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SUMMARY

Over the last decade many research groups and commercial companies have been developing reengineering
environments. However, many design decisions such as support for multiple models, incremental loading
of information, tool integration, entity grouping, and their impacts on the underlying meta-model and
resulting environment have remained implicit. Based on the experience accumulated while developing the
Moose reengineering environment and on a survey of reengineering environments, we present a design space
defined by a set of criteria that makes explicit the different options and especially their dependencies and
trade-offs. Using this design space, developers of future environments should have a better understanding
of the problems they face and the impact of design choices. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS: reengineering environments; reverse engineering; meta-modeling; code representation; tool
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1. INTRODUCTION

The ability to reengineer legacy systems has become a vital matter in today’s software industry.
Software systems exceeding a certain critical size easily become difficult to maintain and adapt.
Requirements change, platforms change and if a system does not evolve properly, its usefulness will
decay over time [1]. Reengineering large industrial software systems is impossible without appropriate
tool support. First of all, there is the scalability issue (millions of lines of code are the norm rather
than the exception) and there is also the extra complexity of supporting and combining multiple
tools with a wide variety of tasks (standard forward engineering techniques must be combined with
additional reverse- and reengineering skills). The need for tool support in reengineering is reflected by
the numerous tools or environments available in the reengineering research community [2—4].
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Figure 1. Standard structure of a reengineering environment.

Figure | shows the general structure of a reengineering environment. At the lowest level it shows
the source code or stored models which can be imported into the reengineering environment by
appropriated parsers. The middle level shows the repository, which contains an abstracted view of
the source code. The top level shows the tools that use the repository as their information base.
The repository’s meta-model is the central part that lets everything work together. The properties of
the repository, and thus of the complete environment, are highly influenced by the meta-model that
describes what and in which way information is modeled. The meta-model not only determines if the
right information is available to perform the intended reengineering tasks, but also influences issues
such as scalability, extensibility, support for multiple models, and information exchange. We name
infra-structural aspects the various aspects of the meta-model that have an impact on the environment
functionalities.

The problem

Apart from a few exceptions, the documentation of existing meta-models and tool environments does
not describe why the modeled information is relevant for a given set of reengineering activities [5—7].
Especially, no trade-off analysis exists of the different modeling alternatives that one may choose from.
For example, the way entities are referencing each other may forbid the possibility to fuse different
views of the same application created by different tools. Therefore developers of new reengineering
environments do not have a conceptual tool to help them identify the problems encountered when
building environments. They cannot easily assess the possible solutions and their tradeoffs.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:345-373



DIMENSIONS OF REENGINEERING ENVIRONMENT INFRASTRUCTURES 347

The contribution

The goal of this article is to identify important infra-structural aspects of building reengineering
environments with a focus on meta-model design. It presents a conceptual space in the sense of Lane
or Wegner’s work [8,9] defined by a set of criteria that identify the important questions that have to
be answered when designing and building a reengineering environment. We identify the crucial design
aspects that a reengineering environment developer has to face, the choices that are available for each
aspect and the implementation solutions including their impact and interrelationships.

The design space presented is the result of the analysis of well-known reengineering environments
such as PBS [10], Datrix [11,12] and Rigi [13,14] that we performed while building our own
environment. It is also based on our five years of experience designing the FAMIX meta-model [15]
and developing a number of tools [16—18] on top of the Moose reengineering environment [20].

It is out of the scope of this paper to come up with a design for a specific reengineering environment
such as Datrix [11] or Rigi [13,14] and their underlying meta-models. Hence we do not cover the
ability of an environment to support specific reengineering tasks and the exact contents of a specific
meta-model. However the criteria we identify capture the variety of reengineering activities.

The rest of the paper starts with an introduction of the design space (Section 2). In the following
sections we describe the criteria in detail (Sections 3—11). In Section 12 we validate the criteria by
showing how four reengineering environments, namely Datrix [11], Rigi [14], SOUL [21-23], and
Moose [17,20] fit into the space. Finally, in Sections 13 and 14, we survey related work and give our
conclusions.

2. INTRODUCING THE DESIGN SPACE

First we clarify the concept of design space. In this article we follow the definition given by Lane [8].
In his work on system architectures, Lane refers to a design space as follows.

‘.. .a multi-dimensional design space that classifies system architectures. Each dimension
of a design space describes a variation in one system characteristic or design choice.
[...] Another way in which a design space differs from geometric intuition is that the
dimensions may not be independent. In fact, it is important to discover the correlations
between the dimensions in order to create design rules describing appropriate or
inappropriate combinations of choices.’

To illustrate the kind of support we expect from a reengineering environment, we start with a short
scenario. Next, we summarize the requirements for a reengineering environment in a list of questions
that characterize the design space [8,9]. We are only focusing on the environment aspects that have
an impact on the design of the underlying meta-model. Lethbridge et al. [5] have proposed a more
complete list of requirements for a reengineering platform such as the response time of queries or
support for frequently used facilities but they did not address the infrastructural aspects we present in
this article. Finally, we show an overview of the design space. Each of the space axes is discussed in
detail in the subsequent sections.
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2.1. A scenario and its analysis
We paint here a typical usage scenario of a reengineering tool environment.

The reengineer, let’s call her Claudia, is confronted with a legacy system written in C++
of about one million lines of code. Her intention is to extract the architecture and discern
possible problems in changing it. First she extracts information from the C++ system
into a repository. Because she is interested in the high-level architecture she decides to
only extract program entity information such as the structs, classes, methods and instance
variables. She applies a tool to visualize the structure of the application and uses grouping
techniques to collapse classes into a higher-level view.

Claudia has a third-party metrics tool that can help her in understanding the system.
Claudia exports the information from her environment into a standard exchange format
and imports it into her metrics tool. She computes some metrics, exports them back to
the environment where she combines the obtained results to enhance the views she gets
with size information. She detects a big class in module X on which many classes in other
modules depend. Looking at the source code she finds that some of the functionality of
this class can be distributed over the different modules.

The scenario illustrates the following design aspects of a reengineering environment: the extraction
level of detail (Claudia chooses the program entity level), different kinds of entities (she produces
architectural entities), the use of grouping (she groups entities to produce a modular view), the
tool integration, information exchange and incremental loading (she uses an integrated visualizer, an
external metrics tool, an interchange format and merged metric results), and the annotation of entities
(the metrics are associated with the entities they relate to).

Naturally, the scenario only covers a subset of reengineering activities. For instance, Claudia might
want to apply similar analyses on other implementation languages, compare multiple versions of the
same system, refactor the code etc. We summarize these and other issues in Section 2.2.

2.2. Requirement issues summarized

We summarize the issues involved when building a reengineering environment by introducing a list of
questions that a developer of reengineering environments typically needs to answer.

2.2.1.  Questions concerning the information to be modeled

Language support. How many implementation language(s) must be supported?

Level of detail. How detailed should the extracted information be (i.e., full parse-tree, main program
entities, architecture)?

Model completeness. Can you work with incomplete models? Can the environment deal with only
having partial representation of the code? How precise must your parser be?
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Multiple models. Do you need to represent the software system at several levels of abstraction
(code, design, analysis)? Will you analyze several releases of the same software system?

Scalability. How large are the programs® you deal with? How many versions have been released?
How many models do you need to extract?

2.2.2.  Questions concerning the tasks to be performed

Grouping. Will you create higher level abstractions by grouping model elements? Do you need to
group these groups? Do you need to group elements belonging to multiple models? Do you need to
group relationships? Can you represent entities that do not directly represent source code entities?
Will you exchange such entities and group them?

Tool integration. Must the tool environment exchange information with other tools? How do you
merge information coming from different tools?

Extensibility. Must the meta-model be able to accommodate new kinds of information? Is it needed to
annotate model elements? Must the environment adapt itself to new kinds of information?

2.2.3.  Questions concerning infrastructure

In addition to the issues brought forward by the explicit requirements in Sections 2.2.1 and 2.2.2, some
key infrastructure areas need attention, because implementation options can make or break the ability
to fulfill a requirement. These infrastructure issues are as follows.

Exchange format. Does the format need to be easily human-readable? Does the file format support
concatenation? How precisely should it reflect the internal data-structure? Must an industry standard
be supported?

Entity reference. How are model elements identified (names, unique identifiers, universally unique
identifiers)? Should the reference schema handle references over multiple models? Should groups of
entities be referenced? Can it handle multiple models?

Meta-modeling. How do you represent and store information about a model (e.g., name of the creating
tool, the level of detail of the extracted information)? Can a model easily be extended (e.g., with
annotations, new attributes, new type of entities)?

2.3. Design space in a nutshell

The issues brought up in Section 2.2 do not stand alone. A choice made for one issue often influences
the choices for another one. An example is the level of detail. When the tool-set supports the abstract
syntax tree level of information rather than the program entity level, it is much harder to support

#The word ‘program’ refers to any unit of source code from a complete application to a single file that the environment has to
represent.
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Figure 2. Overview of the design space. The numbers point to the sections that describe the axes.

multiple languages, because it is easier to map multiple languages to a more abstract higher-level
representation than to a very detailed one.

We capture the correlations or dependencies between the choices in a design space [9,8]. Within the
space one reengineering platform is determined by the values chosen for each axis. The space
consists of requirement axes covering decisions that are dependent on the user requirements that the
environment and its underlying meta-model must fulfill (presented by the questions of Sections 2.2.1
and 2.2.2), and implementation axes covering issues that are not directly reflected in the user
requirements (presented by the questions of Section 2.2.3). Figure 2 shows the design space with the
high-level requirements, the axes, and how they interrelate. This figure acts as a roadmap for the axes
presentation.

The rest of this paper discusses the axes in detail. Every axis consists of an introduction that presents
the main choices, the dependencies with other axes or requirements and implementation issues that
discuss the impact of implementation decisions in more detail.
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3. LANGUAGE AXIS

The choice of which language(s) to support is largely driven by the requirements of the end-user.
However, from an environment developer point of view, the key issue is whether only one language or
several languages should be represented. The real problem occurs when several languages use similar
concepts with different semantics.

Dependencies

Level of detail. The greater the level of detail, the higher the reasoning power you get, but the harder it
is to support multiple languages in a common way (see Section 4).

Extensibility. If the meta-model consists of a common core with language extensions, the appropriate
extension mechanisms must be available (see Section 7).

Implementation issues

If only one language needs to be supported, the meta-model typically contains constructs of that
language in a straightforward one-to-one mapping. If multiple languages are supported, the constructs
of both languages are modeled either separately or using a common abstraction. Separate modeling is
typical in the case of languages that have dissimilar paradigms. In such a case the meta-model is often
constructed with separate, but connected sub meta-models for every paradigm [24]. If the supported
languages have the same or an overlapping paradigm, common constructs are often modeled with
a single abstraction [11,12]. The typical structure of such a meta-model is a language-independent
core with multiple language extensions. For instance, a core could contain a Class abstraction which
would allow class concepts in Java, Smalltalk and C++ uniformly, but the C++ template would be
modeled in the C++ language extension. Treating similar constructs in a similar way results in language
independence and reuse of analysis code. On the other hand, treating them explicitly decreases
problems with semantic differences [25].

It is often useful to store the mappings. For example if Java interfaces and classes are modeled using
a common Class abstraction, the information of whether the element represents a class or interface
is stored. This allows, for instance, visualization tools to color Java interfaces differently from Java
classes. Language-independent tools, however, can just treat the common concept without having to
know about the language details. For similar reasons, if the modeled system is implemented in multiple
implementation languages, it is often necessary to record the implementation language for every entity
or every group of entities.

4. LEVEL OF DETAIL AXIS

‘Level of detail’ represents with which precision the source code is modeled. It is well accepted to
distinguish the following levels of detail:

1. Abstract syntax tree (AST) level information—a complete view of the source code. It is normally
detailed enough to regenerate the source code and sufficient for control-flow analysis.
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Table I. File sizes for different levels of detail of Swing 1.3.0.

CDIF file, MB  XMI file, MB
Swing 1.3.0: 225 KLOC 2700 classes  (zipped MB) (zipped MB)

Classes, methods, attributes 8.3(0.53) 21.8 (0.90)
+invocations and accesses 12.1 (0.82) 28.8 (1.25)
+formal parameters 15.5(0.99) 39.7 (1.67)
+metric information 84.7 (3.15)

2. Program entity level information—abstracted but factual view on source code: classes, methods,
functions, etc. It is normally used for generating structural views on the target system.
Typically only limited information about method bodies is available, consisting of method
invocation and variable access information, which is sufficient for dependency analysis.

3. Architectural information—modules, packages, elements grouped in directories, COM or
CORBA components, architectural and high level views on the program entity level.

The analysis that the environment should support directly influences the level of detail of the source
code representation. For example program slicing and data flow analysis [26,27] require a greater level
of detail than the program visualization used in CodeCrawler [16] or Rigi [13,14].

Dependencies

Scalability. The greater the level of detail, the higher the memory consumption and load time of
information from databases or files and the slower the response times of tools that use the information.
To give an idea for the impact of different detail levels on resource consumption, we show the file sizes
of the textual representation of a model using our own FAMIX meta-model (see Section 12.1) using two
standard exchange formats, namely CDIF and XMI. The numbers are shown in Table I. The default
representation of both standards is not optimized for space consumption, which is confirmed by the
high level of compression achieved by zipping the files. The modeled system is the Java Swing
framework, version 1.3.0, consisting of 7.2 MB of source code (225 KLOC). It has been parsed by
the SNiFF+ [28]) parser, version 3.2.1. It consists of ~2700 classes (including inner classes) and
~11500 methods. The metric information contains up to 25 metrics per source code entity where
every measurement is stored as a separate element in the file.

Implementation issues

There are several techniques for dealing with large amounts of information: The first is collapsing
information to reduce memory footprint. For instance, invocations of methods in one class to methods
in another class can be modeled one by one, or collapsed into a single invocation relation between the
two classes. The second one is to use lazy representation/loading. For example, incremental extraction
can be implemented by using source anchors, i.e., pointers to the original source code, that allow one
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to go back to the source code and extract any additional information when needed. It is important that
the partial information is still sound. For instance, if only method information is stored, information
about the containing classes should typically be stored as well.

Two important points should be considered when using source anchors. First, using source anchors
may require the use of incremental parsers. Second, the granularity of the referenced source code
segment should not be too small to avoid difficulties while extracting the information. For example, in
the analysis of object-oriented code, source anchors associated with methods offer a good granularity.
In such a case method invocations and attribute accesses can be represented, while complete method
bodies are not directly represented, but accessible via the source anchors.

5. MULTIPLE MODEL AXIS

The possibility of analyzing multiple models simultaneously is useful in evolution analysis, where
multiple versions of the same system need to be analyzed [29,30]. Likewise, it is interesting to analyze
parallel branches of similar applications, for instance, to develop a framework by abstracting common
assets in these branches. Another aspect is that different models can have different meta-models. This is
typically the case when multiple paradigms are modeled [24].

Dependencies

Entity reference. Multiple models require the possibility to uniquely identify elements from different
models, even if these elements are similar, for instance, the same class in multiple versions of
the same system. Furthermore, it must be possible to identify which model an element belongs to
(see Section 10).

Meta-modeling. Information about models themselves (represented system, meta-model version...)
can be modeled as part of the model itself or as a meta-entity (see Section 11).

Implementation issues

Instead of making multiple models explicitly part of the meta-model, a tool can support multiple
models in its implementation. This keeps the meta-model simpler, but makes exchanging entities
of several models between tools ad hoc. Tools are dependent on (possibly multiple different)
implementations rather than one underlying meta-model.

6. GROUPING AXIS

Grouping several entities together is an important technique in reengineering, primarily to build higher-
level abstractions from low-level program elements or to categorize elements with a certain property
[13,14]. Two ways of grouping can be identified: intentional (description-based) and extensional
grouping where the group acts as a bag of (references to) model elements [31,22].
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The following considerations should be evaluated that have an impact on entity reference
(see Section 10):

e nested groups, i.e., groups that contain other groups.

e which entities can be grouped, e.g., can a group only contain named entities such as classes or
also nameless entities such as relationships.

e groups of entities over multiple models, i.e., can a group contain entities that belong to different
models.

Dependencies

Entity reference. The entities that need to be groupable must be uniquely referable. This can
include the groups themselves, similar entities in multiple models and associations between entities
(see Section 10).

Implementation issues. If intentional groups are to be supported, the model must define how
descriptions are modeled. OCL expressions [32] or other formalisms could be used. Furthermore,
intentional groups need strategies for recomputing the contents when a model is adapted or additional
information is incrementally loaded [22]. This all is, however, a separate topic that goes beyond the
scope of this paper.

7. EXTENSIBILITY AXIS

Extensibility is an important issue in modeling software as it allows additions to a model without having
to change the model itself. Typically extensibility is needed for the following kinds of information:

e Language-specific information. In the case in which a meta-model is used with a language-
independent core, it is often still interesting to store language-specific information. For instance,
a visualization tool might color all Java interfaces, even if they are mapped to a common
class concept in the language-independent core. In addition, typically languages have their
own specific problems that are interesting in themselves. An example is the analysis of include
hierarchies in C++.

e Tool-specific information. Tools might store and exchange tool-specific information such as
analysis results or layout information for graphs.

e Whatever information people find worth modeling. Not all information needs can be known in
advance. Furthermore, light-weight approaches for annotating model elements help record the
information gained in the iterative process of understanding a system.

Dependencies

Meta-meta-modeling. There is a dependency between this axis and the meta-meta-model axis as the
mechanisms described in the following could be specified by the meta-meta-models of reengineering
environments. In particular the extensibility of the meta-model is restricted by the extensibility the
meta-meta-model allows one to have. This is especially an issue when using modeling standards such
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Class (A)
uniqueName
isAbstract (JavaClass
belongsToPackage (name “Point”)
(isAbstract -FALSE-)
% (belongsToPackage “points”)
isinterface -FALSE-
JavaClass (isinterface SE)
isInterface
Class (Class
uniqueName (name *Point’)
isAbstract (B) (isAbstract -FALSE-)
belongsToPackage (belongsToPackage “points”)
isinterface (islnterface -FALSE-))

Figure 3. Extending Class with an attribute isInterface by: (a) subclassing a Class; and (b) adding the
attribute to the existing Class element.

as the MOF [33], because they restrict you to their extension mechanisms. The MOF and GXL [34] do
not support class extensions, i.e., the ability to add attributes to existing classes. CDIF [35] and RDF
[36] both allow this kind of extension.

The following subsections describe the extension mechanisms to be considered: adding new entities
to a model, adding attributes to existing entities, and annotating entities.

7.1. Adding new entities to a model

Being able to add new entities representing constructs not already represented and that cannot be
mapped in a sensible manner to existing entities is a major extensibility capability of the model.
This possibility is important when modeling multiple languages with a common language-independent
core.

7.2. Adding attributes to existing entities

For certain purposes it is required to add attributes to existing entities. An example is the information
that a class in a model represents a Java interface. The Java extension adds an attribute isInterface to the
Class entity. This can be done through subclassing or by explicitly adding an attribute. Figure 3 shows
an example of this. The subclassing solution: (a) demands for all clients to know the extension and
how it relates to the original entity. It demands importers that are fully meta-model aware and can deal
with extensions that it does not know yet. When the attribute is just added to the original entity (b) an
importer that does not (want to) know the extension just recognizes the element it knows and can ignore
any attribute of the element it does not recognize. A more severe problem with the subclassing solution
is the fact that multiple orthogonal extensions (typically language and tool extensions) might exist
which cannot be modeled by inheritance at all. This is illustrated in Figure 4. This is also a problem
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Class (A)
uniqueName
isAbstract n
belongsToPackage i

JavaClass MetricEnhancedClass

isInterface NOM

Class (Class
uniqueName (name “Point”)
isAbstract (B) (isAbstract -FALSE-)
belongsToPackage (belongsToPackage “points”)
isInterface (isInterface -FALSE-)
NOM (NOM 7))

Figure 4. Extending Class with two orthogonal attributes by: (a) subclassing a Class; and (b) adding the
attributes to the existing Class element.

Object Property

Figure 5. Simple extensibility: object annotation.

if an attribute must be added in an existing hierarchy where all existing subclasses should inherit the
attribute.

7.3. Annotating entities

Annotations allow any information to be added to any entity. Entity properties, analysis results, or
notes can then be attached to the entity they refer to. Although a meta-meta-model could define a
way to support annotations, it is often considered the domain of the meta-model. In such a case the
meta-model explicitly allows any entity to be in relation with some property, annotation or tag objects
(see Figure 5).

Implementation issues

The questions of the representation of the annotation object in memory and in the exchange format have
to be answered. From our experience of representing metrics as entity annotations, we learned that
annotation objects can constitute more than 90% of the data processed while loading and analyzing
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a system. One solution is to only represent properties explicitly in the exchange format and use
appropriately optimized data structures for the in-memory representation.

In the exchange format, annotations can be represented as information of an annotated entity or as
an explicit entity. The first solution precludes loading of annotations separate from their containers, but
requires less space as illustrated below:

Annotation in the entity itself
(Class
(name A)
(annotation NumberOfMethods 45))

Annotation associated with the entity
(Class
(name 34))
(Annotation
(belongsTo A)
(NumberOfMethods 45))

8. INCREMENTAL LOADING AXIS

Incremental loading of information is about the ability to load new entities or additional information
for entities that already exist in a model. The reasons for considering incremental loading are resource
optimization and the merging of information from different sources. It generally allows the model to
contain references to information that is not in the current model and to load only parts of models.
It also allows extractors to extract partial information and the integration of information generated by
different tools.

Dependencies

Entity reference. The reference schema must allow information elements to be able to reference each
other in different files (see Section 10).

Scalability. Incremental loading can be used for resource optimization. Information about the same
system can be stored (and thus transferred) in separate files or databases. Furthermore, information can
be loaded on demand. For example, computed metrics or analysis results can be so space-consuming
that you only want to load them when necessary.

Implementation issues

Referenced information which is defined in a separate resource must be able to be filled in later and
be correctly associated with the entity it refers to. A solution is to use stubs, i.e., empty placeholders,
that represent the missing entities. If later the actual element is loaded, it replaces its stub. Note that
referenced information often is deliberately left absent. Frequently we want to model an application
but not the complete libraries or frameworks it uses. In such cases the model ends up with references
to framework entities that are not represented in the model.
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9. EXCHANGE FORMAT STRUCTURE AXIS

Repository information is often stored in text files. It is a lightweight way of storage, which is
particularly well-suited for information exchange. Important criteria of the format which is used to
store the information are human readability, lightweight manipulation, the ability to incrementally load
information, and the non-influence of the entity loading order [12]. Saint-Denis et al. [37] describe
a set of 13 criteria that are important for an exchange format. Many of the criteria they describe are
non-functional, such as reliability and completeness, which rather depend on the quality of the tool that
produces the information than an intrinsic property of the exchange format.

We discuss here only three aspects that depend on the actual structure of the exchange format because
the structure has an impact on the functionality of the environment such as supporting multi-models
or incremental loading. Elements can be stored in a nested way, saved in, what we call, chunks or
in a completely flat way. This is independent of the quality of the extractor and the actual encoding
(i.e., if the line ends with a bracket or an XML-tag). In the following examples we use ( ) to delimit
stored elements.

Dependencies

Incremental loading. As explained later in this section the structure of the exchange format can prevent
the incremental loading of models.

Implementation issues

Apart from the formats themselves in Section 9.1, we discuss the storage of multi-valued attributes in
Section 9.2.

9.1. Nested, chunk, and flat formats

Nested. In the nested format every element physically contains its constituents. Relationships other
than containment are modeled by explicit relationship elements. The following example shows a class
A which inherits from class B and contains two methods (M and N) and an attribute (X).

(class A
(method M
(isAbstract true))
(method N
(isAbstract false))
(attribute X
(visibility public))
(inheritance
(subclass A)
(visibility protected)
(precedence 2)
(superclass B))

Evaluation. The nested format is complex and elements can quickly get large due to the elements they
contain. It only favors human readability as long as the elements do not get too large. Incremental
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loading is not well supported either, because elements cannot be stored without their containing
element, and replacing an element requires finding it inside its containment hierarchy. The format is
useful for a one-to-one representation of the tool-internal data-structure, which is typically optimized
for information navigation rather than storage or exchange.

Chunk. In the chunk format, entities are not nested in their scoping entity. Simple relationships are
stored as attributes of the entity an entity is linked to. In the example hereafter, the method M belongs
to class A: both the method and the class are stored as explicit entities and the containment relationship
is represented by the belongsToClass attribute of M. For relationships that need additional information
to be stored, explicit entities are created. In the example, the inheritance relationship is an explicit
entity with visibility and precedence as attributes.

(class A
(isAbstract true))
(method M
(belongsToClass A)
(isAbstract true))
(attribute X
(belongsToClass A)
(visibility public))
(inheritance
(subclass A)
(visibility protected)
(precedence 2)
(superclass B))

Evaluation. The chunk format favors human readability, because entities are self-contained with the
containment relationships readily available as attributes. The format supports incremental loading
better than the nested format, because, when loading or updating an element, the containing entity
does not need to be found or even be available. Because the format is less complex, importers can be
simpler as well. The chunk format has as the main disadvantage that relationships are stored in two
different ways.

Flat. The flat format explicitly represents all entities and relations, typically using a line-based format.
For example, RSF or TA are based on this approach [14,38]. Contrary to the two other formats, which
support entities with attributes in pair-value form, here the attributes require another storage form.
In the pure form they are all explicit relations. Some formats are more elaborate and allow attributes
as pairs on the same line [38]. This actually goes a step towards the chunk format. The following code
shows the flat format with both kinds of attribute storage:

(class A)

(method M)

(methodBelongsToClass M A)

(attribute X)

(attributeBelongsToClass X A)
(inheritance A B)

(inheritance A B visibility protected)
(inheritance A B precedence 2)
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Table II. Textual formats compared.

Incremental
Readability  Processability loading

Nested — — —
Chunk + + +
Flat - ++ +

Evaluation. With this approach, incremental loading is well supported and merging of models is simple.
Machine processability is also simple, because the format is conceptually simple. Because it is line
based, manipulation of models can be easily done by running a script (in Perl or similar scripting
languages) to convert one file into another one. A drawback is that information representing one single
entity can be scattered over the file, which hampers readability.

9.2. N-ary attributes

Supporting multi-valued attributes is necessary because some attributes intrinsically have multiple
values. For example, a class may contain multiple comments and a method invocation typically has
multiple polymorphically equivalent targets.

Each of the above formats can support multi-valued attributes. They can be represented either by
a special kind of attribute that allows multiple values, or by multiple instances of a single attribute.
For example, a class with multiple comments can be represented as follows in the nested and chunk
format:

(class C
(comments ‘‘a comment’’ ‘‘another comment’’)
(attribute X))

Or similarly in the flat format:
(comments C ‘‘a comment’’ ‘‘another comment’’)

The second alternative, with multiple instances of a single attribute, again in the nested and chunk
format:

(class C

(comment ‘‘a comment’’)
(comment ‘‘another comment’’)
(attribute X))

Or similarly in the flat format:

(comment C ‘‘a comment’’)
(comment C ‘‘another comment’’)

Note that in all cases an importer needs to either be aware if an attribute can be multi-valued, or
regard any attribute as potentially multi-valued.
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9.3. Discussion

Table II summarizes the evaluation of the three format structures. The nested structure does not score
well against our criteria. We do not recommend it for information exchange purposes, although it can
be a viable option for complex data-structures. The chunk format does well in all three areas. The flat
format is less readable, but simpler to process. Note that human readability gets less important when
importing and saving tools stabilize. If that is the case it is less important for humans to follow what is
going on.

10. ENTITY REFERENCE AXIS

The entity reference axis directly and indirectly influences many other axes in the design space.
The decision how entities are referenced comes down to a trade-off between heavyweight solutions
that ensure that every element in the model can be uniquely identified, always and everywhere between
different tools, or solutions that are more light-weight, but might not adequately support grouping,
multiple models, or referenced information that is not in the same file or database.

Dependencies

Grouping. The entities that need to be groupable must be uniquely identifiable. This can include the
groups themselves, entities in multiple models and relationships (see Section 6).

Multiple models. Multiple models require the possibility to uniquely identify artifacts from different
models, even if these artifacts are similar, for instance the same class in multiple versions of the same
system (see Section 5).

Incremental loading. Incremental loading requires information elements in different files or databases
to be able to reference each other (see Section 8).

Implementation issues

There are several possibilities to identify entities. One is to use the intrinsic unique name of entities that
have one (like a class name or attribute name), or to use a meaningless unique identifier. We discuss
both solutions in the next subsections and finish with a discussion.

10.1. Unique identifiers

One approach for model element identification is the use of meaningless identifiers’. Every model
element gets such an identifier attached to it and all references use this identifier as well. The most
important issue is how ‘unique’ this identifier needs to be: only within one database or file, only within
a known set of files and databases, or always guaranteed unique. Light-weight approaches can be used,

§By meaningless, we mean identifiers whose format does not have semantics.
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Table III. Textual representation of Swing 1.3.0 without and with UUIDs.

XMl fileMB  XMI + UUID MB
Swing 1.3.0 (zipped MB) (zipped MB)

Classes, methods, attributes 21.8 (0.90) 23.6 (0.93) (+8.3%)
+invocations and accesses 28.8 (1.25) 31.2 (1.30) (+8.3%)
+formal parameters 39.7 (1.67) 43.1 (1.75) (+8.6%)

the simplest one probably the use of integers. However, if uniqueness with a broader scope is required,
solutions such as Universal Unique Identifiers (UUIDs) must be considered.

UUIDs are unique across both space and time, with respect to the space of all UUIDs. A UUID
can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably
identifying very persistent objects across a network. UUIDs are generated using a combination of the
network address and current time at the moment and place it was generated. Assuming that network
addresses are unique and that time never runs backwards, this guarantees that UUIDs really are
unique. Furthermore, the UUID generator must have access to an IP network address. An example
of a UUID: ¢842bf06-d202-0000-0282-5¢c4104000000. However, using UUIDs increases
memory consumption and loading and saving times. Table III shows, for the same system as discussed
in Table I, the file sizes when using UUIDs and plain integers in XMI files. We see that the file size
increases up to 9% when using UUIDs. Similarly the working memory usage of the same models in our
reengineering environment (Moose, see Section 12.1) increased by up to 13%. For Smalltalk systems
we measured memory usage increases of up to 40%. This is probably due to the fact that our Smalltalk
parser extracts a lot more detailed information (such as arguments) than the parser we use for Java.

The complexity and resources needed to compute and store these identifiers might however be an
overkill. Simpler approaches can be designed, but will rely on proprietary conventions.

10.2. Unique naming scheme

Another way of referencing elements is to reference them by their intrinsic unique names. For instance,
the unique name of the class Box in the Java Swing library would have the unique name
javax.swing.Box, which is known to be unique within a Java system, but not over time or different
versions. Using unique names as identifiers has the advantage that reference information is humanly
readable. A second advantage is that every time a model is generated from a certain system, exactly
the same unique name will be used instead of generating a completely new identifier or having to take
earlier assigned identifiers into account. A problem is that model elements that do not have an intrinsic
unique name such as relations, models and groups, do not easily fit this scheme:

Relations. Relations can only partly be uniquely identified using names. A simple example is when
class A inherits from class B, a unique name for the relationship could be A.InheritsFrom.B. However,
this only works for one-to-one relationships and not for any relationship with multiple targets.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:345-373



DIMENSIONS OF REENGINEERING ENVIRONMENT INFRASTRUCTURES 363

For instance, the invocation relationships resulting from a method that invokes another method twice,
would result in two elements with the same name.

Multiple models. A unique naming scheme in the context of multiple models needs to take the model
into account, especially if the different models model the same system (for instance, multiple versions
of this system). In such a case the model should somehow be integrated in the unique name of an
element. We could, for instance, append a model name to the intrinsic unique name. For example,
consider the Box class in the Java 2 Swing library in version 1.3.0: Java2v130.javax.swing.Box.
Note that uniqueness of model names depends on convention rather than on a language-induced rule.

Grouping. A problem similar to model names exists for groups. Although a group typically has a name
to describe what is grouped, the uniqueness of those names is not intrinsic and therefore cannot be
guaranteed. It is important to normalize unique names. The unique naming scheme should be clearly
defined so that unique names are always the same. An example rule is that unnecessary spaces are
always removed. If the meta-model supports different languages, unique names can either be close to
every supported language, or a common scheme can be defined for all supported languages. The latter
requires more thought about the naming scheme, but allows tools that are independent of the supported
languages to deal with one naming scheme only.

10.3. Analysis

Unique names and meaningless identifiers have clear properties. Names can be used to reference
entities with an intrinsic unique name, meaningless identifiers can be used to reference anything.
The following example, expressed in simplified CDIF, shows the class Point in the HasMethod
relationship.

(class

(name Point))
(method

(name intersect))
(Class.HasMethod.Entity Point intersect)

The same example using meaningless identifiers:

(class 111

(name Point))
(method 112

(name intersect))
(Class.HasMethod.Entity 111 112)

Another important difference is that unique names are reproducible and other identifiers not.
Different tools generate different identifiers, which hampers incremental loading, because two model
entities from different sources that represent the same code element cannot be linked through the
unique identifiers. An interim solution can be chosen to leverage the best of both worlds: human-
readable unique names for the named entities and some kind of unique id for the non-named entities.
Such a combination preserves the advantages of naming and is able to uniquely identify any non-named
element as well. Clearly, complexity increases when the two separate schemes are mixed.
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A last solution is to provide both solutions and use them where appropriate. However, when an entity
can be referenced in two different ways, incremental loading is not possible. If a certain entity is not
present in the current model, it cannot be determined that a reference by name and a reference by
unique identifier are actually supposed to reference the same entity.

Comparison with industry standards

CDIF [35] and XMI [39] promote an entity referencing schema that is internal to the file. As shown
by the code example in Section 10.3, CDIF relationships use an identifier that is associated to the
entity in the context of only one single file. However, if entities need to be able to be referenced over
multiple files, the referencing scheme needs to be unique over those files, if incremental loading is to be
supported. One solution is to use UUIDs. Yet another approach is taken by XLink [40], a standard for
linking between elements in different XML files. It links elements in different resources by explicitly
mentioning the resource the element is defined in. However, the exact location needs to be known,
rather than a reference that can be in any (and multiple) files.

11. META-META-MODELING AXIS

Meta-meta-modeling is about making the representation of the meta-model explicit. Hence, a meta-
meta-model allows one to reason about, and possibly change the meta-model. Properties of a meta-
model, e.g., how it can be extended, can be defined using such an explicit meta-layer. The following
options need consideration.

An explicit meta-meta-model

An explicit meta-meta-model results in a standard way of describing meta-models. This description
can be used for the following capabilities:

e identify meta-models, i.e., are different tools compliant to the same or compatible meta-models.
This issue can be solved simply by providing meta-information representing the meta-model.

e auto-adapt environments, i.e., tools can use an explicit meta-model description to customize
themselves. For example, a user interface can show, or a saver can store, any information
according to any meta-model, because it knows the structure of the meta-model through the
meta-meta-model.

e create meta-models, i.e., meta-tools use the meta-model description to create meta-models
themselves. This requires an approach where the meta-model description is interpreted to create
appropriate meta-model representation. For instance, it is possible to interpret UML description
based in its MOF [33] specification to create UML compliant tools.

A standard meta-meta-model

A standard meta-meta-model such as the MOF has the advantage that you do not have to design it
yourself. Furthermore, it allows you to use compliant tools and other meta-models that adhere to
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the standard. However, when you design your own meta-meta-model you have full control over its
capabilities, for instance, that it supports all the extensibility mechanisms you need.

Dependencies

Extensibility. The extensibility capabilities of a meta-model are determined by its meta-meta-model.
A standard meta-meta-model might restrict you too much (see Section 7).

Implementation issues

The implementation issues include the storage of model information and the use of explicit meta-model
descriptions.

Model information. Knowing information such as the language, the dialect, the tool that extracted the
information, the date of creation of the model, and the identification of the meta-model to which the
model conforms, are all important information to precisely identify a model. Such model information
can be represented in two different ways:

e in the meta-model. For example, headers of CDIF exchange files include such kinds of
information in addition to the complete description of the meta-model itself described in terms
of the CDIF meta-meta-model [35].

e as a common entity of the model. This approach is simpler since the model information is treated
as any model element. It is also independent of any meta-meta-model.

Meta-model creation and tool adaptation

Using a meta-meta-model to generate models is not complex as long as it deals with the structural
aspects of the meta-model such as navigation among entities. However, the specification of entity
behavior, e.g., how to compute all inherited methods of a certain class, requires a language that is able
to formally express such behavior in terms of the meta-model.

12. VALIDATION

The goal of this article is that the criteria it presents helps the designer and implementors of future
reengineering environments. Clearly such a claim cannot be scientifically validated because we do
not have access to internal design decisions of reengineering environments. We validate the design
space in another, less satisfying, way. We have looked at the existing literature and especially extracted
as much information as possible about three specific reengineering environments. Together with an
evaluation of our own reengineering environment, we have used this information to determine if the
criteria described in this paper can effectively characterize reengineering environments.

However, extracting information from the literature is difficult, because there is always the possibility
of missing aspects or being inexact. Furthermore, the literature contains a lot of work related to specific
issues such as exchange formats [12,34,37,38,42] and higher-level comparisons of tools at the level
of the tool functionality [2—4]. There is nearly no description and analysis of the trade-offs made while
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developing the meta-model and the reengineering environments. Only [5,7, 11] elaborate on certain
aspects of the modeled information but in a rather limited way because the criteria we describe are
often related to the internal aspects of reengineering environments.

The rest of this section discusses the tools in detail and evaluates the design space in the context of
these tools.

12.1. Datrix, Rigi, SOUL, and Moose

We have chosen four existing tools with different flavors to have a broad scope for the validation.
Datrix is a reengineering environment with complete source code representation that supports the
analysis of C, C++, and Java. Rigi is a reverse engineering tool manipulating graphs that represent
information extracted from source code. SOUL is a reflective environment based on logic programming
that allows the analysis of Smalltalk applications. Table IV shows an overview of these tools in the
context of the design space.

Datrix. Datrix! is a source code analysis tool that has a complete source code representation in the
form of enriched ASTs and supports code based analysis [11,12]. Moreover, the Datrix meta-model was
designed with the intention that it could serve different languages. Datrix uses the TA flat format [38] as
an exchange format. It is worth mentioning that Datrix fits well into the criteria we presented. Lapierre
et al’s [12] is one of the few articles that discusses issues learned from building a reengineering
environment. It raises the issue of entity reference naming even if it does not take a clear position.
Datrix supports AST manipulation but does not define refactorings.

Rigi. Rigi is a well-known reverse engineering tool [13,14]. It is interesting for our evaluation because
it does not aim to represent complete and concrete source code but rather the manipulation of views on
graphs that represent part of the code or any other information. Usually users extract information about
the code and represent it in the Rigi Standard Format, a flat format. This information is then loaded and
manipulated in Rigi. Rigi does not include any specific information about the language or application
analyzed, even if some domain information description can be provided. Contrary to Datrix or Moose,
Rigi does not have entities representing languages constructs but manipulates entity—relation graphs.
Rigi supports grouping as an important means of manipulating graphs.

SOUL. SOUL (Smalltalk Open Unification Language) is a logic programming language living in
symbiosis with its implementation language (Smalltalk) [21-23]. The integration between the two
languages from different paradigms allows one to write logic programs that can do full logic reasoning
on objects and do full logic reasoning using objects. This was primarily exploited to reason on static
information (since in Smalltalk classes and methods are first-class objects), but also to reason about
dynamic information gathered after instrumenting a system. Static code reasoning is performed using
the LiCoR framework (Library for Code Reasoning) that is built on top of SOUL and represents
Smalltalk applications through a complete representation of the parse tree.

SOUL currently supports only Smalltalk. Since LiCoR is meant to reason about code in the current
Smalltalk image, it does not support different models. However, it features all the reasoning and

IThe Datrix project at Bell Labs has ended, so some internal documents are no longer available.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:345-373



DIMENSIONS OF REENGINEERING ENVIRONMENT INFRASTRUCTURES

367

Table IV. Four reengineering tools evaluated.

Tool/design
space axis

Datrix

Rigi

SOUL

Moose

Languages

Level of detail

Multiple models

Grouping

Extensibility

Incremental
loading

Exchange format
structure

Entity
reference

Meta-meta-
model/model
information

C, C++, Java

Program level
entity. Complete
source code as
annotated ASTs

No

Not found

Represent similar
languages. Any
entity can be
annotated

Not found

Flat format
(TA) [42]

[12] mentions that
this issue is under
discussion

Not explicit/no
model information

Any

Various. Extracted
information should

be mapped to nodes

and edges

No

Major feature. Not
between different
models

Represent similar
languages

Yes

Flat format (RSF)

By naming in
the explicit
meta-models
ER/No model
information

Smalltalk

Program level
entity. Complete
source code as
annotated ASTs

No

By extension and
intension

Any entity can be
annotated

No

Not intended to

be exchanged with
other tools. Uses
Smalltalk code file
out format

Using logic
variables or object
pointers

Both explicitly
represented by logic
facts

C++, Java, Smalltalk,
Cobol

Program level entity.
independent OO
core. No method
body but local
variable, attribute
accesses, and method
invocation
Multi-model
supported at the
environment, not by
meta-model

Grouping over
multiple models

Extensible core. Any
entity can be annotated

Yes

Chunk format (CDIF
and XMI based)

UUIDs and
unique-Name

ER used for meta
model generation
and generic tools/
model information as
a model entity
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abstraction power of a logic programming language to do grouping. Hence it has support for intentional
and extensional grouping, which is used to express design patterns and software architectures.
Because of its integration with Smalltalk, the model is extensible. When the model needs to encompass
new kinds of entities, only some reification rules have to be added to make those entities explicit in
SOUL. It supports incremental loading by definition: during the logic inference process those parts
of the system that are needed are reified on the fly. Extra model information can be added easily
in the form of extra logic facts and rules. Referencing of elements in the model is done as in any
other logic programming language, i.e., by the use of logic variables that reference Smalltalk entities.
Finally, SOUL supports code refactoring.

FAMIX and Moose. FAMIX is the meta-model we designed for modeling software [15] and the Moose
Reengineering Environment is the platform we built with a repository based on this meta-model [20].
Moose supports reengineering of medium to large-sized industrial software systems in multiple object-
oriented implementation languages. Its meta-model, FAMIX, defines a minimal language-independent
core of information that is always available and on top of which additional levels of information can
be added [43-46]. The supported languages are modeled at the program entity level. The meta-model
defines a minimal core based on object-oriented concepts and can be extended to support new entities
found in different languages or needed when supporting higher views of the applications.

Model elements can be either referenced by unique name for the elements that have one (the entities),
or by unique identifier which all elements have (both entities and relations). FAMIX illustrates the
strong impact of choices for the referencing schema. The unique referencing schema supports grouping
even over multiple models. The meta-model does not support grouping explicitly, but the environment
requires that all entities have a unique name. Moose supports incremental loading. It uses standard
exchange formats such as CDIF and XMI, but with the chunk referencing schema. Apart from the
textual storage with CDIF and XMI, Moose can store its in-memory repository. The FAMIX meta-
model does not support multiple models, but Moose does. The repository can hold multiple models,
but textual information transfers (defined by the meta-model) do not contain information about multiple
models.

Moose defines its own simple ER-like meta-meta model. This meta-meta model is used to generate
meta-models and support generic tool facilities. FAMIX originally represented model information as
part of its meta-model. Now we treat the meta-model information as an entity, because it avoids having
a meta-model-specific section while loading models. However, the model and information about the
model are mixed, which is conceptually a questionable design choice. Hence tools have to be aware
that one entity representing the model information exists. Furthermore, entities can be annotated.

Finally Moose provides experimental support for higher level refactorings based on program entity
level information rather than the more complete AST level of information [25].

12.2. Evaluation

The four evaluated reengineering environments cover a broad spectrum. The design space characterizes
them from the more general (Rigi with its general meta-meta-model, potentially supporting any
language) to the more specific (SOUL with its high-detail modeling of Smalltalk in logic facts at
the AST level). Furthermore, the paper defines, as can be seen in Figure 2, three dependency hotspots,
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namely scalability, entity reference, and extensibility. The information from Table IV illustrates these
hotspots with examples.

Scalability. The scalability generally depends on the amount of information that is modeled. This is
influenced by:

e the level of detail. With Rigi this issue is dependent on the actual meta-model used. Moose
uses the program entity level, and scales to systems over a million lines of code. SOUL and
Datrix model systems are at the AST level. Inherent to the higher level of detail these tools scale
less easily, SOUL was used to analyze industrial frameworks of a couple of hundred classes.
There are no numbers for Datrix. The only information we have is that it was used to analyze
industrial applications.

e multiple models. The more models, the more information must be dealt with. Only Moose
supports multiple models, mainly for evolution analysis [29].

e incremental loading, which allows us to focus on the information in the current interest.

Reference schema. The reference schema influences the ability of a tool to group entities,
incrementally load information, and support multiple models. The examples in Table IV confirm this.
A Soul model references the original code elements directly. There is no defined unique naming scheme
and thus Soul does not support exchanging and incremental loading of information. Moose and several
other tools based on FAMIX use a strict unique scheme, allowing for the incremental combination
of different sources of information for the same software system. Also information about groups
of elements can be explicitly defined without relying on the specific data representation of a tool.
Rigi delegates this issue to providers of specific meta-models. Datrix also does not provide any strict
definition, although the issue has been under discussion [12].

Extensibility. Meta-meta-modeling influences the extensibility by explicitly defining an extension
interface. Rigi only provides a meta-meta-model and is inherently extensible. Moose has an explicit
metamodel as well. It supports extension of existing and extension by new elements as well as the
ability to annotate any element. Soul has a meta-meta-model based on logic facts. Datrix’s model is
not explicitly extensible. It provides the ability to annotate elements. Second, extensibility influences
how well differences between languages and paradigms can be modelled. Well-defined extensibility
also supports the integration of tools, because commonalities and differences can be explicitly dealt
with.

The data show that indeed the space captures the inherent property dependencies. Furthermore it tells
us certain properties imply certain (im)possibilities. For instance, SOUL is language specific which
implies low interoperability. Therefore we can conclude that the space, i.e., the categorization together
with dependencies, can provide us with a better understanding and additional insights into the presented
reengineering environments.

13. RELATED WORK

There exist a number of models that support software representation, object-oriented or not. One kind
of models are those aimed at object-oriented analysis and design (OOAD), the most notable example
being the Unified Modeling Language (UML) [47]. However, these models represent software at the
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model or design level. Reengineering requires information about software at the source code level.
The starting point is the software itself demanding a precise mapping of the software to a model
rather than a design model that might have been implemented in many different ways [48]. In the
reengineering research community several models exist that model the code itself. They are aimed at
procedural languages (Bauhaus [41]), object-oriented/procedural hybrid languages (TA++ [49], Datrix
[6,11], FAMIX [48]) and multi-paradigm models [24]. Most models support multiple languages, either
implicitly or explicitly.

Little analysis about the design and implementation of reengineering environments exists [5—7].
Koschke’s thesis discusses the relevance for modeled information of the Bauhaus Resource Graph
model for reengineering C programs [7]. Likewise, Datrix has a clear description of what is modeled,
namely abstract syntax trees with added semantic information [6]. Basically complete programs are
modeled in all possible detail. The relevance question is not discussed, as the goal is to model
everything and make the availability of the original source code irrelevant for the analysis tasks.
Lethbridge and Anquetil present a list of requirements for reengineering platforms and present the
design of the meta-model they developed [5].

Saint-Denis et al. provide a list of evaluation criteria for model interchange formats, including an
analysis of how various inter-exchange formats evaluate against those criteria [37]. Many similar issues
arise, such as scalability, simplicity and readability. Our work is different, firstly, because the textual
exchange format is only one of many things discussed in this paper, secondly in that we discuss in
much more detail practical issues such as reference schemas, unique identification and meta-model
extensibility. The Graph eXchange Language (GXL) is a collaborative effort from several academic
and industrial research institutes to come up with a standard exchange format and a set of standard
meta-models for information exchange between reengineering tools [34]. FAMIX is one of the main
input meta-models that are taken as a basis for a standardized program entity level meta-model.

Instead of purpose-built reengineering environments, generic meta-data repositories can be used.
Well-known examples are Unisys UREP and the Microsoft Repository [50]. These repositories attempt
to address the general problem of sharing models between a large variety of different software tools.
The advantages of these kinds of tools are that they are open to any information model and offer
industry standard integration paths to existing systems, for instance, using XMI [39]. All functionality
for storing, querying and exchanging information is available. The disadvantage is that they need
considerable tailoring for specific uses and can be an overkill for the task at hand.

14. CONCLUSIONS

Based on the experience we gained while designing the FAMIX meta-model, building the Moose
reengineering environment, and analyzing existing reengineering environments such as Datrix, Rigi,
and SOUL we defined a design space based on a set of criteria that describe the underlying decisions
that shape the design and functionality of the reengineering environment. We discussed requirement
issues such as the level of detail, the way entities are referenced, and grouping facilities. Then we
discussed implementation issues that have an impact on the functionality offered by a reengineering
platform. In particular we discussed different approaches of interchange format, incremental loading
of entities, entity reference schema and their dependencies.
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We validated the design space by evaluating how different reengineering environments can be
described in terms of the criteria presented. In future we would like to evaluate the available
environments regarding all the axes we defined.
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