A Top-Down Program Comprehension Strategy for Packages

Stéphane Ducasse, Michele Lanza, Laura Ponisio

Software Composition Group, University of Bern, Switzerland.
www.iam.unibe.ch/~scg.

IAM-04-007

September 23, 2004

Abstract

Understanding packages is an important activity in the reengineering of large object-oriented systems. The
relationships between packages and their contained classes can affect the cost of modifying the system. The main
problem of this task is to quickly grasp the structure of a package and how it interacts with the rest of the system.
In this paper we present a top-down program comprehension strategy based on polymetric views, radar charts, and
software metrics. We illustrate this approach on two applications and show how we can retrieve the important
characteristics of packages.

Keywords: Program understanding, reverse engineering, software visualization, polymetric views

1 Introduction

It is well-known that 50% to 75% of the overall cost
of a software system is devoted to its maintenance [17].
Moreover, during maintenance software professionals
spend at least half their time reading and analysing
software in order to understand it [7] [2]. The main-
tenance of object-oriented applications is harder than
the ones written in procedural languages [34] because
the presence of inheritance and late-binding increases
the number of potential dependencies within a program
[34, 30, 10, 8].

In addition, nowadays most applications are struc-
tured in terms of packages. The current belief is to
design packages in a similar way to classes: A package
should have a high cohesion and a low coupling with
the rest of the system [3, 4]. However, in the context
of object-oriented applications and frameworks, pack-
ages have different roles, such as containing some key
subclasses of a framework. The way a system is de-
composed into packages and the way classes are dis-
tributed in them represent an important characteristic
of the application design and development process con-
straints. Therefore it is crucial to understand packages
in their fine-grained mechanisms. Providing a way to
support the understanding of packages (or other sets
of classes) is important also in the context of reengi-
neering. Packages are complex entities with multiple
facets.

Our approach is based on a limited and simple meta-
model of source code (state access, class reference and
inheritance) and on the definition of simple measure-
ments based on these relations. Based on this infor-
mation, package roles within the context of an appli-
cation are revealed using visualizations enriched with
metrics: We propose to support the understanding of
packages based on three visualizations, as visualization
supports efficiently the combination of properties. The
three visualization we propose are: a global polymetric
view that illustrates the roles that the packages play
in the context of production/consumption of function-
ality, and two radar diagrams at the level of a single
package. The radar diagrams depict how a package is
internally structured and how it relates to the rest of
the system.

Structure of the paper. In Section 2 we discuss the
problem of understanding the packages that compose an
application. In Section 3 and Section 4 we introduce our
approach and in Section 5 we present the global package
view in detail showing how the package characteristics ap-
pear compared with the complete application and define the
needed measurements. In Section 6 we present two radar
chart views that shows how the package contents appears

in the context of the package itself. In Section 7 we ana-
lyze the results of applying our approach to the case studies
and in Section 8 we discuss related work. We summarize
our findings in Section 9.

2 Understanding Packages

Chikofsky states that “The primary purpose of re-
verse engineering a software system is to increase the
overall comprehensibility of the system for both main-
tenance and new development” [5]. We focus on the
problem of how to provide an understanding of the
packages that compose a large application. Our long
term goal is to be able to provide a means to assess
the quality of packages during the refactoring of a sys-
tem. In this paper we consider as package a group of
classes that a developer has decided to put together or
that a clustering algorithm identified [1, 19]. In Java,
the term package is mapped to the Java package but
without their scoping aspects, e.g., import statements
and namespaces. In Smalltalk the term package cor-
responds to a binary deployment unit and traditional
class categories. Our approach is not based on a partic-
ular implementation language because the underlying
metamodel is language independent [9].

Our aim is to answer the following questions:

e What is the importance of a package in terms of its
intrinsic properties such as the number of classes
and methods it contains? How many clients rely
on it?

e Does the package use several other packages or is
it more self-contained?

e What is the impact of changes in the relationships
between packages?

e Can we identify patterns or repeating package
characteristics?

e How is package structured: does it only extend
other packages via inheritance, or does it define
itself some complex hierarchies? When classes are
subclassing other classes what are exactly the re-
lationships that link them (state, behavior)?

2.1 Challenges and Constraints

Our approach targets the initial phases (e.g., the
first couple of weeks) of a reverse engineering process
during which a first mental picture of the system is
formed [28].

Characterizing packages requires the processing of
a lot of information. Software metrics are well-known

to reduce large amounts of information [12]. However,
this reduction often leads to only seeing isolated infor-
mation about a larger phenomenon. In addition, the
combination of metrics leads to dimensional inconsis-
tencies and numbers that are meaningless or hard to
interpret.

These problems can be partially circumvented by
using software visualization because visual displays al-
low us to combine visually multiple aspects of complex
problems [27] [33]. However, software visualizations are
often too simplistic and lack visual cues for the viewer
to correctly interpret them [23]. In other cases the vi-
sualizations obtained are still too complex to be of any
real value to the viewer. The challenge is to define a
visualization that conveys the right level of information
while scaling in terms of screen usage so that the hu-
man brain can compare and identify multiple packages
at the same time.

3 Approach Overview

We adopt a top down approach: The reengineer first
uses coarse-grained visualizations of the packages and
their connections and then reaches detailed informa-
tion about packages. Using the polymetric view [16]
he can spot interesting packages such as core pack-
ages, lightweight packages that merely use behavior
and state of other packages or packages that are in-
dependent from the others. He can then inspect the
package in detail using a radar chart. Two radar charts
are provided: (1) a global package view where the pack-
age is compared with its surrounding context and (2)
a local package view where the package is analyzed on
its own.

Case studies. We took as case studies BASE VISUAL-
WORKS and CODECRAWLER.

BASE VISUALWORKS is a large portion of the Cincom Vi-
sualWorks Smalltalk environment. It is an industrial sys-
tem, developed over the last 15 years. It defines all the run-
time entities of a smalltalk environment (classes, methods,
strings, characters, collections, graphical display, memory
objects) but also the compiler framework, the coding tools
(debugger, code browsers), the OS support and all the wid-
gets offered by the graphical framework.

CODECRAWLER, a software visualization tool, is an ap-
plication written by members of our research group and
serves to illustrate examples.

Case Study Packages | Classes LOC
BASE VISUALWORKS 94 1402 262660
CODECRAWLER 8 93 9088

4 Packages and Classes

We now present the information that we extract
from source code and show how we use it to model
packages and classes. A package contains classes which
refer to other classes or are referred to by other classes
in the system. We name clients the classes that access
the state or invoke the behavior of other classes. Con-
sequently the used classes are called providers. We call
a client package a package that depends on another one
because its classes refer to classes of the other package.

4.1 Class and Package Dependencies

There are many relationships between classes that
can be used to characterize classes in the context of
packages. Briand et al. [3, 4] propose a complete
overview and analysis of the possible metrics to char-
acterize coupling and cohesion. While the propositions
are interesting some of them are quite complex to put
in place [13].

We chose to take the minimal information such as
class references and inheritance relationships and eval-
uate how far we could get with such simple informa-
tion. An important influence on this work is the focus
on the object-oriented context in which packages exist.
We took into account the fact that in object-oriented
applications inheritance hierarchies can be spread over
multiple packages and that flattening packages accord-
ing to the inheritance relationships is not satisfactory
from an understanding point of view, since packages
convey semantics as well as the design intentions of
programmers. For example, a package may contain
only the abstract core of a framework, or contain only
the concrete leaf classes that represent a framework ex-
tension, or represent a specific product or the work of
a specific development team.

Besides being based on simple size metrics such as
the number of classes defined in a package, the informa-
tion that we use is based on three kinds of dependencies
between classes:

1. Inheritance: a class is a subclass of another. It
inherits its behavior.

2. State: a class may use the instance variable inher-
ited from its ancestors.

3. Class Reference: a class makes an explicit refer-
ence of another e.g., by instantiating the class.
This encompasses instance variable types.

The dependencies are directed which is important
since packages play the roles of clients and providers. If

Name [Description

PP (Number of Provider Packages). Number of package providers of a package. PP(P1)=1, PP(P2)=2, PP(P4)=1.

CP (Number of Client Packages). Number of packages that depend on a package. CP(P1)=3, CP(P3)=2, CP(P4)=0.

RTP (Number of Class References To Other Packages). Number of class references from classes in the measured package to
classes in other packages. RTP(P1)=2, RTP(P2)=1 ,RTP(P3)=1, RTP(P4)=0.

RRTP | (RelativeNumber of Class References To Other Packages). RTP divided by the sum of RTP and the number of internal
class references.

RFP (Number of Class References From Other Packages). Number of class references from classes belonging to other packages
to classes belonging to the analyzed package. RFP(P1)=0, RFP(P2)=1, RFP(P3)=3, RFP(P4)=0

RRFP (Relative Number of Class References From Other Packages). RFP divided by the sum of RFP and the number of internal
class references.

PIIR (Number of Internal Inheritance Relationships). Number of inheritance relationships existing between classes in the same
package. PIIR(P1)=0, PIIR(P2)=0, PIIR(P3)=3, PIIR(P4)=2

RPII (Relative Number of Internal Inheritance Relationships). PIIR divided by the sum of PIIR and EIP. RPII(P1)=0, RPII(P2)=0,
RPII(P3)=1, RPII(P4)=1.

EIC (Number of External Inheritance as Client). Number of inheritance relationships in which superclasses are in external
packages. EIC(P1)=0, EIC(P2)=2, EIC(P3)=1, EIC(P4)=1

EIP (Number of External Inheritance as Provider). Number of inheritance relationships where the superclass is in the package
being analyzed and the subclass is in another package. EIP(P1)=4, EIP(P2)=0, EIP(P3)=0, EIP(P4)=0

REIP (Relative Number of External Inheritance as Provider). EIP divided by the sum of PIIR and EIP. REIP(P1)=1, REIP(P2)=0,
REIP(P3)=0, REIP(P4)=0.

ASC (Number of Ancestor State as Client). Number of accesses to instance variables defined in a superclass that belongs to
another package. ASC(P3)=0, ASC(P4)=1

RASC | (Relative Number of Ancestor State as Client). ASC divided by the sum of ASC and ASCI. Where ASCI, Number of
Ancestor State Client Internal to the Package is the ancestor state class dependencies internal to the package. We consider
only dependencies from a class that is inside the package to other classes of the same package.

ASP (Number of Ancestor State as Provider). Number of times that instance variables of classes belonging to the analyzed
package are accessed by classes belonging to other packages. ASP(P1)=1, ASC(P4)=0

RASP (Relative Number of Ancestor State as Provider). ASP divided by the sum of ASP and the number of gives ancestor state
dependencies between classes when both classes belong to the package.

CcC (Number of Class Clients). Number of external class dependencies that are clients of a package. Sum over the number
of the class dependencies (ancestor state, class reference and inheritance) that refer to a package. CC(P1)=4, CC(P2)=1,
CC(P3)=3, CC(P4)=0.

NCP (Number of Classes in a Package). Number of classes in the package. NCP(P1)=2.

Table 1. Package Measurements.

there is an inheritance relationship between two classes
we do not count it as a class reference.

4.2 Characterizing Packages

To condense the information of a large application at
the level of its packages, we use simple object-oriented
metrics based on the dependencies we defined previ-
ously. We use some simple measurements based on the
three kinds of information that we extracted and use
these measurements to support the understanding.

The measurements we currently compute are listed
in Table 1. In this table the term external dependencies
denotes dependencies that originate from other pack-
ages and target classes of the analyzed package. The
metric example values refer to the situation depicted
in Figure 1.

We define both absolute and relative metrics for
packages. An example of an absolute metric of a pack-
age is RTP (Number of Class References To Other

Packages) which is the number of class references to
classes belonging to other packages from classes belong-
ing to the analyzed package. This metric is useful to as-
sess whether a package (and its classes) is heavily using
other packages, but fails to convey information about
the package itself. Relative metrics follow the pattern:
property/(internalproperty + externalproperty). The
relative metric RRTP (RelativeNumber of Class Ref-
erences To Other Packages) divides RTP by the total
number of class references in a package, thus creating a
normalized metric (i.e., between 0 and 1) that denotes
to what extent a package is self-contained (low RRTP)
or not (high RRTP).

5 A Polymetric View for Packages

Polymetric views are a visualization approach for
nodes—and—edges graphs enriched with semantic infor-
mation such as metrics [16]. A node figure is able to
render up to five metric values: its width, height, x—

w

Inh+State
C;
L]
Inh Inh+State
Cc11 Ref C10

Figure 1. Some packages with class depen-
dencies (C1 refers to C2, or inherits of C2, or
is a client of C2).

and y—position, and its color. An edge figure is able to
visualize two metric values: width and color. By ap-
plying metrics to the x— and y—position of the nodes,
for example, similar entities are located close together
in an easily identifiable region of the visualization ex-
hibiting some of their defining characteristics. Entities
with differing characteristics are then placed in a dis-
tinct region of the visualization. In this way, the shape
of the visualization is able to communicate useful facts
about the set of all visualized items.

To support the understanding of application at the
level of packages, we define a polymetric view named
PACKAGE SEDIMENTATION VIEW: The idea behind
the view is that heavily used packages are located at
the bottom of the view.

It displays all packages of a system as nodes and
all the dependencies between them as edges, grouping
packages with are heavier (i.e., used the most) towards
the bottom of the view. We distinguish provider and
client relationships. The position of a node reflects its
number of package clients and providers. The node
color represents the number of providers of the pack-
age. The width represents the number of client ac-
cesses. The height represents the number of classes
defined in the package. The purpose of this view is to
visualize a complete system and give the viewer an idea
of its structure in terms of packages and inter-package
dependencies.

In Figure 2, the package P3 is a client of P1, P2 and
P4. P1 and P4 only provide services to other packages
so that are aligned to the left. P2 is below P1 because
it has more client accesses.

This view reveals a certain number of symptoms,

#of providers

A depends on B
Ais aclientof B
Bis a provider of A

B depends on C
Bis aclient of C
Cis a provider of B

59559008 JUBII0 0 #

color = # of providers #Classes

«— #of client accesses —»

Figure 2. Principles of the PACKAGE SEDIMEN-
TATION VIEW.

that the viewer can look for to infer information:

e Wide nodes at the bottom are packages that con-
tain classes that are heavily used by other classes
of the system.

e Nodes at the top are packages containing classes
that mainly use classes in other packages.

e White nodes on the left are packages that are in-
dependent from other packages. Their classes do
not have dependencies towards other packages.

e Dark nodes on the right are packages whose classes
depend on classes of other packages.

e Flat nodes are packages with few classes.

e Disconnected nodes are packages that do not have
package dependencies.

e Packages with many connected edges to their top
side represent packages used by many other pack-
ages.

e Lightly colored edges are edges representing few
class dependencies between packages.

Example 1. Figure 3 shows the PACKAGE SEDIMEN-
TATION VIEW applied to CODECRAWLER. There are eight
packages with their dependencies. The white wide node at
the bottom is the package CCBase. Based on its position
in the view we learn that this package is a base package of
the system as almost all the other packages are clients. It
is positioned to the left and is white, so it does not depend
on any other package. It is smaller than the other nodes,
therefore it contains few classes. There is only one package
(CCMooseExtensions) that does not have clients. The pack-
age CCCore depends on at least another because it is not
totally white. It is also the third from the right. A closer
look to the dependencies of CCCore, (in the figure marked
by E) indicates that it not only depends on CCBase, but

o
CCMooseExtensions CodEvolver ccul
m}

CCMoosel |

[] cClayouts

CCHotDraw[__]

B
CCCore

Figure 3. PACKAGE SEDIMENTATION VIEwW oOf
the case study CODECRAWLER.

also on CCHotDraw. We also see that among the top pack-
ages some of them are dark. That is because they depend
heavily on the other packages. For instance the package on
the top right, CCUI., is the package where the tests are. We
expect to see many dependencies from this package to the
others, but none the other way around. In that figure we
also observe that among the top packages, the ones that
are whiter and leaning to the left, barely depend on other
packages since they have light gray edges instead of darker
ones.

Example 2. Figure 4 shows the application of PACK-
AGE SEDIMENTATION VIEW to the BASE VISUALWORKS case
study which is composed of 94 packages. The packages on
the top correspond to user interface, tools dialogs, print-
ing and operating system related packages. The view spots
immediately some key packages: Kernel-Objects, Interface-
Support and Collections-Arrayed that are at the bottom of
the screen are the foundation on top of which other func-
tionality is built. On the right of the view we see pack-
ages that have a lot of providers UlBasics-Controllers and
UlBasics-Components.

Discussion. Polymetric views as we implement
them are intrinsically interactive and must be inter-
acted with to exploit their full potential. For example,
we can highlight the packages that could be affected by
a change in a given package. In addition, the PACK-
AGE SEDIMENTATION VIEW can be enriched by visu-
alizing the internal information of dependencies that
compose each edge that we see in the view. For in-
stance, we can associate colors to the edges according

— Tools-Changes

B — - UlBasics-Controllers

Magnitudes —
-General

= UlBasics-Components

=

—
UlBasics-Support

—_
Interface-Support

/ 4
v
/

Collections-Arrayed '/
//

Kernel-Objects

Figure 4. PACKAGE SEDIMENTATION VIEwW oOf
the case study BASE VISUALWORKS.

to the type of class dependency connections that they
have. We can also adjust the thickness of the edge to
highlight a specific class dependency type that some of
its class dependencies have. The viewer can also select
the packages that have cyclic dependencies.

The metrics associated with the view can be changed
to obtain different information. For example, we
change the width and height of the node to represent
other metrics such as the number of internal inheri-
tance definitions or the lines of code. Such changes
modify the shape of the node but not its location. We
obtain flat, narrow or squared nodes conveying differ-
ent meanings [16].

6 Radar Charts for Packages

While the previous view offers a good overview of a
system’s structure in terms of packages and their role as
clients or providers, it does not provide a finer-grained
understanding of single packages. Obtaing such an un-
derstanding is difficult since packages are complex en-
tities: they contain classes which may have different
interactions with other classes, either within the same
package or defined in other packages.

To cope with this situation, we use a radar chart
visualization: We apply two radar views which com-
bine several measurements about a package in a single

space. The first view, GLOBAL RADAR VIEW, presents
a package in the context of the complete system and
the second view, RELATIVE RADAR VIEW, presents
how the package is internally structured.

Radar Visualization Principles. A radar visual-
ization is based on dividing a circle area with a certain
number of axes and to join the points of each axis as
shown in Figure 5. One interesting aspect of the radar
visualization is that it generates a surface in the sense
that two contiguous axes having high value properties
generate more surface. However, using a radar visual-
ization to represent complex constructs is not straight-
forward since the order of the axes determines the sur-
face and the shapes that the visualization can produce.
Therefore it is necessary to determine which criteria
are to be abalyzed and how they are to be mapped
efficiently on a radar chart.

As packages provide and uses information from other
packages, we defined a distribution of the metrics to
generate a butterfly shape. The left wing of the but-
terfly represents what the clients of the package use
from the package and the right wing what the package
in question uses from other packages. The bottom part
shows how inheritance is used, i.e., whether the pack-
age has classes that are subclassed in other packages
and if the package extends other packages.

6.1 GrLOBAL RADAR VIEW

NCP (# Client Packages)
/7>
ASC (#Ancestor State
as Provider)

|

|

|

|
RFP (# References

From
Other Packagtles)

! Ve . .
\.~- Iheritance connectign

provided to Clients used from Providers
EIP (# Inheritance as Provider) EIC (# Inheritance as Client)

" ASC (#Ancestor State
as Client)

RTP (# References
To
Other Packages)

Figure 5. Principles of the GLOBAL RADAR

VIEW.

This first view characterizes a package as presented
in Figure 5. It displays information that compares the
package in the context of the complete application.

Example. Figure 6 displays the GLOBAL RADAR VIEW
of the packages CCCore, CCBase and CCUI *.

IRefer to Table 1 for an explanation of the metrics used in
this section.

Client Packages x 10: 60
120

ASP: 40 &0 ASC: 4

RFP: 107 RTP: 35

EIP: 26 EIC: 2
CCBase
Client Packages x 10: 30 Client Packages x 10: 40
s00 %0
450 80
400
ASP:0 -3
300
250
o

ASC: 152 ASP: 2 60 ASC: 0
0
30
20
10
RTP:
86

EIP:1 ceul EIC: 12 EIP:3 cccore EIC: 10

200
150
100

50
o
RTP:

RFP: 6 4g0 RFP:58

Figure 6. GLOBAL RADAR VIEw on the Code-
Crawler packages CCCore, CCBase and CCUI.

The package CCCore (see also Figure 3) is a central pack-
age of CODECRAWLER. It uses the package CCBase. This is
reflected by the fact that the butterfly has two even narrow
wings. The view indicates the following: This package uses
86 external classes while it defines 22 classes (This infor-
mation was given by the height of the node in the polymet-
ric view). The classes it defines are referenced from other
packages too (58 accesses RFP). EIC shows that this pack-
age inherits from 10 classes in the other packages (CCBase
as we learned in the polymetric view), but this package is
also extended (EIP = 3). This package does not directly use
state from the superclasses which is an indication of good
design. However, we learn that its state is directly accessed
by subclasses defined in other packages (ASP = 2). As the
package only contains 12 classes (information obtained by
the PACKAGE SEDIMENTATION VIEW) and that EIC is equal
to this number, we learn that this package does not contain
an inheritance hierarchy.

The shape of the CCBase package shows that the package
is essentially a providing package. In addition it shows that
the state of the classes in the package is directly accessed by
clients subclasses (certainly CCCore) and that the package
also accesses state of other packages. The references to
other packages are the ones to default types such as String
and Collection. As CCBase is the basis for the complete
application and by knowing that only 10 classes inherit from
this package class we learn that the application is not flat
inheriting solely from a couple of root classes but that it is
certainly composed of inheritance hierarchies.

The shape of the CCUI package which contains all the
CODECRAWLER UI elements, shows that it is mainly a
client: Its classes directly access attributes of provider su-
perclasses (ASP = 152 accesses). This package will be im-

pacted if the superclasses located in other packages change.
The high-value, 480, of RTP is due to the manual building
of menus i.e., direct instantiation of Menultem.

6.2 RELATIVE RADAR VIEW

RNCP (# Client Packages) =
NCP / total number of packages
/7.
Relative ASP

(#Ancestor State N .
as'PrDvider) N\

i N

|

|
Relative RFP
(# References

From s {
Other Packages) .
\ 7/

Relative ASC
(#Ancestor State
as Client)

Relative RTP
(# References To
Otr?er Packages)

\ .- ‘Inheritance connectipn “el.
provided to Clients N ° used from Providers

Relative EIP Relative EIC
(# Inheritance as Provider) (# Inheritance as Client)

Figure 7. Principles of the RELATIVE RADAR

VIEW.

While the GLOBAL RADAR VIEW provides informa-
tion about a package, it does it by measuring the pack-
age in the context of the complete system. However,
it is difficult to assess how a property exists relative to
the package itself. For example, the information that
a package defines a lot of classes is refined when we
know that most of the classes are inheriting from a class
defined inside the package itself or when most of the
classes are subclasses of an external class. Presenting
such detailed information is the purpose of the REL-
ATIVE RADAR VIEW. The RELATIVE RADAR VIEW
principles are described in Figure 7. Basically it uses
the same axes than the GLOBAL RADAR VIEW but uses
relative metrics such as those in Table 1. Note that ob-
taining 1 as value for a relative metrics indicates that
the property does not have a strong value inside the
metrics compared to the outside. For example RASP
of CCbase in Figure 8 is 1 which means that there is
no state access between the class inside the package.
Note that that when RRTP is equal to 1, it means
there is a weak coupling between the classes inside the
package compared to the coupling they have with other
class outside the package. This does not mean that the
package should be refactored since packages may repre-
sent developer intent and do not have to correspond to
cohesive packages. For example, grouping framework
extensions together makes sense, and it is not manda-
tory that the extensions are coupled, since the coupling
between them is made at the level of the framework.

RClientPackages: 0.67
1

08

RASP: 1.0, RASC: 1.0

RRFP:0.98 RRTP: 0.95

REIP: 0.81 REIC: 0.25
CCBase

ROlentPackages: 0.44
RCllentPackages: 0.33 i
1

0s
RASP:0, RASC: 1.0 RASP:0074 s RASC: 0.0
04
02

04
02 0
RRTP: 0.97
RRFP: 0.32 .
03 RRFP: 0.73 RRTP:0.8

REIP: 1.0 REIC: 1.0
REIP: 0.2 cccore REIC: 0.45

Figure 8. RELATIVE RADAR VIEW on the Code-
Crawler packages CCCore, CCBase and CCUI.

Example. In Figure 8 we see that the REIC value of
CCUI (REIC = EIC/(EIC+PII))is 1: this confirms that
it does not define an inheritance hierarchy. Interpreting
RRTP whose value is 97%, we learn that the package is
not cohesive in the sense that there are 480 references to
external classes and only 3% of internal references (i.e., 14
internal references). RRFP is 32% since there are 14 internal
references and 6 external ones (RFP).

We learn that in the package CCbase, classes do not di-
rectly access state since RASP and RASC have 1 as value,
even if such as classes were accessing state of external su-
perclasses (ASC = 4) and its state is accessed by clients
classes (ASP = 40 in Figure 6). As the value of REIC is
0.25, we learn that this package, contrary to CCUI, is struc-
tured around inheritance hierarchies. It has 3 times more
internal inheritance than it is inheriting from others. REIP
= 0.81 indicates that it is subclassed from the outside. This
does not imply that the classes are not heavily extended in
subclasses, as a class can be extended by another class in
another package that then acts as another hierarchy root to
numerous classes. To get such information we would have
to count all the children of the class.

For the package CCCore, we see that it does not access
state of other packages (RASC = 0), it has more references
to the outside than the references between the classes inside
the package (RRTP = 0.8) and it has a bit more references
from other packages (RRFP = 0.73). REIP has a value of
0.2 which means that the package has a lot more internal
inheritance relationship that it has direct subclasses.

Case study. We applied our approach to a large case
study (BASE VISUALWORKS) and we selected some charac-
teristic packages displayed in Figure 9. The radars reveals
some typical shapes:

Kernel-Objects contains some major inheritance hierar-
chy root classes such as Object and Model. It contains some
important classes such as Boolean, True, False and Error and
some key subclasses. This package is heavily subclassed
(EIP = 229).

The package Tools-Changes has a client shape. This is

79
RClientPackages: 0.83
1

ASP: 28 ASC: 10 0.8

RASP: 0.43 RASC: 0.21

RFP: 170 RTP: 100 RAFP: 0,98

E1p: 229 s) REIP: 0.96 REIC: 0.33
Kernel-Objects -
i

entPackages: 0.2
1

0.8

asp: 0 asc: 0 RASP: 0.0 0.6 RASC: 0.0

0.4
0.2

rrp: 155 RRFP: 0.95

REIP: 0.25

Kernel-Support

ElP: 1 2381 REIC: 0.7

Figure 9. Radar views of selected packages of

not surprising since it is building all the tools related to the
logging facilities of the environment, hence it relies on in-
frastructure such as the one provided by the package Kernel-
Support.

The package Kernel-Support has a shape of both client
and provider. Indeed it provides functionality to manage
the system such as class externalizers, that are used by
the code browsing tools such as the ones of Tools-Changes.
To provide such functionality it relies on more primitive
packages such as Kernel-Objects.

The package Magnitude is a provider package which
merely contains the abstract class Magnitude, and the con-
RRFP = 0.96 indicates
that there are a few references among the classes in this
package while they are still heavily used (RFP = 321).

crete classes Date and Character.

7 Discussion

Our approach is based on a simple metamodel of
source code and metrics. It has proven to be succes-
ful to provide insights about the structure of applica-
tions. The PACKAGE SEDIMENTATION VIEW provides
a global picture of the application while the radar views
depict how a package is internally structured and how
it relates to the rest of the system.

We support opportunistic understanding [18] in the
sense that the user can browse if necessary the package
and the code it contains, i.e., he can look and interact
with the visualization to verify his findings. Our ap-
proach compresses information such as all the different
relationships between classes. The loss of granularity is
balanced by the gain in simplicity and scalability: the

/i
RRTP: 0.96 ppp.5p;

RRTP: 0,95 &F

10

ClntEackages: 83 RClientPackages: 0.56
1

300
0.8

. 250 .
aspi0 4sci0 RASP: 0 RASC: 0
200 0.6

150 0.4

100 0.2

RRFP: 0.96
RTP: 25

RRTP: 0.68

REIP: 0.73

Magnitude-General

tPackages: 3 RClientPac)

REIC: 0.4
BTy
Clien: es: 0.032

250

asP: 0 ASC: 69 RASP: 0.0 RASC: 0.5

200

100
50

> =
RTP: 339

RRFP: 0.17 RRTP: 0.93

E1p: 0 EICs REIP: 0.0 REIC: 0.71

Tools-Changes

BASE VISUALWORKS.

packages and the relationships between the packages
can be assigned properties and metrics.

We learned that using the surface of the radar to
convey information is working well, and it is important
to quantify precisely such information. Therefore, hav-
ing the value of the metrics expressed as part of the axe
labels provides useful complementary information.

Even if the current approach is effective for getting
a detailed view on packages, there are still questions
we plan to investigate:

We do not take into account invocations and we
would limit ourselves to a structural view. Introduc-
ing invocations may lead to other views on coupling
and cohesion but may introduce noise due to late-
binding, i.e., an invocation can have multiple potential
receivers.

The radar views hide the structural complexity of
packages behind easy-to-grasp shapes that allow for a
categorization. Due to space and time limitations we
do not include a full categorization of packages based
on their visualization within the radar views, but plan
to include this in our future work.

8 Related Work

Software Visualization. Graphical representa-
tions of software have long been accepted as compre-
hension aids. Many tools enable the user to visual-
ize software using static information, e.g., Rigi [22],
Hy+ [6], SeeSoft [11], ShrimpViews [29], and TANGO
[26]. The Class, Runtime and Query View approach of
Smith and Munro [25] visualizes the internals of classes

using static and dynamic information. The Affinity
Browser [24] provides a visual representation of object
relationships in terms of dependencies.

Architecture Recovery. Controlling subsystem
interactions is one important way to reduce overall
complexity of a system. Extensive work has been done
to recover abstractions from the source code and to un-
derstand inter-subsytems relationships [21] [31]. Bunch
[19] is a clustering tool used to deduce software sub-
systems automatically. ARIS [20] enables software de-
velopers to constrain allowable relations between two
subsystems and validate existing relations against an
interconnection style. Our approach deals with pack-
ages in an object-oriented context instead of subsys-
tems and provides first a global view and then a focus
on a single package and its interactions with all other
packages in the system.

Component recovery is used to control complex
legacy systems [15] [32]. These approaches retrieve
components whereas we qualify predefined packages.
Koschke [14] uses weighted dependencies between pro-
gram entities to group them.

Most of the tools that address the problem of large
scale software visualization do not have such a fine
degree of granularity for the dependencies as our ap-
proach. Some of the tools that do have a finer gran-
ularity do not scale. Our approach differs in offering
a top down approach to first comprehend the system
as a whole and then graphically exposing relationships
between packages at a fine degree.

Metrics. Metrics are a way to assess the quality
and complexity of software [12]. Briand et al. pro-
vide a conceptual framework to categorize metrics re-
lated to cohesion and coupling [3, 4]. However, they
flatten inheritance, i.e., a class is the sum of all its
superclasses behavior. Relying exclusively on the co-
hesion of package to understand them is limited since
packages convey more semantical information related
to the intent of the developer or the organisation in
which the application is developed. Therefore weakly
cohesive packages make sense. It is our goal to evalu-
ate whether some of the described metrics can provide
a better information that the one we obtain with our
simple model.

9 Conclusion

We presented an approach that supports the reengi-
neer in obtaining a mental picture of an object-oriented
system, understand its packages and cope with its com-
plexity using a top-down reverse engineering approach
based on visualization. It targets the first phase of re-
verse engineering complex software systems.

11

The main idea is that we consider packages as first
class entities that we enrich with semantic information
describing the package. We increase the abstraction
level as we observe packages instead of classes. We
provide a polymetric view and complement it with two
radar visualizations that help to understand and cate-
gorize packages. The advantage of the polymetric view
is that while it visualizes a complete system in terms
of packages and dependencies between packages, the
reengineer is not flooded with information, but can fo-
cus on interesting packages that he can further explore
using the two radar views. The radar views not only
show how a package relates to the rest of the system,
but also how it is internally structured.

References

[1] N. Anquetil and T. Lethbridge. Experiments with
clustering as a software remodularization method. In
Proceedings of WCRE’99, pages 235—-255, 1999.

V. Basili. Evolving and packaging reading technolo-
gies. Journal Systems and Software, 38(1):3-12, 1997.
L. C. Briand, J. W. Daly, and J. Wiist. A uni-
fied framework for cohesion measurement in object-
oriented systems. Empirical Software Engineering: An
International Journal, 3(1):65-117, 1998.

L. C. Briand, J. W. Daly, and J. K. Wiist. A uni-
fied framework for coupling measurement in object-
oriented systems. IEEE Transactions on Software En-
gineering, 25(1):91-121, 1999.

E. J. Chikofsky and J. H. Cross, II. Reverse engineer-
ing and design recovery: A taxonomy. IEEE Software,
pages 13-17, Jan. 1990.

M. P. Consens and A. O. Mendelzon. Hy+: A
hygraph-based query and visualisation system. In Pro-
ceeding of SIGMOD’93, pages 511-516, 1993.

T. Corbi. Program understanding: Challenge for the
1990’s. IBM Systems Journal, 28(2):294-306, 1989.
U. Dekel. Revealing java class structures using con-
cept lattices. Master thesis, Technion-Israel Institute
of Technology, Feb. 2003.

S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1
— the FAMOOS information exchange model. Tech-
nical report, University of Bern, 2001.

A. Dunsmore, M. Roper, and M. Wood. Object-
oriented inspection in the face of delocalisation. In
Proceedings of ICSE 2000, pages 467-476, 2000.

S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—
A Tool for Visualizing Line Oriented Software Statis-
tics. IEEE Transactions on Software Engineering,
18(11):957-968, Nov. 1992.

N. Fenton and S. L. Pfleeger. Software Metrics: A Rig-
orous and Practical Approach. International Thomson
Computer Press, London, UK, second edition, 1996.
M. Hitz and B. Montazeri. Measure coupling and cohe-
sion in object-oriented systems. Proceedings of ISAAC
’95, 1995.

2]

(5]

(6]

(10]

(11]

[12]

(13]

[14]

[15]

[20]

21]

22]

23]

24]

[25]

R. Koschke. Atomic Architectural Component Recov-
ery for Program Understanding and FEvolution. PhD
thesis, Universitat Stuttgart, 2000.

R. Koschke. Atomic architectural component recovery
for program understanding and evolution. In Proceed-
ings of ICSM’02, 2002.

M. Lanza and S. Ducasse. Polymetric views —
a lightweight visual approach to reverse engineer-
ing. IEEE Transactions on Software Engineering,
29(9):782-795, Sept. 2003.

B. P. Lientz and E. B. Swanson. Software Maintenance
Management. Addison Wesley, 1980.

D. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. In Soloway
and Iyengar, editors, Empirical Studies of Program-
mers, First Workshop, pages 80-98, 1996.

S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R.
Gansner. Bunch: A clustering tool for the recovery
and maintenance of software system structures. In
Proceedings of ICSM’99, 1999.

B. S. Mitchell, S. Mancoridis, and M. Traverso. Search
based reverse engineering. In Proceedings of SEKE’02,
pages 431-438, 2002.

B. S. Mitchell, S. Mancoridis, and M. Traverso. Using
interconnection style rules to infer software architec-
ture relations. In Proceedings of GECC’04, 2004.

H. A. Miiller. Rigi — A Model for Software Sys-
tem Construction, Integration, and Evaluation based
on Module Interface Specifications. PhD thesis, Rice
University, 1986.

M. Petre. Why looking isn’t always seeing: Readership
skills and graphical programming. Communications of
the ACM, 38(6):33-44, June 1995.

X. Pintado. The affinity browser. In O. Nierstrasz
and D. Tsichritzis, editors, Object-Oriented Software
Composition, pages 245-272. Prentice-Hall, 1995.

M. P. Smith and M. Munro. Runtime visualisation
of object oriented software. In Proceedings of the In-
ternational Workshop on Visualizing Software for Un-
derstanding and Analysis, page 81. IEEE Computer
Society, 2002.

J. T. Stasko. Tango: A framework and system for
algorithm animation. IEEE Computer, 23(9):27-39,
Sept. 1990.

J. T. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, editors. Software Visualization — Programming
as a Multimedia Fxperience. The MIT Press, 1998.
M.-A. D. Storey, F. D. Fracchia, and H. A. Miiller.
Cognitive design elements to support the construction
of a mental model during software exploration. Jour-
nal of Software Systems, 44:171-185, 1999.

M.-A. D. Storey and H. A. Miiller. Manipulating and
documenting software structures using shrimp views.
In Proceedings of ICSM’95, 1995.

D. Taenzer, M. Ganti, and S. Podar. Problems in
object-oriented software reuse. In S. Cook, editor, Pro-
ceedings of ECOOP 89, pages 25-38, 1989.

12

(31]

32]

33]

34]

M. Traverso and S. Mancoridis. On the automatic re-
covery of style-specific architectural relations in soft-
ware systems. In Proceedings of ASE 2002 (Conference
on Automated Software Engineering, pages 331-360,
2002.

A. van Deursen and T. Kuipers. Identifying objects
using cluster and concept analysis. In Proceedings of
ICSE’99, pages 246-255. ACM, 1999.

C. Ware. Information Visualization. Morgan Kauf-
mann, 2000.
N. Wilde and R. Huitt. Maintenance support for

object-oriented programs. IEEE Transactions on Soft-
ware Engineering, SE-18(12):1038-1044, Dec. 1992.

