) The Method Clumps visual pattern of the class JunGNUDiff. (b) A Funnel class blueprint of the class JunMovieHandle. (c) A nearly pure

Template class blueprint of the root class JunParametricSection. The two subclasses are both heavyOverrider blueprints. (d) A nearly pure Interface

class blueprint of the root class JunGeometry. The first subclass is a nearly pure Template blueprint, while the two leaf classes are combinations of

the Overrider, and All State blueprint. Moreover they are Siamese Twin blueprints compared with each other.

of their superclasses. In Fig. 3b, we see some examples of
the Micro Specializer blueprint.

Siamese Twin. This pattern is based on the similarity
between two or more blueprints of sibling classes, in terms
of methods, attributes, method invocations, and attribute
accesses. This happens when the programmer forgot to
refactor the common functionality into the superclass of the
siamese twins or when the superclass implements complex
logic that should be extended in a similar way in the
subclasses. The three subclasses in Fig. 3a are siamese
twins, especially the one on the left and the one on the right
override exactly the same methods. The bottom blueprints
in Fig. 5d present two large Siamese Twin patterns.

Island. This pattern presents a class blueprint without

any edge going out or coming from other class blueprints.

Island reveals classes that do not communicate with their

superclasses, sibling classes, or subclasses. The commu-

nication between the class and its superclass is only

performed via the template methods of the superclass.

Note that such a class can also define new methods and

new attributes. In Fig. 4c, we see that the subclass neither

invokes methods nor accesses attributes of its superclass.

Furthermore we see that the subclass neither overrides nor

extends any methods of the superclass, since this would be

visible as brown or orange method nodes: Indeed, the

subclass does not communicate with its superclass.

Adder / Extender / Overrider. This pattern presents class

blueprints that are mainly white (adding), orange (extend-

ing), or brown (overriding). These patterns present the way

classes add, extend, or override inherited behavior. The

weight of these patterns, i.e., the number of methods in one

of these three colors compared with the total number of

methods, is an indication of the way the class fits within its

inheritance hierarchy. The rightmost subclass in Fig. 3b is a

pure adder as it is completely white, while all the other

subclasses denote heavy Overrider patterns, i.e., they contain

many overridding methods. None of these classes is

extending superclass behavior. We also see that, in Fig. 5c,

the two subclasses are combinations of Overrider and Adder

blueprints, denoted by the presence of several brown and

white method nodes.
Template. This pattern shows a blueprint with a possibly

small implementation layer and several cyan nodes, i.e.,
abstract methods. It reveals that a class is not limited to an
interface and that it defines some abstract methods. These
classes are often mature classes. The class at the top of the
hierarchy in Fig. 3a is a good example of mature design: the
class defines some template methods and abstract hook
methods specializing the behavior inherited from its super-
class. Fig. 5c and Fig. 2 both show a Template pattern.

8 USER VALIDATION

The effectiveness of the choice of the layers, the colors, etc.,
although questionable, has been refined in several occasions
during the last four years. In this section we give a short
summary of personal experiences and feedback we
obtained from other users.

8.1 Our Personal Experiences

Apart from industrial case studies on which we are not
allowed to report, we applied the class blueprints on four
case studies:

1. Squeak, an open-source Smalltalk environment
(1,800 classes),

2. Moose, our reengineering environment (200 classes),
3. Duploc, a tool for the detection of duplicated code

(160 classes, described in [14]), and
4. Jun, a graphical framework (700 classes, described in

this article).

All the experiments we ran were limited in time. At the
maximum, we allocated three days to apply the blueprint
visualizations on the complete code. During this time, we
systematically visualized all classes (in hierarchies or one by
one) and read the actual source code from time to time
when needed. While using the visualizations, we identified
visual patterns and then checked our hypotheses by means
of code reading. Obtaining an understanding of such large
amounts of source code in such a short time would have
been difficult at the least.

8.2 Users Experiment

Having a scientific validation of our approach by compar-
ing it with other approaches is difficult because most of the
tools described in literature are not available anymore or do
not cover class understanding. However, we run an
experiment to evaluate if and how other users could use
the class blueprint visualizations to understand classes. We
asked 11 researchers and students in software engineering
to use our tool to understand the maximum number of
classes in the JUN framework (it was unknown to all of
them) in a limited amount of time. Nearly all participants
were fluent Smalltalk programmers using the VisualWorks
environment which already proposes some advanced
textual query and navigation facilities. None of them had
ever experienced the class blueprint visualizations before,
but most had read an earlier version of this article the day
before the experiment.

Setup. We gave a demonstration of CodeCrawler during
twenty minutes explaining how to produce a class blueprint
visualization of classes. They had one hour to visualize and
understand a list of classes of Jun of different sizes and
location in hierarchies. We asked them to report about the
structure of the classes, their overall quality, their interac-
tions with superclasses/subclasses, and seek for any hints
about the use of design patterns and programming idioms.
After the experiment, we asked them to answer the
questions listed in Table 2. On average, they had the time
to understand six classes on a completely unknown system.

Having an empirical validation of a visualization
technique is difficult because of many factors, such as the
level of expertise of the subjects, their aptitude to think
visually, their motivation to participate, the quality of the
tool providing the visualization, and the quality of the
sample. However, this experience5 shows that the users
even in the limited amount of time found class blueprints

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

5. Other experiments were performed in classes at the Universities of
Antwerp and Louvain-La-Neuve.

useful or very useful. The answers regarding the colors is
normal as the color mapping has to be learned and their is
no special way to remember it. For the choice of the layers,
the situation is better as their order conveys the sequence
invocation. The answers related to the visual patterns were
to be expected as we did not ask them to learn the language
presented in this article. Therefore, we did not expect that
they could recognize them. We knew that our approach was
targeting expert developers, but the experience showed that
even novices found it useful, although they profit less.

9 TOOL SUPPORT: CODECRAWLER AND MOOSE

CodeCrawler is the tool implementing the class blueprints.
It supports reverse engineering through the combination
of metrics and software visualization [22], [26]. Code-
Crawler has been repeatedly run on several large scale
industrial case studies. It is built on top of Moose, a
reengineering environment written in Smalltalk [27].
Moose implements the FAMIX metamodel [13], which
provides for a language independent representation of
object-oriented source code and contains the required
information for the reengineering and reverse engineering
tasks such as code refactorings. The core FAMIX meta-
model comprises the main object-oriented concepts
—Class, Method, Attribute and Inheritance—plus the
necessary associations between them—Invocation and
Access [13]. The complete FAMIX metamodel includes
many more aspects of the object-oriented paradigm, and
contains source code entities like formal parameters, local
variables, functions, etc.

CodeCrawler supports the synergy between opportunis-
tic reading of the code and the visualization of classes in the
following ways:

. Interactivity. The blueprint visualizations do not
merely represent source code, as in the case of static
visualizations (i.e., static pictures that cannot be
manipulated), but they support direction manipula-
tion. When the proposed layout does not suit the

viewer’s wishes, he can select, move, or highlight
connected, recursively connected, or unconnected
nodes.

. Code Proximity. At any moment the reengineer can
access the code by clicking on any node and seeing
the corresponding definition at the level of a
method, at the level of the class, and using code
browsers presenting superclasses and subclasses.
Moreover, can activate a floating window showing
the code of the node over which the mouse pointer is
passing.

10 RELATED WORK

Among the various approaches to support reverse en-

gineering that have been proposed in the literature,

graphical representations of software have long been

accepted as comprehension aids [28], [29].
Many tools make use of static information to visualize

software, such as Rigi [30], Hy+ [31], [12], SeeSoft [32], Dali

[33], ShrimpViews [34], TANGO [35], as well as commercial

tools like Imagix (see http://www.imagix.com) to name but

a few of the more prominent examples. However, most

publications and tools that address the problem of large-

scale static software visualization treat classes as the

smallest unit in their visualizations. There are some tools,

for instance, the FIELD programming environment [36] or

Hy+ [31], [12] which have visualized the internals of classes,

but usually they limited themselves to showing method

names, attributes, etc., and using simple graphs without

added semantic information. GraphTrace proposes to

visualize concurrent animated views to understand the

way a system behaves [10]. ObjectExplorer [11] uses both

dynamic and static information that a software engineer can

query and visualize via simple graphs to understand and

verify his hypotheses. Using basic graph visualizations to

represent various relationships, Mendelzon and Sametinger

[12] show that they can express metrics, constraints

verification, and design pattern identification.

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 13

TABLE 2
Questions and Answers for the User Experiment

Substantial research has also been conducted on runtime

information visualization. Various tools and approaches

make use of dynamic (trace-based) information such as

Program Explorer [11], Jinsight and its ancestors [37], and

Graphtrace [10] or [38]. Various approaches have been

discussed like in [39] where interactions in program

executions are being visualized, to name but a few. Vion

and Dury [40] use 3D to represent the runtime of objects in

distributed and concurrent systems.

Nassi and Shneiderman proposed flowcharts to repre-

sent in a more dense manner the code of procedures [41].

Warnier/Orr-diagrams allow us to describe the organiza-

tion of data and procedures [42]. Both approaches only deal

with procedural code and control-flow. Cross et al. defined

and validated the effectiveness of Control Structure Dia-

grams (CSD) [43], [3], which depict the control-structure

and module-level organization of a program. Even if CSD

has been adapted from Ada to Java, it still does not take into

account the fact that a class exists within an hierarchy and

in presence of late-binding.
We provide a visualization of the internal structure of

classes in terms of their implementations and in the context
of their inheritance relationships with other classes. In this
sense, our approach proposes a new dimension in the
understanding of object-oriented systems.

11 CONCLUSION

In object-oriented programming, classes are the primary
abstractions with which applications are built. We support
the software engineer in understanding the internal
structure of classes and how class behavior is developed
in the context of the inheritance hierarchy in which it is
defined. Our approach is based on the synergy between the
class blueprint visualization and opportunistic code reading
[15]: The visualization helps in building hypotheses and
raising questions that are verified by opportunistic code
reading. As such, it supports understanding at multiple
levels of abstraction [16].

Benefits. The main benefits of our approach are the
following:

. Reduction of complexity. Using class blueprints we can
make assumptions about a class without having to
read the whole source code. This “taste” of the class,
which conveys the purpose of a class, appears in two
contexts: the class in isolation and the class within its
inheritance hierarchy.

. Identification of key methods. The class blueprint, by
condensing the class, stresses some of its aspects.
Based on the resulting signs shown by the blueprint,
the reengineer builds hypotheses and gains insights
on the structure and internal implementation of a
class. The blueprint helps to select the relevant
methods whose reading validates or invalidates the
hypotheses of the reengineer.

. A common vocabulary. The recurrent visual patterns
created by the blueprints define a common vocabu-
lary for the class. This vocabulary supports the
communication between reengineers during a

reverse engineering process, in a similar manner to
design patterns.

. Programming style detection. After the display of
several blueprints, the observer starts to identify
common visual patterns in different blueprints.
These patterns reflect the programming style of the
developer, i.e., in some case studies, we are able to
recognize which developer wrote the blueprinted
classes.

Limits. Our approach is limited in the following ways:

. Scalability. In very large classes with hundreds of
methods and dozens of attributes, the patterns are
still visible, but the complexity of the method
invocations and the attribute accesses make a
blueprint difficult to interpret. Very large classes
with dense invocations between methods decrease
the benefits of using the class blueprint visualiza-
tion. In such a case, the viewer should start to slice
the call-flow using direct manipulation to select the
part of the class he is interested in.

. Functionality. The blueprint of a class can give the

viewer a “taste” of the class at one glance. However,

it does not show the actual functionality the class

provides. The approach proposed here is thus

complementary to other approaches used to under-

stand classes.
. Collaboration. We do not address collaboration

aspects between classes for the time being. This is
due to the extra level of complexity which is
introduced by polymorphism (i.e., a class collabo-
rates with a complete inheritance tree). There are
approaches that rely on mural techniques to display
large sequences of method calls [39], or that use
runtime information to limit the scope of the
collaboration [11], [38]. In addition, a visualization
of collaborating classes should focus on interclass
communication, while our approach represents
information internal to classes and inheritance
hierarchies, it is therefore currently not targeted at
visualizing collaboration.

. Static Analysis. The approach presented here does
not make use of dynamic information. This means
we are ignoring runtime information about which
methods get actually invoked in a class. This is
relevant in the context of polymorphism and
switches within the code. In this sense the class
blueprint can be seen as a visualization of every
possible combination of method invocations and
attribute accesses.

Future work. In the future, we plan to extend our
approach in the following ways:

. Collaboration. In the future, we also plan to extend
our approach to classes that are not within the same
inheritance hierarchy, but that collaborate with each
other.

. Cognitive Science. The visualization algorithm pre-
sented here and the methodology coming with it are
both ad hoc and build empirically on several years of
experimentation. Although provably useful, it shows

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

little connection with research from the field of
cognitive science. We would like to understand
more deeply how our approach fits within an
information visualization context and fully take into
account more general approaches such as the ones
proposed by Ware [20], Bertin [18], and Tufte [19],
[44].

. Empirical validation. We would like to extend our
empirical usability analysis and qualitative valida-
tion of our approach. We plan to integrate our
approach to a commercial integrated development
environment and ask professional developers to
participate in this usability analysis.

. Language specific blueprints. The proposed approach
has been developed to be applicable to any class-
based object-oriented language. We have visualized
C++ and Java classes as blueprints. A first finding
was that the mapping between the language to the
blueprint layers still influences the blueprint. We
plan to identify the variation points by applying the
visualizations to a number of other object-oriented
languages.

ACKNOWLEDGMENTS

The authors would like to thank Gabriela Arevalo, Oscar

Nierstrasz, and the IEEE Transactions on Software Engineering

reviewers for their valuable feedback. They thank every-

body that participated in the controlled experiment. They

gratefully acknowledge the financial support of the Swiss

National Science Foundation for the projects “Tools and

Techniques for Decomposing and Composing Software”

(SNF Project No. 2000-067855.02) and “Recast: Evolution of

Object-Oriented Applications” (SNF Project No. 2000-

061655.00/1).

REFERENCES

[1] T.A. Corbi, “Program Understanding: Challenge for the 1990’s,”
IBM Systems J., vol. 28, no. 2, pp. 294-306, 1989.

[2] V. Basili, “Evolving and Packaging Reading Technologies,”
J. Systems and Software, vol. 38, no. 1, pp. 3-12, 1997.

[3] D. Hendrix, J.H. Cross II, and S. Maghsoodloo, “The Effectiveness
of Control Structure Diagrams in Source Code Comprehension
Activities,” IEEE Trans. Software Eng., vol. 28, no. 5, pp. 463-477,
May 2002.

[4] I. Sommerville, Software Engineering, sixth ed. Addison Wesley,
2000.

[5] A.M. Davis, 201 Principles of Software Development. McGraw-Hill,
1995.

[6] N. Wilde and R. Huitt, “Maintenance Support for Object-Oriented
Programs,” IEEE Trans. Software Eng., vol. 18, no. 12, pp. 1038-
1044, Dec. 1992.

[7] E. Casais and A. Taivalsaari, “Object-Oriented Software Evolution
And Re-Engineering (Special Issue),” Theory and Practice of Object
Systems (TAPOS), vol. 3, no. 4, pp. 233-301, 1997.

[8] A. Dunsmore, M. Roper, and M. Wood, “Object-Oriented
Inspection In The Face Of Delocalisation,” Proc. ICSE 2000 22nd
Int’l Conf. Software Eng., pp. 467-476, 2000.

[9] U. Dekel, “Applications of Concept Lattices To Code Inspection
And Review,” technical report, Dept. of Computer Science,
Technion, 2002.

[10] M.F. Kleyn and P.C. Gingrich, “Graphtrace—Understanding
Object-Oriented Systems Using Concurrently Animated Views,”
Proc. ACM Conf. Object-Oriented Programming Systems, Languages,
and Applications, pp. 191-205, Nov. 1988.

[11] D.B. Lange and Y. Nakamura, “Interactive Visualization of Design
Patterns Can Help in Framework Understanding,” Proc. ACM
Conf. Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 342-357, 1995.

[12] A. Mendelzon and J. Sametinger, “Reverse Engineering by
Visualizing and Querying,” Software—Concepts and Tools, vol. 16,
pp. 170-182, 1995.

[13] S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1—The
FAMOOS Information Exchange Model,” technical report, Univ.
of Bern, 2001.

[14] M. Lanza and S. Ducasse, “A Categorization of Classes Based on
the Visualization of Their Internal Structure: The Class Blueprint,”
Proc. ACM Conf. Object-Oriented Programming Systems, Languages,
and Applications, pp. 300-311, 2001.

[15] D. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental Models
and Software Maintenance,” Proc. First Workshop Empirical Studies
of Programmers, Soloway and Iyengar, eds., pp. 80-98, 1996.

[16] A. vonMayrhauser and A. Vans, “Identification of Dynamic
Comprehension Processes During Large Scale Maintenance,”
IEEE Trans. Software Eng., vol. 22, no. 6, pp. 424-437, June 1996.

[17] M. Petre, “Why Looking Isn’t Always Seeing: Readership Skills
and Graphical Programming,” Comm. ACM, vol. 38, no. 6, pp. 33-
44, June 1995.

[18] J. Bertin, Graphische Semiologie. Walter de Gruyter, 1974.
[19] E.R. Tufte, Envisioning Information. Graphics Press, 1990.
[20] C. Ware, Information Visualization. Morgan Kaufmann, 2000.
[21] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to

the Future: The Story of Squeak, a Practical Smalltalk Written in
Itself,” Proc. ACM Conf. Object-Oriented Programming Systems,
Languages, and Applications, pp. 318-326, Nov. 1997.

[22] M. Lanza and S. Ducasse, “Polymetric Views—A Lightweight
Visual Approach to Reverse Engineering,” IEEE Trans. Software
Eng., vol. 29, no. 9, pp. 782-795, Sept. 2003.

[23] K.J. Lieberherr and A.J. Riel, “Contributions to Teaching Object
Oriented Design and Programming,” Proc. ACM Conf. Object-
Oriented Programming Systems, Languages, and Applications, vol. 24,
pp. 11-22, Oct. 1989.

[24] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[25] E.J. Klimas, S. Skublics, and D.A. Thomas, Smalltalk with Style.
Prentice-Hall, 1996.

[26] M. Lanza, “Codecrawler—Lessons Learned in Building a Software
Visualization Tool,” Proc. Conf. Software Maintenance and Reeng.,
pp. 409-418, 2003.

[27] S. Ducasse, M. Lanza, and S. Tichelaar, “Moose: An Extensible
Language-Independent Environment for Reengineering Object-
Oriented Systems,” Proc. Second Int’l Symp. Constructing Software
Eng. Tools (CoSET 2000), June 2000.

[28] B.A. Price, R.M. Baecker, and I.S. Small, “A Principled Taxonomy
of Software Visualization,” J. Visual Languages and Computing,
vol. 4, no. 3, pp. 211-266, 1993.

[29] Software Visualization—Programming as a Multimedia Experience, J.T.
Stasko, et al., eds., The MIT Press, 1998.

[30] S.R. Tilley, K. Wong, M.-A.D. Storey, and H.A. Müller, “Program-
mable Reverse Enginnering,” Int’l J. Software Eng. and Knowledge
Eng., vol. 4, no. 4, pp. 501-520, 1994.

[31] M.P. Consens and A.O. Mendelzon, “Hy+: A Hygraph-Based
Query and Visualisation System,” Proc. 1993 ACM SIGMOD Int’l
Conf. Management Data, SIGMOD Record, vol. 22, no. 2, pp. 511-
516, 1993.

[32] S.G. Eick, J.L. Steffen, and S.E. EricJr, “SeeSoft—A Tool for
Visualizing Line Oriented Software Statistics,” IEEE Trans. Soft-
ware Eng., vol. 18, no. 11, pp. 957-968, Nov. 1992.

[33] R. Kazman and S.J. Carriere, “Playing Detective: Reconstructing
Software Architecture from Available Evidence,” Automated Soft-
ware Eng., Apr. 1999.

[34] M.-A.D. Storey and H.A. Müller, “Manipulating and Document-
ing Software Structures Using Shrimp Views,” Proc. 1995 Int’l
Conf. Software Maintenance, 1995.

[35] J.T. Stasko, “Tango: A Framework and System for Algorithm
Animation,” Computer, vol. 23, no. 9, pp. 27-39, Sept. 1990.

[36] S.P. Reiss, “Interacting with the Field Environment,” Software—
Practice and Experience, vol. 20, pp. 89-115, 1990.

[37] W.D. Pauw, R. Helm, D. Kimelman, and J. Vlissides, “Visualizing
the Behavior of Object-Oriented Systems,” Proc. ACM Conf. Object-
Oriented Programming Systems, Languages, and Applications, pp. 326-
337, Oct. 1993.

DUCASSE AND LANZA: THE CLASS BLUEPRINT: VISUALLY SUPPORTING THE UNDERSTANDING OF CLASSES 15

[38] T. Richner and S. Ducasse, “Recovering High-Level Views of
Object-Oriented Applications from Static and Dynamic Informa-
tion,” Proc. Int’l Conf. Software Maintenance, H. Yang and L. White,
eds., pp. 13-22, Sept. 1999.

[39] D.J. Jerding, J.T. Stansko, and T. Ball, “Visualizing Interactions in
Program Executions,” Proc. Int’l Conf. Software Eng., pp. 360-370,
1997.

[40] J.-Y. Vion-Dury and M. Santana, “Virtual Images: Interactive
Visualization of Distributed Object-Oriented Systems,” Proc. ACM
Conf. Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 65-84, 1994.

[41] I. Nassi and B. Shneiderman, “Flowchart Techniques for Struc-
tured Programming,” SIGPLAN Notices, vol. 8, no. 8, Aug. 1973.

[42] D.A. Higgins and N. Zvegintzov, Data Structured Software
Maintenance: The Warnier/Orr Approach. Dorset House, Jan. 1987.

[43] J.H. CrossII, S. Maghsoodloo, and D. Hendrix, “Control Structure
Diagrams: Overview and Evaluation,” J. Empirical Software Eng.,
vol. 3, no. 2, pp. 131-158, 1998.

[44] E.R. Tufte, The Visual Display of Quantitative Information, second ed.
Graphics Press, 2001.

Stéphane Ducasse obtained the PhD degree at
the University of Nice-Sophia Antipolis and the
habilitation at the University of Paris 6. His fields
of interests are design of reflective systems,
object-oriented languages design, composition
of software components, design and implemen-
tation of applications, and reengineering of
object-oriented applications. He is one of the
main developers of the Moose reengineering
environment. He enjoys programming in Small-

talk and is the president of the European Smalltalk User Group. He is the
coauthor of more than 30 articles and several books in French and
English: La Programmation: Une Approche Fonctionnelle et Recursive
en Scheme (Eyrolles 96), Squeak (Eyrolles 2001), Object-Oriented
Reengineering Patterns (MKP 2002).

Michele Lanza received the PhD degree in
computer science in 2003 at the University of
Bern in Switzerland. He was a recipient of the
Ernst-Denert Software Engineering Award of the
German Computer Society in 2003 for his work
on object-oriented reverse engineering. He
worked as senior researcher at the Institute of
Informatics of the University of Zurich and in
2004 became assistant professor of the faculty
of informatics at the University of Lugano in

Switzerland. His main research interests lie in software engineering,
reverse engineering and reengineering, software evolution, and in-
formation and software visualization. He is a dedicated smalltalker since
1997. He is the creator of CodeCrawler, an information visualization tool
and one of the main developers of Moose, a language independent
reengineering tool environment. He is a member of the ACM and IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

