
Power to Collections!
Generalizing Polymorphism by Unifying Array Programming and

Object-Oriented Programming

Stéphane Ducasse
Software Composition Group

University Of Bern
Bern, Switzerland

ducasse@iam.unibe.ch

Philippe Mougin
100 Rue du Moulin

04220 Sainte-Tulle, France

pmougin@acm.org
Preprint of the International Ecoop 2003 on

Object-oriented Language Engineering for the
Post-Java Era

ABSTRACT
Array programming shines in its ability to express computations at
a high-level of abstraction, allowing one to manipulate and query
wholesetsof data atonce. This paper presents the OOPAL model
that enhances object-oriented programming with array program-
ming features. The goal of OOPAL is to determine a minimum set
of modifications that must be made to the traditional object model
in order to take advantage of the possibilities of array program-
ming. It is based on a minimal extension of method invocation
and the definition of a kernel of methods implementing the funda-
mental array programming operations. The model is validated in
F-SCRIPT, a new scripting language.

Keywords
Array Programming, Object-Oriented Programming, Smalltalk, APL,
F-SCRIPT, Query Language, High-Order Messages, Programming
Language Design

1. THE PROBLEM
While object-oriented programming offers high-level tools for data
modeling(abstract data type, polymorphism, inheritance), the same
is not true for datamanipulation. The basic operation provided
for object manipulation is message sending, a fundamental oper-
ation as it supports polymorphism and encapsulation, but which
remains a very fine-grained low-level operation. Indeed object-
oriented programming does not offer a high-level model for manip-
ulating whole sets of data (i.e., collections of objects). In high-level
programming models like array programming or relational algebra,
complex expressions manipulating entire sets of data are easy to
design and are expressed in an extremely compact manner, without
requiring the explicit use of loops, tests, or navigation instructions
in a data graph. The same expressions would require several tens or

hundreds of lines of code in conventional object-oriented program-
ming languages.

Our aim is to provide a new approach which offers higher-level ca-
pacities for data manipulation within the scope of object-oriented
programming. For this purpose, we enrich object-oriented pro-
gramming with concepts taken from array programming in a model
called OOPAL (which stands for Object-Oriented Programming
and array programming Language integration). This paper presents
OOPAL and its implementation in F-SCRIPT, a object-oriented
scripting language using a Smalltalk syntax. This article makes
the following contributions: it identifies design principles for suc-
cessful integration between object-oriented programming and array
programming, defines the OOPAL model that enables this integra-
tion, and shows how it is validated through implementation of F-
SCRIPT.

A long version of this paper is [14] to which the interested reader
can find implementation notes. We start by a brief presentation of
array programming (Section 2). An example in traditional object-
oriented language is compared with its equivalent in F-SCRIPT

(Section 3). The OOPAL model is described as three components:
message patterns (Section 4), mapping between basic array pro-
gramming and OOP concepts (Section 5), and array programming
operations (Section 6). The OOPAL model is used, through F-
SCRIPT, in various fields such as data analysis, game development,
or software debugging [14].

2. ARRAY PROGRAMMING OVERVIEW
Array programming is the result of a mathematical notation in-
vented by Ken Iverson. APL, the first array programming language,
was developed by IBM in the 1960s and earned Ken Iverson the
Turing Award [10] [1].

2.1 Principles
Array programming has two key characteristics:

• Operations can be directly applied to entire arrays of values.

• A set of special functions and operators provides powerful
means of data manipulation and allows complex data manip-
ulation processes to be expressed concisely.

The fundamental principle behind array programming is that opera-
tions are directly applied to entire arrays of values, without the need

for explicit loops. For example, ifX andY are two arrays of num-
bers,X+Y returns a new array which contains the sum, element-
wise, of X and Y as shown by Figure??. It is also possible to
combine scalars and arrays in the same expression. For example,
X*2 returns an array which contains the result of multiplying each
element inX by two. In an array programming language such as
Fortran 90, the expressionZ = W+X*SIN(Y) is legal, not only when
W,X, Y, andZ are scalars, but also when they are arrays [6].

2.2 Array Programming Building Blocks
More precisely, array programming is built around scalars, multi-
dimensional arrays, functions, and operators.

Scalars. Conventional array programming languages are oriented
towards numeric computing. They offer a certain number of basic
data types, including numbers and characters, and sometimes offer
complex numbers, dates, and Booleans.

Multi-Dimensional Arrays. Traditionally, array programming sup-
ports multi-dimensional arrays and lets one specify the dimension
onto which operations are carried out. For instance, in APL, one
can index the operation symbol with a number specifying the di-
mension using [and]. Thus, in the expressionX/[Z]Y, the array Y
is compressed along its Zth dimension using the Boolean array X.

Functions and Operators. Furthermore, array programming fea-
tures a set of powerful functions and operators which enable data
manipulation to be expressed in a concise manner. As pointed out
by the ACM SIGAPL, ”The APL primitives express broad ideas
of data manipulation. These rich and powerful primitives can be
strung together to perform in one line what would require pages in
other programming languages”.

For instance, these primitives allow one to: select some elements in
an array, cumulatively apply a function to the elements of an array,
transpose the elements of an array, slice an array, rotate an array,
reshape an array, or combine array elements with generalized outer
and inner product operations. These array programming operations
are in synergy with the automatic processing of arrays and offer
great power for data manipulation. For example,compressionmay
be used to select elements in an array which meet a particular cri-
terion. Thus, in APL the expression(X < 60) / X selects elements
from X which are less than60 [17].

3. AN EXAMPLE
To illustrate our point we use the following object model in several
examples throughout the paper. It presents the minimal model of
an airplane company and represents flights, airplanes, pilots, and
their relationships (an airplane and a pilot are associated with each
flight).

We are only interested in manipulating objects via their behavioral
interface. Thus, our UML schema does not specify the instance
variables but only the methods. We define three collections of ob-
jects namedA, F, andP which group together the references to all
instances of airplanes (A), flights (F), and pilots (P) in our airplane
company’s fleet.

Suppose that we want to print the names of all the pilots, ranked by
salary in increasing order, in charge of a flight to Paris on a B747
airplane. Using Java or other mainstream object-oriented languages

Airplane
...
+ident():Number
+capacity():Number
+location():String
+model():String

Pilot
...
+name():String
+age():Number
+address():String
+salary():Number
+sendMail(String):void

Flight
...
+ident():Number
+arrivalLocation():String
+departureLocation():String
+arrivalDate():Date
+departureDate():Date
+airplane():Airplane
+pilot():Pilot

1
*

1

*

Figure 1: A simple domain: airplanes, flights, pilots and their
relationships.

we would have to write this kind of code1.

Java.
TreeSet pilots = new TreeSet(new Comparator()
{

public int compare(Object o1, Object o2)
{

if (((Pilot)o1).salary() < ((Pilot)o2).salary())
return -1;

else if (((Pilot)o1).salary() == ((Pilot)o2).salary())
return 0;

else
return 1;

}
});
Iterator i = F.iterator();
while (i.hasNext())
{

Flight currentFlight = (Flight)i.next();
if (currentFlight.arrivalLocation().equals(”PARIS”)
&& currentFlight.airplane().model.equals(”B747”))
{

pilots.add(currentFlight.pilot());
}

}
i = pilots.iterator();
while (i.hasNext())
{

System.out.println(((Pilot)i.next()).name());
}

Our solution, named the OOPAL model, is based on the unifica-
tion of array programming and object-oriented programming. The
main idea is that this unification lets one develop code using the ob-
ject interfaces and still use the power of array programming. The
unification is realized by the introduction ofmessage patternsand
array programming operations (See Section 4). As the complete

1By using a TreeSet we can both sort the selected pilots by salary
in increasing order and avoid duplicates.

OOPAL model is implemented in a new Smalltalk dialect named
F-SCRIPT, we use it as a notation to express the examples.

As we present in Section 4, the OOPAL model is based onmessage
patternsthat support the manipulation of object collections in an
array programming-like fashion.

With F-SCRIPT, the same operation on the same object model is
expressed as follows:

F-SCRIPT.
pilots := (F at: F arrivalLocation = ’PARIS’

& (F airplane model = ’B747’)) pilot distinct.
sys log:(pilots name at:pilots salary sort)

The expressionF arrivalLocation = ’PARIS’ returns an array of
Booleans that indicates, for each flight, whether or not the arrival
location is ’PARIS’. Such an array combined with the other expres-
sionF airplane model = ’B747’ is then used by theat: method to
select the corresponding flights.

4. MESSAGE PATTERNS
Now, we shall present the core aspect of OOPAL,message pat-
terns2. As we have mentioned, message patterns are at the heart
of the minimal extension of the traditional object model. Message
patterns support encapsulation, extensibility, a minimal extension
of the object model, and the handling of array specific messages
and nested arrays. They also avoid the addition of constraints on
object interfaces. Thereforeany kind of object andany kind of
method can be manipulated in an array programming-like fashion.
The model is completed with a set of specific array programming
operations that have been adapted to object-oriented programming.

4.1 Extended Message Passing
As explained, array programming enables operations to be applied
to entire arrays without requiring the explicit use of a traditional
loop control structure. OOPAL message patterns extend the tradi-
tional message passing operation backward-compatibly to support
messages to be sent to collection of objects. Message patterns al-
low for the sending not only of a simple message, but of a complex
group of messages.Traditional message passing then conceptually
becomes a specific case of message pattern. Note that as regards
speed of execution, normal method invocation is not impacted by
message patterns.

In this paper we present the principal elements of message patterns.
A complete description can be found in the F-SCRIPT User’s Man-
ual [12].

Message pattern notation makes it possible to:

• Specify for each array involved (i.e., receiver and arguments)
in a message pattern whether a loop should iterate over the
elements of this array. Moreover, the nesting level of this
loop in relation to other loops in the message pattern can be
specified.

• Specify a different message pattern for each level of array
nesting, should nested arrays be used.

• Useimplicit message patternwhich makes notation easier.
2”Message pattern” is sometime used in Smalltalk as a synonym
for selector with method argument. This differs from our usage in
this paper.

We also propose an abstract notation that makes it possible to ex-
press the structural properties of message patterns, regardless of
their actual message selectors and arguments. These structural prop-
erties are called patterns. For example, the notion of an outer prod-
uct corresponds to a particular pattern.

4.2 Simple Message Patterns
The message pattern notation involves indicating iterations in the
message expression itself. When the@ symbol is placed after the
message pattern receiver and/or just before an argument, it means
that a loop iterating over the elements of such designated array(s)
is executed to generate message sends. The two following rules
using a Smalltalk syntax express it3 (note that these two rules can
be combined, as we show later):

• rec @max: arg means that all the elements ofrec receives
the messagemax: with the argumentarg. {1,2,3} @max:
2 returns{2,2,3}.

• rec max:@ arg means thatrec receives the messagemax:
for each elements of arg.2 max:@ {1,2,3} generates three
message sends (i.e., 2 max:1, 2 max:2, 2max:3) and returns
{2,2,3}.

For example, the expressionF @airplane sends the messageair-
plane to all the elements ofF and returns the resulting array (i.e.,
an array of airplane objects, having the same size asF, where the
airplane at indexi in this array is the airplane associated with the
flight at indexi in F).

Both receiver and arguments can be iterated upon as shown by the
following example:{1,2,3} @+@ {10,20,30} returns the array
{11,22,33}

The messages generated as the result of the execution of a message
pattern are sent sequentially. Arrays are iterated from the start of
the array towards the end. The method invocation semantic is not
altered by OOPAL and is defined by the object-oriented language
at use.

Composition. A message pattern has the same precedence level
as conventional message sends and can be composed in a similar
manner. For example, the expressionF @airplane @model gen-
erates the airplane array described in the previous example, and
then sends themodel message to each element in this array, which
returns a new array giving the airplane model corresponding to each
flight. The expressionF @departureDate @> NSDate now re-
turns a Boolean array which indicates, for each flight, whether it
will take place after the current date4.

Advanced Combinations. Thus far, we have seen that by using
patterns on some arrays we generate messages that use the first el-
ement of each array, then the second, and so on. But we can also
combine array elements in other ways. For example, suppose we
want to get the outer product ofX andY, using the* method (Fig-
ure 2). To do this, we have to specify that we want a loop onX and
3In Smalltalk syntax invoking the methodmax: between two num-
bers isa max: b (equivalent to a.max(b) in Java).
4NSDate is the class representing the dates in F-SCRIPT andnow
is a class method returning the current date. TheNSDate class
implements conventional comparison methods and in particular the
method> .

a1
a2
a3

b1
b2
b3
b4

a3 x b1, a3 x b2, a3 x b3, a3 x b4

a1 x b1, a1 x b2, a1 x b3, a1 x b4
a2 x b1, a2 x b2, a2 x b3, a2 x b4

Figure 2: Outer product.

an inner loop onY. We therefore use a number after the@ symbol
to state the inner level of each loop. The outer product as shown in
Figure 2 is then expressed asX @1*@2 Y.

For instance, ifX is {1,2,3} andY is {10,20,30}, thenX @1*@2
Y returns{{10,20,30},{20,40,60}, {30,60,90}}.

If Z is {2,0,4} then X @1 between:@2 Y and:@3 Z returns
{{{false, true, false}, {false, true, false}, {false, true, false}},
{{true, true, false}, {true, true, false}, {true, true, false}},
{{true, true, false}, {true, true, false}, {true, true, false}}}.

X @1 between:@2 Y and:@1 Z returns{{false, false, false},
{true, true, true}, {false, false, false}}

4.3 Implicit Message Pattern Notation in F-
Script

The notation introduced previously supports the definition of mes-
sage patterns and is fully executable in F-SCRIPT. However, the
explicit notation is still too complex compared with conventional
array languages. In APL we writeX+Y to add the arraysX andY,
with the notation presented above we must writeX @+@ Y.

To solve this problem, we introduce animplicit notation for mes-
sage patterns5, which in most cases eliminates the explicit use of
@. Going back to our example, we can now writeX + Y like in
APL. This notation requires the language in which it is used to be
able to recognize the specification of a message pattern even if the
message pattern is not denoted by any particular signs.

In F-SCRIPT, we use the following rule to support implicit message
patterns. When a message is sent to an array, if the method invoked
is not defined by the classArray, the message is sent to the receiver
elements. Moreover, if certain arguments of this message are also
arrays F-SCRIPT takes the elements in these arrays one at a time.

WhenX, Y, andZ are arrays of numbers, this rule makes it possi-
ble to write expressions such as:X+Y, X*2, X cos, X between:Y
and:Z, andX between:10 and:Z. These expressions follow the ar-
ray semanticsi.e., they operate on the array elements. The rule also
makes it possible to use the implicit notation for recursive message
patterns. For instance{{1,2,3},{10,3.14}} * 2 is equivalent to
{{1,2,3},{10,3.14}} @@* 2 and evaluates to{{2,4,6},{20,6.28}}

Thanks to implicit notation we can simplify the examples given
in the previous sections. Thus, we can writeF airplane instead
of F @airplane andF airplane model instead ofF @airplane
@model. However, implicit notation cannot always be used, es-
pecially when the receiver is not an array but arguments should be
iterated upon. For instance, the expression2 * X where X is an
array of numbers will not work. In this case, an explicit message
pattern is required:2 *@ X.

5Note that all message patterns specified implicitly can also be
specified in an explicit manner.

Note that the proposed rule can be implemented in the message-
sending routine with nearly no performance loss.

5. BUILDING BLOCKS
The OOPAL model would not be complete without showing how
the basic elements of array programming are mapped into object-
oriented programming.

5.1 Scalars
All the basic data types (e.g., Booleans, numbers) manipulated by
conventional array programming languages corresponds in our model
to classes. Data is no longer limited to certain types but may be of
any class. This is possible because, in OOPAL, array programming
facilities are universal and not linked to any particular class.

5.2 Multi-dimensional Arrays
Array programming allows data to be grouped together inmulti-
dimensionalarrays which vary in size, are heterogeneous, and may
themselves contain arrays.

In object-oriented languages the closest type of array is ordered col-
lection (e.g., ArrayList in Java,OrderedCollection in Smalltalk).
OOPAL uses the extensibility of OOP to define the main array-
programming operations as dedicated methods on collection classes.
In this article, we refer to these enriched collections as ”arrays”.

Conventional object collections are one-dimensional (called vec-
tors in array programming languages) and do not offer direct sup-
port for the multi-dimensional manipulations which are so dear to
array programming. Nonetheless, we believe that it is preferable
in our context to avoid introducing the notion of multi-dimensional
object collections for three reasons.

• First, it would involve a substantial addition leading to nu-
merous complexities and this would contradict the minimal
extension principle.

• Second, while multi-dimensional matrix manipulation may
be a common occurrence in mathematical processes it is much
less useful in our context which looks at the manipulation of
any type of objects.

• Third, there is no loss in expressive power. We are not aban-
doning advanced support for operations requiring multi-level
object nesting. First, collection nesting is still possible, as
nothing prevents a collection from containing collections.
Second, the notion of recursive message patterns allows ar-
ray programming techniques to be used on nested collections
regardless of the depth of nesting.

5.3 Functions and Operators
Array programming languages offer a certain number of operations
which may be applied to scalar data and/or to arrays. Such opera-
tions are calledfunctions. Functions may be primitivei.e., provided
by the language such as basic mathematical operations, Boolean
operations, or array-specific functions such as compression6. They
may also bedefined i.e., provided by the developer or via external
libraries. In OOP, functions map naturally to methods.

Array programming also uses the notion ofoperators. An operator
can be described as a function which applies to other functions to
6Compression means selecting elements of an array by providing
an array of Booleans.F at: F arrivalLocation = ’PARIS’.

produce a function. Array programming is widely based on oper-
ators for data manipulation. For example, the reduction operator
enables any function with two arguments to be cumulatively ap-
plied to all the elements in an array. As with functions, primitive
operators exist and it is possible to define new operators.

Object-oriented programming does not have any direct equivalent
to the operator concept but the main advantages of operators can be
obtained by implementing methods which useoperationsas argu-
ments. Depending on the language, one can use constructions such
as blocks (lambda functions) or selectors in Smalltalk, anonymous
methods in C#, selectors in Objective-C, or lambda functions in
Python, CLOS. For example, an equivalent to a reduction operator
(in a slightly modified form) already exists in Smalltalk with the
inject:into: method, which takes a block as an argument.

6. ARRAY PROGRAMMING OPERATIONS
BY EXAMPLE

The notion of message pattern alone is not sufficient to fully inte-
grate array programming and object-oriented programming. Mes-
sage patterns become powerful when they are associated with spe-
cific array programming operations. Note that these operations are
implemented as simple methods. No new syntactic notation is nec-
essary. These operations are generic and are meant to be provided
by languages supporting the OOPAL model. They do not require
support from the developer.

In particular, these operations enable:

• Easy navigation in the object graph,

• Concise and readable expression of the selection of objects
according to arbitrarily complex criteria,

• Sophisticated data analysis, and

• Concise and readable expression of complex object manipu-
lations.

As we illustrate now, using message patterns and these operations
makes it possible to capitalize on the power of array programming
principles in an object-oriented context. Here, we present only
four examples of array specific operations, as implemented in F-
SCRIPT, but there are many others: see [12] and [13] for a detailed
list.

Compression. Compression selects certain elements of an array.
The result of compression is a new array which contains the se-
lected elements. Compression is an operation which requires two
operands: the array from which we want to make a selection and
a Boolean arrayof the same size. An element is selected if the
corresponding Boolean (i.e., at the same index) holds true.

For example, suppose that our array P contains height Pilot ob-
jects. If we want to select elements at index 0, 1, and 5, we can ap-
ply compression as follows7: P at:{true, true, false, false, false,
true, false, false}.

Compression requires a Boolean array which specifies the selection
that has to be made. And yet, thanks to message patterns, such
arrays are very easy to generate. For example,P salary > 3000,

7Here, we have extended the Smalltalk indexing method for carry-
ing out compression when its argument is a Boolean array.

generates8 a Boolean array which indicates, for each pilot, whether
his/her salary is greater than 3000. We can then use this Boolean
array to compress theP array and thus select only pilots whose
salary is greater than 3000:P at: P salary > 3000.

Message patterns enable complex Boolean conditions to be ex-
pressed naturally. For example,(P at: (P salary > 3000) & (P
address = ’PARIS’)) sendMail:”Dear Pilot, etc. etc. etc.” se-
lects the pilots whose salary is greater than 3000 and who live in
Paris, and sends them an email.

Reduction. Reducing an array consists in cumulatively evaluating
a custom operation on the elements of an array. In F-SCRIPT, re-
duction is implemented as the method\ of the Array class. For
example, you add up the elements of an array with the expression:
{1,2,3,4} \ #+ which returns10. The result is computed as if you
had entered:1 + 2 + 3 + 4.

Reduction may be used with any operation (method or block) which
takes two operands and returns an object.

Some types of reduction are used very often:

• Reduction of an array of numbers using themin: method
returns the smallest element in the array (alternatively,max:
reduction returns the greatest element).

• Reduction of a Boolean array using the| method (i.e., logi-
cal OR) enabling existential quantification. For example,P
salary > 3000 \ #| returns true if a pilot has a salary greater
than 3000.

• Reduction of a Boolean array using the& method (i.e., log-
ical AND) enabling universal quantification. For example,
P salary > 3000 \ #& returns true if all the pilots have a
salary greater than 3000, otherwise false.

• Reduction of a Boolean array using the+ method which pro-
vides the number of objects which check a certain predicate.
For example,P salary > 3000 \ #+ returns the number of
pilots whose salary is greater than 3000.

Reduction already exists in other object-oriented languages (e.g.,
inject:into: method in smalltalk,reduce function in Python). How-
ever reduction is rarely used in these languages because of the ver-
bose definition it requires and because object collections in these
languages are not as omnipresent as in OOPAL. In OOPAL the
reduction method works in synergy with the other specific high-
order methods and idioms promoted by array programming.

Sorting. The result of thesort message sent to an array is an array
of integers containing the indices that will arrange the receiver of
sort in ascending order. For example, if X is{5,2,1,3,6,4} thenX
sort returns{2,1,3,5,0,4}.

You can then get X in ascending order by indexing it with the re-
sult of the execution of the sort method9: X at:(X sort) returns

8The expression is evaluated as follows: thesalary message is sent
to each element inP (this message pattern is denoted implicitly),
which produces an array of numbers. The message> 3000 is then
sent to each element in the array of numbers (here again, in accor-
dance with the implicit notation of message patterns) which pro-
duces the desired Boolean array.
9In array programming, an array can be indexed by a whole array

{1,2,3,4,5,6}. The advantage of this method is that once you have
the ordered index numbers, you can then apply them not only to the
original scrambled array, but to any other array of the same size.
For example, suppose we want to get an array of pilots sorted by
ascending salary. We just have to evaluate the expressionP at:(P
salary sort).

Joins. A join is implemented by the>< method of theArray
class. For each element, saye, of the receiver, this method com-
putes an array containing the positions ofe in the argument. It
returns all the arrays packed into an array of arrays.{1,2,’foo’}
>< {4,’foo’,1,’foo’,’foo’} returns{{2},{},{1,3,4}}. This result
means that the first element of the receiver is found in position 2 in
the argument, the second element of the receiver is not present at
all in the argument and the third element of the receiver is found in
positions 1, 3, and 4 in the argument.

Suppose we want to obtain, for each pilot in P, the list of all the
flights that the pilot is responsible for. That is, we want to construct
an array of the same size as P, where each element is an array con-
taining the flights associated with the corresponding pilot in P. The
list of flight at indexi in the resulting array contains the flights for
which the pilot at indexi in P is responsible. As shown in Figure 1,
the Pilot class does not provide a method (say, ”flights”) returning
the list of flights associated with a pilot instance. Thus we cannot
just write something likeP flights. So, how can we navigate from
the pilots to the associated flights? It is in this kind of situation
that the join method presented here is useful. This method can be
used here because the Flight class provides a method (namedpi-
lot) that makes it possible to navigate from a flight to its associated
pilot. The result can be obtained by combining the join method,
an extended indexing, and two message patterns:F at:@ P >< F
pilot.

As shown here, the join method makes it possible to easily navigate
an object graph without requiring the object model to maintain and
provide inverse relationship (i.e., back-links) navigation capacities.
Used wisely, this characteristic can simplify the implementation of
an object model and allow one to express ad-hoc queries.

7. RELATED WORK
Several team teams have explored integration of object technology
and array programming. In most cases, their goal has been to study
how object technology could enhance an existing array language.
See [5] [11] [8] [2] [7] [3] [16]. OOPAL takes a rather different
approach as it involves bringing the notions of array programming
to the object world. Its goal is therefore to determine the mini-
mal set of modifications that must be made to the traditional object
model in order to take advantage of the possibilities of array pro-
gramming. To our knowledge, little research has been carried out
in this area.

Several libraries provide array programming operations for existing
object-oriented languages. For instance SmartArray [4] provides an
advanced array programming library for C++, Java, and C#. Other
examples include the widely used Numarray and Numerical Python
packages [9] which add array programming operations to Python.
The fundamental difference between the OOPAL model and such
libraries is that these libraries are oriented towards numeric com-
puting, whereas the OOPAL model attempts more fundamental

of indices. The translation of this capacity in our OOPAL model
involves the array class providing an indexing method able to deal
with an array of indices.

integration between object-oriented programming and array pro-
gramming to support the manipulation of any kind of object.

In the database realm, the confrontation between object-oriented
databases and relational databases has led to the development of
object query languages, which provide high-level object-oriented
querying models. However, these developments, at least for the
moment, have not influenced mainstream object-oriented program-
ming languages such as C++, Java, C#, or Smalltalk. On the con-
trary, in their most recent incarnations (e.g., JDO Query Language,
EJB Query Language), object query languages adopt quite a low
profile. They are merely used as a minimalist interface to an under-
lying database, for bootstrapping the data navigation and manipula-
tion process (i.e., getting some elements of the object graph out of
the database) which is then carried out with the host object-oriented
programming language. While object query languages are mainly
designed around the interaction with persistent objects stored in a
database, the OOPAL model is primarily designed to interact with
instantiated objects lying in memory. Indeed, the problem we are
tackling with OOPAL is to provide a higher-level programming
model in the context of OOP, not a database query language. One
important consequence of this difference in focus is the support for
encapsulation. For performance reasons, most of the query lan-
guages provided by object-oriented databases or object/relational
mapping tools break encapsulation. For example, the current ver-
sion of JDOQL [15] does not support method invocation of busi-
ness objects but only offers direct access to instance variables. The
performance problem that justifies breaking encapsulation is due to
the fact that database query languages do not actually manipulate
objects but object representations stored on disk, which is a totally
different thing. In such a case, the use of indices and the minimiza-
tion of instantiations, which can be achieved by breaking encapsu-
lation, is needed to achieve good performances. On the contrary,
in the context of a general purpose object-oriented language, en-
capsulation is of paramount importance, and is well supported by
OOPAL.

High-level object-oriented languages like Smalltalk or Python com-
monly provide sophisticated collections classes associated with high-
level operations. OOPAL’s association of message patterns and
array programming operations subsume these models by allowing
to express object manipulations in a more readable way and with
much less code. [12] shows examples of how classical Smalltalk’s
high-level operations on collections are subsumed by OOPAL in
F-SCRIPT. A key difference between the two approaches is that
OOPAL allows one to think in terms of whole sets of objects,
while conventional object collection protocols require thinking in
terms of iteration over collection elements. For instance, compare
the code needed to generate an array containing the names of all
the pilots:

• Smalltalk using the collection protocol:P collect:[:aPilot |
aPilot name].

• Python using the list comprehension construct:[aPilot.name()
for aPilot in P].

• F-Script using OOPAL:P name.

To finish we want to stress one key point about the OOPAL model.
This model provides a new conceptual tool for writing and design-
ing program. The OOPAL model does not limit itself to a syntac-
tical notation. It frees the developer to think in terms of individual

entities but in terms of complete set of objects. To a certain extent
it acts as the natural generalization of polymorphism.

8. CONCLUSION
On one hand, object-oriented programming provides excellent sup-
port for datamodelingbut it falls short for the expression of com-
plex expressions overentire setsof objects. The lack of expres-
siveness of the object-oriented approach was one of the reasons
why some relational advocates saw object-oriented databases as a
twenty-year step backwards. On the other hand, array program-
ming supports the manipulation of entire sets of data and avoids
the use of explicit loops, but does not support objects.

This article presented the OOPAL model that defines the integra-
tion of array programming in object-oriented programming. It is
based on an extension of the concept of method invocation which
implies a slight syntactic extension, and the addition of certain ar-
ray manipulation methods, which do not call for the modification
of the target language’s syntax.

The manner in which F-SCRIPThandles encapsulation, inheritance,
and polymorphism has not been addressed in this paper due to the
similarity with other dynamic language such as Smalltalk. In the
OOPAL model these concepts are orthogonal to array program-
ming and don’t need to be specifically re-designed to fit into the
world of array programming. This point is clearly shown by the
fact that F-SCRIPT allows standard Objective-C objects to be ma-
nipulated.

In OOPAL array programming and OOP fit well together. Not
only can these two programming models benefit from each other’s
advantages, but they act synergically. While array programming
makes it possible to write code with few explicit loops, OOP’s
dynamic binding decreases the use of explicit conditional control
structures. It just so happens that the need to use explicit condi-
tional control structures usually hinders the use of array program-
ming, because it makes it harder to express array-oriented algo-
rithms. OOP, which favors a programming style that is free from
these structures, naturally allows for extended use of array pro-
gramming.

By integrating array technologies into object-oriented languages,
the OOPAL model allows OOP to benefit from decades of inten-
sive research in the field of array programming languages. This
provides a high-level notation which makes it possible to easily ex-
press complex object manipulations. The real-world applications
developed with F-SCRIPT have shown that the integration of array
technologies with object-oriented programming adds a consider-
able amount of power to the latter.

Acknowledgments. We would like to thanks Noury Bouraqadi,
Jörg Garbers, Ralph Johnson, Joseph R. Kiniry, Brid Marire, Oscar
Nierstrasz, Hannah Riley, and Roel Wuyts for the their feedback on
early versions and parts of this article.

9. REFERENCES
[1] P. Berry. Apl 360 primer, 3rd edition. Technical report, IBM

Corp, 1971.

[2] B. Best. Object-oriented programming and apl
computer-language.
http://www.benbest.com/computer/oopapl.html.

[3] P. Bottoni, M. Mariotto, and P. Mussio. Liseb: a language for
modeling living systems with apl2. InProceedings of the
International Conference on APL, number 1292, pages 7–16,
1994.

[4] J. A. Brown and J. G. Wheeler. Smartarrays for the apl
programmer. InProceedings of the International Conference
on APL, pages 50–60, 2002.

[5] R. G. Brown. Object-oriented apl: an introduction and
overview. InProceedings of the International Conference on
APL, pages 47–54, 2000.

[6] G. Fox and N. McCracken. Array programming in fortran
90. www.npac.syr.edu/EDUCATION-
/PUB/hpfe/module1/index.html.

[7] M. Gfeller. Object-oriented programming in aida apl. In
Proceedings of the International Conference on APL, pages
164–168, 1989.

[8] J. J. Girardot and S. Sako. An object oriented extension to
APL. In Proceedings of the international conference on APL,
pages 128–137. ACM Press, 1987.

[9] Greenfield et al. Numarray, an open source project, 2002.
http://stsdas.stsci.edu/numarray/numarray.pdf.

[10] K. I. Iverson.A Programming Language. John Wiley and
Sons, 1962.

[11] R. MacDonald. Bob brown and object oriented apl.
http://www.torontoapl.org/ga/ga9605/bbrown.txt.

[12] P. Mougin. F-Script guide, 1999. http://www.fscript.org.

[13] P. Mougin. High-level object-oriented programming with
array technology. InProceedings of the International
Conference on APL, pages 163–175. ACM Press, 2000.

[14] P. Mougin and S. Ducasse. Oopal: Integrating array
programming in object-oriented programming. 2003.
Accepted to OOPSLA’2003.

[15] Sun-Microsystems. Java data object specification,1.0, 2002.

[16] N. J. Thomson.J - The Natural Language for Analytic
Computing. Research Studies Press, 2001.

[17] R. G. Willhoft. Comparison of the functional power of apl2
and fortran90. InProceedings of the International
Conference on APL, pages 343–357, 1991.

