
Runtime Bytecode Transformation

for Smalltalk ?

Marcus Denker a Stéphane Ducasse b Éric Tanter c

aSoftware Composition Group
IAM — Universität Bern, Switzerland

bSoftware Composition Group
IAM — Universität Bern, Switzerland, and

Language and Software Evolution Group
LISTIC — Université de Savoie, France

cCenter for Web Research, DCC
University of Chile, Santiago, Chile

Abstract

Transforming programs to alter their semantics is of wide interest, for purposes
as diverse as off-the-shelf component adaptation, optimization, trace generation,
and experimentation with new language features. The current wave of interest in
advanced technologies for better separation of concerns, such as aspect-oriented pro-
gramming, is a solid testimony of this fact. Strangely enough, almost all proposals
are formulated in the context of Java, in which tool providers encounter severe re-
strictions due to the rigidity of the environment. This paper present ByteSurgeon,
a library to transform binary code in Smalltalk. ByteSurgeon takes full advantage
of the flexibility of the Squeak environment to enable bytecode transformation at
runtime, thereby allowing dynamic, on-the-fly modification of applications. Byte-
Surgeon operates on bytecode in order to cope with situations where the source
code is not available, while providing appropriate high-level abstractions so that
users do not need to program at the bytecode level. We illustrate the use of Byte-
Surgeon via the implementation of method wrappers and a simple MOP, and
report on its efficiency.

Key words: Smalltalk, object-oriented programming, bytecode transformation,
metaprogramming

Preprint. Published in Elsevier COMLAN, vol. 32, no. 2–3, July 2006, pp. 125–139.

1 Introduction

Many objectives of software engineering can be served by appropriate program
transformation techniques. Software adaptation can be used for Binary Com-
ponent Adaptation (BCA), a technique proposed by Keller and Hölzle which
relies on coarse-grained alterations of component binaries to make them in-
teroperable [1]. Another objective of software adaptation is that of separation
of concerns [2], as first emphasized by work carried out in the reflection com-
munity [3–5], and more recently, aspect-oriented programming (AOP) [6]. In
this context, transformation techniques are used to merge together different
pieces of software encapsulating different concerns of the global system. Pro-
gram transformation is a valid implementation techniques for reflection and
AOP when an open interpreter of the considered language is not available.

Fine-grained control of computation, such as message passing control in the
context of object-oriented programming, is the corner stone of many interest-
ing applications [7]. It has been used for a wide range of application analy-
sis approaches, such as tracing [8–10], automatic construction of interaction
diagrams, class affinity graphs, test coverage, as well as new debugging ap-
proaches [11,12]. Message passing control has also been used to introduce new
language features in several languages, for instance multiple inheritance [13],
distribution [14–16], instance-based programming [17], active objects [18], con-
current objects [19], futures [20] and atomic messages [21,22], as well as back-
tracking facilities [23].

CLOS is one the few languages that offers a dedicated metaobject protocol
supporting language semantics customization [24]. Other languages such as
Smalltalk and Java rely on techniques or libraries to either transform code or
take control of the program execution [7,25]. The most basic way to alter pro-
grams is of course to modify the source code and recompile it. This approach
is used by several Java systems, such as OpenJava [26] and the Java Syntactic
Extender [27]. However, in many contexts, relying on the availability of source
code is limiting since most applications ship in binary form, and in open dis-
tributed systems, source code is usually not known in advance. Furthermore,
the source language from which the actual binary was obtained is not necessar-

? We acknowledge the financial support of the Swiss National Science Founda-
tion for the project “A Unified Approach to Composition and Extensibility” (SNF
Project No. 200020-105091/1, Oct. 2004 - Sept. 2006) and “RECAST: Evolution
of Object-Oriented Applications” (SNF Project No. 620-066077, Sept. 2002 - Aug.
2006). É. Tanter is financed by the Millennium Nucleus Center for Web Research,
Grant P01-029-F, Mideplan, Chile.

Email addresses: denker@iam.unibe.ch (Marcus Denker),
ducasse@iam.unibe.ch (Stéphane Ducasse), etanter@dcc.uchile.cl (Éric
Tanter).

2

ily the mainstream language of the runtime system. Bytecode manipulation,
as done in the Java world by tools such as BCEL [28] and Javassist [29] is
a particularly pertinent alternative. The challenge is to provide appropriate
high-level abstractions to bytecode transformation, in order to shield users
from the burden of working at the bytecode level [25].

To the best of our knowledge, there is no single bytecode transformation tool
for the Smalltalk/Squeak environment, in the line of what Javassist represents
for the Java world. This is all the more surprising that the Squeak environ-
ment actually represents an ideal environment for bytecode transformation.
In contrast with Java where full bytecode transformation is only possible at
load time, and very severely limited at runtime, Squeak enables the full power
of bytecode transformation to be used dynamically. The purpose of Byte-
Surgeon is precisely to leverage the flexibility of the Smalltalk language
and the Squeak environment to provide a backend to designers of toolkits for
component adaptation, reflective and metaprogramming, and aspect-oriented
programming.

The contributions of this paper are:

• a motivation for the need of a dynamic bytecode transformation framework
for Smalltalk, working at appropriate levels of abstraction,
• a framework, called ByteSurgeon, that enables runtime bytecode trans-

formation via a two level API,
• a simple MOP that can be used to compare bytecode transformation frame-

works.

The paper is organized as follows: Section 2 explains the need for bytecode
manipulation at appropriate levels of abstraction, by discussing related work.
Then we present ByteSurgeon at work in Section 3. Section 4 details some
aspects of the architecture. In Section 5, we validate the interest of our frame-
work via the implementation of two language features: method wrappers [10],
and a simple runtime metaobject protocol (MOP) making use of runtime ma-
nipulation for dynamic (un)installation of hooks; a first set of benchmarks
completes the validation of ByteSurgeon. Section 6 discusses future work
and concludes.

2 The Need for Bytecode Manipulation

There are many ways to change the semantics of programs, ranging from code
preprocessing to modification of the language runtime environment. If the lan-
guage runtime is not an open implementation offering an adequate metaobject
protocol (MOP) [24], then modifying it directly sacrifices portability; since

3

mainstream Smalltalk virtual machines such as Squeak are not open in this
sense, we discard the alternative of intervening at the VM level.

Source code transformation can be done either directly on the text (concrete
syntax) or on the abstract syntax tree (abstract syntax). Furthermore, in lan-
guage environments where source code is compiled to an intermediate bytecode
language which is abstract enough, bytecode transformation is an interesting
approach; it is actually widely used in the Java community.

In Section 2.1 we discuss the inconveniences of source code approaches. Still,
once bytecode transformation is agreed upon, the issue of the abstraction level
offered to the programmer appears, discussed in Section 2.2. We also discuss
the limitations of bytecode transformation in the context of Java.

2.1 Disadvantages of Source Code Transformation

Transforming source code at the concrete syntax level is typically avoided be-
cause of the lack of structure and abstraction at the text level. Transformation
of abstract syntax trees (ASTs) is much more adequate, but still suffers from
a number of limitations.

No access to the source code. For the sake of saving space or ensur-
ing a first level of privacy, the source code of an application is usually not
distributed. Using source code strippers or removing symbolic information
are current practices to reduce the size of an application before deployment.
Furthermore, in open contexts such as mobile agent platforms and open dis-
tributed systems, code is typically not known in advance. One can of course
rebuild an AST from bytecode, but this technique presents a number of chal-
lenges: bytecode-to-AST decompiling is a slow process, and typically requires
the decompiler to know about bytecode generation patterns used by the com-
piler so as to rebuild meaningful AST nodes.

No original language warranty. Most mainstream languages today, such
as Java, Squeak and C#, are based on a virtual machine executing bytecodes,
and these virtual machines are actually used as the execution engines of var-
ious languages, other than the “original” ones. For instance, for the Croquet
environment [30], a number of experimental scripting languages have been
developed, among them languages similar to JavaScript and LOGO. Another
example is the Python language, which can be compiled to Java bytecodes [31].
To provide practical performance, these languages come with their own cus-
tom compiler that produces bytecode for a production-quality virtual machine.
Therefore a code transformation tool working at the AST level rebuilding the
AST from bytecode would require a custom decompiler. On the other hand,
working on bytecode, although lower-level than AST, makes it possible to uni-

4

formly apply transformations even in the presence of non-original languages.

Recompiling is slow. Finally, transforming source code means that a com-
piling phase is necessary afterwards to regenerate bytecodes. Recompilation
is a slow process, much slower than manipulating bytecode; benchmarks of
Section 5.3 validate this statement.

2.2 Bytecode Transformation Approaches

Due to the many reasons explained above, a wide variety of tools have been
proposed that rely on bytecode transformation. Surprisingly, most of these
tools have been made for Java, and we are aware of very few related proposals
in the Smalltalk world.

Java and Bytecode Transformation. The Java standard environment only
allows for bytecode transformation at load time. At runtime, it is only possible
to dynamically generate new classes from scratch, not to modify existing ones.
These restrictions have been somehow relaxed in the context of the JVM
debugger interface (JDI) [32], but relying on the debugger interface is not
reasonable in a production environment. Furthermore, the possibilities of class
reloading are strongly limited as, for instance, new members cannot be added
to classes. Using load-time transformation in Java also raises a number of
subtle issues related to class loaders and the way they define namespaces in
Java [33].

Level of Abstraction. The experience gained with Java bytecode transfor-
mation tools brings a number of insights that ought to be considered when
designing a new framework. The most fundamental one is that of the level of
abstraction provided to programmers.

Tools like BCEL [28] and ASM [34] strictly reify bytecode instructions: as a
consequence, users have to know the Java bytecode language very well and
have to deal with low-level details such as jumps and alternate bytecode in-
structions (a Java method invocation can be implemented by several bytecode
instructions, depending on whether the invoked method is from an interface,
is private, etc.).

On the contrary, Javassist [35] and Jinline [25] focus on providing source code
level abstractions: although the actual transformation is performed on byte-
code, the API exposes concepts of the source language. This is highly profitable
to end users. In its latest version [29], Javassist even offers a lightweight online
compiler so that injected code can be specified as a string of source code. The
Javassist compiler supports a number of dedicated metavariables, which can
be used to refer to the context in which a piece of code is injected.

5

As a matter of fact, bytecode-level manipulation is more complex than source-
level manipulation because of the many low-level details one needs to deal
with. However, working at the bytecode level also makes it possible to express
code that is not directly expressable in the source language(s). This dilemma
basically motivates the need for both APIs, as is done in Javassist: a high-level
API provides source-level abstractions, and a low-level API provides bytecode-
level abstractions.

Proposals for Smalltalk. To the best of our knowledge there is no general-
purpose bytecode manipulation tool for a Smalltalk dialect. AOStA [36] is a
bytecode-to-bytecode translator that aims at providing higher-level, transpar-
ent, type-feedback-driven optimizations. It was not thought to be open to end
users for bytecode manipulation 1 . Method wrappers [10] make it possible to
wrap a method with before/after code. They are very fast to install and re-
move, as they do not need to parse bytecode or generate methods, but are not
a general-purpose transformation tool. Several extensions actually need more
power than just before/after control. AspectS [37] has been recently proposed
as an aspect-oriented interface to the reflective capabilities of Smalltalk com-
bined with method wrappers (to implement before/after advices). AspectS
is actually a tool that would much profit from ByteSurgeon, as it would
significantly raise its expressive power.

2.3 Motivation

From the above, it should be clear that a general-purpose bytecode manipu-
lation tool for Smalltalk is missing. Such a tool ought to provide convenient
abstractions to users, both at the source level and bytecode level. Byte-
Surgeon is precisely such a tool. Beyond its interest for the Smalltalk commu-
nity, ByteSurgeon also opens the door to a brand new range of experiments
with runtime bytecode transformations, since it has none of the limitations of
existing Java proposals. For instance, ByteSurgeon makes it possible to
analyze concrete issues of fully-dynamic AOP.

3 ByteSurgeon at Work

ByteSurgeon is our library for runtime program transformation in Small-
talk, currently implemented in the Squeak environment. ByteSurgeon com-
plements the reflective abilities of Smalltalk [38] with the possibility to instru-

1 Actually, ByteSurgeon could profitably use AOStA for its backend, but this
study is left as future work.

6

ment methods, down to method bodies. Smalltalk provides a great deal of
structural reflection: the structure of the system is described in itself. Struc-
tural reflection can be used to obtain the object representing any language
entity. For instance, the global variable Example stands for the class (the
object representing the class) Example, and the object describing the com-
piled method aMethod in class Example is returned by the expression Exam-
ple>>#aMethod. Dynamically adding instance variables and methods to an
existing class is fully supported by any standard Smalltalk environment. How-
ever the structural description of a Smalltalk system stops at the level of meth-
ods: compiled method cannot be reflected upon. Conversely, ByteSurgeon
can be used to do both introspection and intercession on compiled methods.

3.1 Introspecting Method Bodies

Let us first see how ByteSurgeon is used to introspect method bodies. The
following code statically counts the number of instructions that occur in all
methods of the class Example:

InstrCounter reset.
Example instrument: [:instr | InstrCounter increase]

The instrument: method is implemented in class Behavior. As a parameter it
is given a block (of standard Smalltalk code) that takes one argument. This
block is an instrumentation block: for each instruction within all methods of the
class, the instrumentation block is evaluated with a reification of the current
instruction as parameter. We will see later what an instruction reification is.
For now, suffices to say that for each instruction, a global counter is increased.

There are variants of the instrument: method for each particular language op-
eration: constant, variable access, read and store and message sending. For
instance, instrumentSend: only evaluates the instrumentation block upon oc-
currences of the message send operation. Besides calling the instrumentation
method on a class, thereby affecting all its methods, we can call it on a single
method:

SendMCounter reset.
(Example>>#aMethod) instrumentSend: [:send | SendMCounter increase]

7

3.2 Reification of Language Operations

Instructions in a method body are static occurrences of the operations of a
language. ByteSurgeon supports message send, access to instance variable
and local variables, and constants. The structural model representing language
operations is shown on Figure 1 2 . This structural model is bytecode-based. It
does not encode as much information as an AST does, e.g., it is not possible
to extract, from an IRSend, the instructions that correspond to the arguments
of the send. This is a limitation of bytecode-based transformation against
AST-based transformation.

IRInstVarAccess

isInstVarAccess

IRInstVarWrite
isInstVarWrite

IRInstVarRead
isInstVarRead

IRTempAccess

isTempAccess

IRTempWrite
isTempWrite

IRTempRead
isTempRead

IRSend
selector
isSend

IRSuperSend
isSuperSend

IRConstantAccess
constant
isConstantAccess

IRAccess
offset
isAccess
name

IRInstruction
isAccess
IsInstVarAccess
isInstVarRead
isInstVarWrite
isTempAccess
isTempRead
isTempWrite
isSend
isSuperSend
isConstantAccess
method

Fig. 1. Structural model of instructions in ByteSurgeon.

When calling an instrumentation method (i.e., instrument:, instrumentSend:)
reification of instructions are built, as instances of the appropriate class in
the hierarchy, and passed to the instrumentation block. The instrumentation
can then introspect and change them. For instance, the following piece of code
prints the selector of each message send occurring within Example>>#aMethod:

(Example>>#aMethod) instrumentSend: [:send |
Transcript show: send selector printString; cr]

Method Evaluation. A peculiar language operation is message receive (the
callee-side equivalent of a message send). Actually, a message receive is re-
alized by two operations: method lookup and method evaluation. Since we

2 The isXXX methods (e.g., isSend) are provided as a convenience to avoid the use
of visitors and double dispatch.

8

are working at the bytecode level, we do not have access to method lookup,
only method evaluation. Rather than corresponding to a bytecode instruction
inside a method body, method evaluation corresponds to a method body as
a whole. Since ByteSurgeon treats all language operations in a uniform
manner, methods have the same introspection and intercession interface than
instructions (e.g., see Section 3.3.3).

3.3 Modifying Method Bodies

ByteSurgeon supports two ways of modifying method bodies: a bytecode-
level manner, where the user directly specifies the required transformation in
terms of bytecode representations, and a source-level manner, where the trans-
formation is specified with a string of source code. We hereby only present the
source-level API. The bytecode-level API is briefly mentioned in Section 4.3.

Similarly to Javassist [29], ByteSurgeon provides an online compiler that
makes it possible to specify code to be inserted as a string. The methods to
insert code before, after and instead of an occurrence of a language operation
are named respectively insertBefore:, insertAfter: and replace:. They take as
argument the source code as a string, which is subsequently compiled by the
ByteSurgeon compiler, and the resulting code is inserted at the appropriate
position. For instance, the following code inserts a call to the system beeper
before each message send occurring within Example>>#aMethod:

(Example>>#aMethod) instrumentSend: [:send | send insertBefore: ’Beeper beep’]

The code string can contain any valid Smalltalk code 3 , plus two kinds of spe-
cial variables: user-defined variables to refer to statically-available information,
and metavariables for runtime information.

3.3.1 Accessing Static Information: User-defined Variables

Statically-known information about an instruction can be used in the con-
struction of the string. For instance, the following example records the name
of selector of each message send occurring at runtime:

(Example>>#aMethod) instrumentSend: [:send |
send insertAfter: ’Logger logSend:’ , send selector printString]

3 self, super and thisContext have their usual meaning, knowing that this code will
be evaluated in the place where it is inserted.

9

Here we query the objects describing the message send operations for the
name of the message sent. To ease the construction of the string and avoid
hard-to-understand string concatenation, ByteSurgeon makes it possible to
define custom variables with the syntax <: #variable>, and giving a list of
association from variable names to object references 4 :

(Example>>#aMethod) instrumentSend: [:send |
send insertAfter: ’Logger logSend: <: #sel>’]

using: { #sel -> send selector }

3.3.2 Accessing Runtime Information: Metavariables

The online compiler of ByteSurgeon also supports a number of predefined
metavariables that refer to information available at runtime, such as the re-
ceiver of a message send (Figure 2). Metavariables are an essential part of the
expressiveness of a good bytecode transformation framework. The exact set of
available metavariables depends on both the operation selected –in the case of
a message send, metavariables are provided to refer to the sender, the receiver
and the arguments– and the transformation to perform –when inserting after,
it is possible to access the result–. Metavariables are denoted by the <meta:
#variable> construct. For instance, the following code replaces each message
send with a call to a dispatcher metaobject in charge of the actual method
lookup [7, 39]:

(Example>>#aMethod) instrumentSend: [:send | send replace:
’CustomDispatcher send: <: #selSymbol> to: <meta: #receiver>

with: <meta: #arguments>’]
using: { #selSymbol -> send selector printString }

The ByteSurgeon online compiler takes care of generating the code to access
the runtime information denoted by the metavariables, by adding a preamble
before the inlined code. The runtime overhead due to preambles motivated us
to maintain a special syntax for metavariables (meta), to raise the attention
of users that these variables should be used conscientiously.

3.3.3 Altering Method Evaluation

To support transformation of method evaluation, method objects also sup-
port the insertBefore:, insertAfter: and replace: messages. As an example, the

4 This is a limited sort of quasi-quoting a la Scheme; supporting true quasi-quoting
(with no needs to specify manually the associations) is left as future work.

10

Operation Metavariable Description

Message Send/ <meta: #arguments> arguments as an array

Method Evaluation <meta: #argX> X thargument

<meta: #sender> sender object

<meta: #receiver> receiver object

<meta: #result> returned result (after only)

Temp/InstVar Access <meta: #value> value of variable

<meta: #newvalue> new value (write only)

Fig. 2. Metavariables supported by ByteSurgeon.

following code inserts a trace before each evaluation of a method in Example:

Example instrumentMethods:
[:m | m insertBefore: ’Logger logExec: <: #sel> ’

using: { #sel -> m selector }]

The metavariables for method evaluation are the same as for message sending
(see Figure 2). The following example uses a metavariable to access the method
evaluation result:

Example instrumentMethods:
[:m | m insertAfter: ’Logger logExec: <: #sel> result: <meta: #result>’

using: { #sel -> m selector }]

4 Inside ByteSurgeon

We now give an overview of the implementation of ByteSurgeon, in par-
ticular the relation with the closure compiler and the transformation process.
The low-level transformation API is also discussed.

4.1 Squeak

ByteSurgeon is currently implemented in Squeak [40], an open source im-
plementation of Smalltalk-80 [41]. Squeak is based on a virtual machine that
interprets bytecodes. During a normal compilation phase, method source code

11

is scanned and parsed, an abstract syntax tree (AST) is created and bytecodes
are generated for the corresponding methods (Figure 3).

Code
Generator

Scanner/
Parser

source text bytecodeAST

Fig. 3. The standard Smalltalk to bytecode compiler.

To implement ByteSurgeon in Squeak we could have directly work on byte-
code. However, rewriting bytecode is tedious and error-prone for several rea-
sons: the bytecode vocabulary is low-level, jumps have to be calculated by
hand, the expression of the context where bytecodes should be inserted is
limited. Even simple modifications are surprisingly tedious to manage. For-
tunately, a new compiler for Squeak, the closure compiler, has been recently
proposed which offers a better intermediate bytecode representation.

4.2 The Closure Compiler and its Intermediate Representation

The closure compiler [42] relies on a more complex bytecode generation step
(Figure 4): first an Intermediate Representation (IR) is created; then the IR
is used to generate the real bytecode (the raw numbers).

IRTranslatorASTranslator
AST bytecodeIRScanner/

Parser

source text

Code Generator

Fig. 4. The closure compiler.

The IR is a high-level representation of bytecode, abstracting away specific
details: jumps are encoded in a graph structure, sequences of bytecode-nodes
form a basic block, and jump-bytecodes concatenate these blocks to encode
control flow. The main goal of IR is to abstract from specific bytecode encod-
ings: for instance, although the bytecode for a program in Squeak is encoded
differently than in VisualWorks, their IR is identical. Using IR therefore makes
the porting to other bytecode sets simple.

The closure compiler has a counterpart, the decompiler, which converts byte-
code back to text. Here, the whole process works backwards: from bytecode
to IR, from IR to AST, and finally from AST to text.

As motivated in Section 2.2, ByteSurgeon ought to offer adequate abstrac-
tions for both bytecode-level and source-level transformations. The IR of the
closure compiler actually represents an excellent alternative for working at
the bytecode level: it makes it possible to express code that is not directly
obtainable from Smalltalk source code, while abstracting away many details.

12

All classes reifying instructions (recall Figure 1) are from the closure compiler
IR. The low-level transformation API of ByteSurgeon is based on these
classes. In addition to the classes reifying instructions which correspond to
language operations, the IR includes classes reifying bytecode-only instruc-
tions: IRPop, IRDup, IRJump, IRReturn, etc.

4.3 Low-level Transformation API

In Section 3, we have used the high-level API of ByteSurgeon to specify
transformations giving a string of source code, which may contain metavari-
ables to access dynamic information. The description of the new code to be
inlined can also be done by directly editing the instruction objects for the IR
hierarchy. In the following example, the selector of all sends of the message
oldMessage:with: are replaced by sends of the message newMessage:with:, by
using the selector: accessor of an IRSend object:

(Example>>#aMeth) instrumentSend: [:send | send selector = #oldMessage:with:
ifTrue: [send selector: #newMessage:with:]].

The IRInstruction class can also be used as a factory to produce new objects
describing bytecode. These objects can be used in replacement of the original
instruction or be inlined before or after it. An alternative implementation of
the code above is:

(Example>>#aMeth) instrumentSend: [:send | send selector = #oldMessage:with:
ifTrue: [send replace: (IRInstruction send: #newMessage:with:)]].

This implementation replaces the message send bytecode by a new one having
a different selector. IRInstruction send: #newMessage:with: returns an object
that describes a message send bytecode.

Specifying the transformation at the bytecode-level makes it possible to ex-
press constructs that are impossible at the level of the Smalltalk language,
and to easily specify transformations that are more complex to express with
the source-level API. For instance, using the source-level API to change the
selector of a message send, as done above, is done as follows:

(Example>>#aMeth) instrumentSend: [:send | send selector = #oldMessage:with:
ifTrue: [send replace: ’<meta: #receiver> perform: #newMessage:with:

with: <meta: #arguments> ’]].

13

Apart from being slightly more verbose and relying on the use of the reflective
message sending perform:with:, this approach requires the use of metavariables,
which are more costly due to the associated preambles that needs to be gener-
ated (as shown in Section 4.4). Conversely, the low-level API makes it possible
to do this transformation directly, without requiring runtime reification.

4.4 Implementation of Metavariables

When ByteSurgeon instruments a method, the bytecode-to-IR part of the
closure compiler generates the IR objects that are passed to the instrumen-
tation block specified by the user. If the source-level API is used, then the
code to be inserted is preprocessed to generate the IR nodes and to handle
the metavariables, if any. For metavariables, a preamble code is generated to
ensure that the expected values will be on the stack. Then, the preamble and
code are inserted into the IR of the method. Finally, the IR-to-bytecode part
of the closure compiler generates raw bytecodes and replaces the old method
with the new, transformed version.

In the following we explain the implementation of metavariables which reify
runtime information. Let us consider the reification of the receiver of a message
send.

Preambles. Squeak uses a stack-based bytecode, so all parameters for a mes-
sage send are pushed on the stack before the send bytecode is executed: first
the receiver, and then the arguments. For instance, the bytecode for the ex-
pression 3 + 4 is as follows:

77 pushConstant: 3
20 pushConstant: 4
B0 send: +
7C returnTop

Consider that we now want to provide access to the receiver (3) via a metavari-
able:

(Example>>#method) instrumentSend: [:send |
send insertBefore: ’Transcript show: <meta: #receiver> asString’].

To support metavariables, we need to add bytecode to store the necessary
values, by popping them from the stack and storing them in additional tem-
porary variables. In our example, we need the receiver. Since the receiver is
deep in the stack, below the arguments, we also need to store the arguments

14

in temporary variables, to be able to access them afterwards. In the case of
before/after, it is also necessary to rebuild the stack. The resulting bytecode
for our example is as follows:

22 pushConstant: 3
23 pushConstant: 4
68 popIntoTemp: 0 ”put argument in temp 0”
69 popIntoTemp: 1 ”put receiver in temp 1”
24 pushLit: ##Transcript ”start of inserted code”
11 pushTemp: 1 ”push receiver for printing”
D5 send: asString
E6 send: show:
87 pop ”end of inserted code”
11 pushTemp: 1 ”rebuild the stack”
10 pushTemp: 0
B0 send: + ”original code”
7C returnTop

To access all arguments as an array, the compiler generates code to create the
array instance, to add arguments to it, and to store the array in a temporary
variable.

For performance and space reasons, preamble generation needs to be opti-
mized. First, the compiler only generates code for the metavariables that are
effectively used in the inlined code. For instance, if access to the arguments
is not needed, then the array creation is avoided. The second important opti-
mization is to reuse temporary variables. Indeed, there are potentially many
operations for which we need to generate a preamble, in a single method. If we
used new temporary variables for each, we would soon run out of temporary
variables (Squeak imposes a limit of 256 temporary variables per method).
Therefore, ByteSurgeon remembers the original number of temporary vari-
ables and reuses the variables added for each preamble. This information is
saved inside the compiled method object, so that reuse of variables works even
if instrument: is executed several times on the same method.

Inlining code. Once the preamble is added, the code to inline can be in-
serted. First, the ByteSurgeon compiler generates the IR for the new code.
For metavariables, the compiler generates code that loads the corresponding
temporary variables. The generated IR instructions are then added to the
original IR of the method. If necessary, jump targets are adjusted and basic
blocks renumbered. The new method IR is then given to the closure compiler,
which generates the final raw bytecodes and installs the new method.

15

5 Validation

We now validate the interest of ByteSurgeon by showing how easy it is to
implement two language extensions: method wrappers [10] and a simple run-
time MOP for controlling accesses to instance variables. Section 5.3 completes
this validation by reporting on performance measurements.

5.1 Method Wrappers

Method wrappers [10] wrap a method with before/after behavior. Wrapping a
method is implemented by swapping out the compiled method by another one,
valueWithReceiver:arguments: that calls the before method, then the original
method, and finally the after method 5 :

MethodWrapper>>valueWithReceiver: anObject arguments: args
self beforeMethod.
ˆ [clientMethod valueWithReceiver: anObject arguments: args]

ensure: [self afterMethod]

The BSMethodWrapper class contains the logic to install an instance of itself
as a method wrapper, with empty before/after methods.

To define a wrapper, a subclass should be created, specifying the before/after
methods. For instance, class CountingMethodWrapper wraps a method to count
invocation of calls to a given method:

BSMethodWrapper subclass: #CountingMethodWrapper
instanceVariableNames: ’count’...

CountingMethodWrapper >>beforeMethod
self count: self count + 1

To count the invocations on a method, we install the wrapper:

wrapper := CountingMethodWrapper on: #aMethod inClass: Example.
wrapper install.

5 At the time of this writing, ByteSurgeon does not yet support exception han-
dlers, so we actually implemented a simplified version where the after method is
just inlined at the end of the method.

16

The installation of a method wrapper consists in first decompiling the be-
fore/after methods to IR (ir), stripping the return at the end (strip), then
replacing all self references to refer to the wrapper (replaceSelf:), and finally
inlining the before/after methods (insertBefore:after:):

BSMethodWrapper>>inlineBeforeAfter
| before after |
before := (self class lookupSelector: #beforeMethod) ir strip.
after := (self class lookupSelector: #afterMethod) ir strip.

self replaceSelf: before. self replaceSelf: after.
self method insertBefore: before startSequence after: after startSequence.

BSMethodWrapper>>replaceSelf: ir ”replace self with pointer to me”
ˆ ir allInstructions do: [:instr | instr isSelf ifTrue: [

instr replaceWith: (IRInstruction pushLiteral: self)]].

As we can see, method wrappers are straightforward to implement with Byte-
Surgeon. The complete implementation included in the distribution consists
of 41 lines of code, with comments. This implementation of method wrapper
should only serve as an example of use of ByteSurgeon, it is not meant to
be a replacement yet since not all features of method wrappers are supported.
Furthermore, as illustrated in Section 5.3, standard method wrappers and
ByteSurgeon method wrappers have different performance profiles.

5.2 A Small Runtime MOP

We now show how to implement a small runtime MOP for controlling accesses
to instance variables. A metaobject can be associated to a class, and upon
accesses to instance variables of objects from the class, it gets control via either
its instVarRead:in: method (if it is a read access) or its instVarWrite:in:value:
method (if it is a write access). For instance, the following TraceMO simply
outputs what is happening to the transcript and then performs the standard
action, i.e., returning the instance variable value, or storing the new value:

TraceMO>>instVarRead: name in: object
| val |
val := object instVarNamed: name.
Transcript show: ’var read: ’, val printString; cr.
ˆval.

TraceMO>>instVarStore: name in: object value: newVal

17

Transcript show: ’var store: ’, newVal printString; cr.
ˆobject instVarNamed: name put: newVal.

This metaobject can be installed on class Point as follows:

MOP install: TraceMO new on: Point

The MOP>>install method uses ByteSurgeon to replace the bytecodes that
read or store instance variables with calls to the metaobject (aka. hooks):

MOP class >>install: mop on: aClass
| dict |
dict := Dictionary newFrom: #mo -> mop.
aClass instrumentInstVarAccess: [:instr |

dict at: #name put: instr varname.
instr isRead
ifTrue: [instr replace: ’<: #mo> instVarRead: <: #name> in: self’

using: dict]
ifFalse: [instr replace: ’<: #mo> instVarStore: <: #name> in: self

value: <meta: #newvalue>’
using: dict]].

The dict dictionary is used to hold the reference to the metaobject controlling
accesses, and for each access instruction, the name of the variable is put in
it. This makes it possible to use user-defined variables when specifying the
transformation.

Furthermore, since ByteSurgeon supports runtime bytecode manipulation,
we are able to completely uninstall hooks when needed:

MOP uninstall: MOExample.

Of course, this simple MOP is not complete: if methods are changed (recom-
piled), the MOP is removed, there is no way to compose multiple metaobjects
on the same class, it is not possible to associate different metaobjects to dif-
ferent instances, etc. But the basic features are there: a MOP for instance
variable accesses that can be installed and retracted at runtime –and com-
pletely implemented in less than 10 lines–.

18

5.3 Benchmarks

We now report on several preliminary benchmarks 6 we have performed to
evaluate the efficiency of ByteSurgeon. First, we report on transformation
vs. compilation costs, and then study the performance of the standard imple-
mentation of method wrappers with that based on ByteSurgeon.

Transformation performance. One of the reasons for editing bytecode in-
stead of source is performance. To verify this claim, we have carried out a
simple set of benchmarks, in which we compare the time to compile some
code with both the standard compiler of Squeak and the new compiler (closure
compiler), and the time taken by ByteSurgeon to transform all instructions
in the code with an empty block. Hence what we actually measure for Byte-
Surgeon is the time it takes to decompile methods to IR, execute the block
for each instruction (which does nothing), generate a new identical method
and install it.

The first benchmark is applied to the Object class:

”Test compilers”
[Object compileAll] timeToRun

”Test ByteSurgeon”
[Object instrument: [:inst | self]] timeToRun

Class Object contains 429 methods, amounting to 2344 lines of code. We did
the same experiment on a larger code base: the whole hierarchy of collection
classes. This hierarchy consists of 76 classes, 2231 methods, summing up to
15783 lines of code. The benchmark is run as:

”Test compilers”
[Collection allSubclasses do: [:c | c compileAll]] timeToRun

”Test ByteSurgeon”
[Collection allSubclasses do: [:c | c instrument: [:inst | self]]] timeToRun

The results of both benchmarks are presented in Figure 5. As expected, Byte-
Surgeon performs very well. The highly optimized standard compiler is ap-
proximately twice slower than ByteSurgeon, while the new compiler, which
is much easier to reuse and extend but less optimized, is around 6 times slower.

Method wrapper performance. We now compare the performance of the

6 Machine used: Apple PowerBook 1.5Ghz, Squeak 3.8

19

Object Collections

time (ms) factor time (ms) factor

ByteSurgeon 661 1 4817 1

standard compiler 1232 1.86 9760 2.03

closure compiler 3673 5.55 33611 6.98

Fig. 5. Comparing compilation and transformation times.

standard implementation of method wrappers with that based on Byte-
Surgeon. We compare both installation (transformation) time and execution
time.

The test consists of a simple before/after counter manipulation wrapping a
straightforward method:

Bench>>run beforeMethod afterMethod
ˆ 3+4. BCounter inc BCounter inc

The benchmark of the installation/uninstallation is run as follows:

[1000 timesRepeat: [
w := TestMethodWrapper on: #run inClass: Bench.
w install. w uninstall]] timeToRun

The runtime performance of both implementations is compared to that of
method that directly implements the wrapper:

Bench>>run
| t |
BCounter inc.
t := 3+4.
BCounter inc.
ˆt.

To be fair in our evaluation, we changed the execution semantics of standard
method wrappers, so that they do not wrap the after in an exception handler,
but rather inline both before and after methods. The benchmark for both
cases is run as follows:

[1000000 timesRepeat: [Bench new run]] timeToRun

The results of the benchmarks (Figure 6) show that ByteSurgeon is slower

20

Method Wrapper Installation Runtime

implementation time (ms) factor time (ms) factor

Hand-coded – – 1253 1

Standard 603 1 6732 5.37

ByteSurgeon 3710 6.01 1222 0.98

Fig. 6. Comparing installation and runtime performance of method wrapper imple-
mentations.

for installing wrappers. This was expected because method wrappers actu-
ally simply swap the wrapped compiled method with the wrapper one, while
ByteSurgeon actually modifies the original method. The other side of the
coin is that ByteSurgeon-based method wrappers are much more efficient
at runtime. Standard method wrappers are 3.5 times slower than the hand-
coded version, while the ByteSurgeon implementation is as fast as the
hand-coded version. The slight enhancement that can be observed comes from
the fact that, in the considered case, ByteSurgeon does not need to use a
temporary variable to store the return value, it just uses the stack.

6 Conclusion and Future Work

We have presented ByteSurgeon, an efficient library for runtime bytecode
manipulation in Smalltalk, implemented in Squeak. We have shown:

• APIs for specifying transformations that allow users to control the tradeoff
between expressiveness and performance for the code to be inlined: Byte-
Surgeon users can either specify Smalltalk code with metavariables or
specify the code at the bytecode level.
• the expressiveness of ByteSurgeon by showing how well-known language

extensions are concisely expressed, and reported on preliminary benchmarks
validating our efficiency claim.
• the runtime capabilities of ByteSurgeon with a simple MOP that can be

dynamically installed and retracted. Such runtime changes are not feasible
in a static system like Java without changing the virtual machine.

Future work can be dividing in two directions: the first is to continue improving
ByteSurgeon as such, and the second consists in using ByteSurgeon in a
number of projects that will directly benefit from its features. Of course, both
tracks mutually benefit from each other.

Regarding ByteSurgeon itself, there is a number of features that are being
discussed at this time. In particular, ByteSurgeon should be extended with

21

support for exception handling. It is also appealing to offer a kind of pro-
ceed instruction to trigger the execution of a replaced operation occurrence
from inside the metacomputation. Another direction to explore is that of the
abstraction layer used to describe a method. As of now we use a bytecode rep-
resentation, but it would be interesting to explore the direct use of abstract
syntax trees at this level. The choice between AST and bytecode presents a
tradeoff between performance and expressiveness: decompiling to AST and
code-generation will be slower than using the the bytecode-level abstractions
of the IR, but in turn we gain a lot in expressiveness and ease of use, since
AST is more structured than IR. We plan to explore these tradeoffs in the
future.

As regards applications of ByteSurgeon in other projects, the perspectives
are manifold. We plan to use ByteSurgeon for code annotation to collect
runtime traces of program execution to support omniscient debugging [11].
Reflex is a system based on bytecode transformation providing partial behav-
ioral reflection in Java [43]. It has recently evolved to a versatile kernel for
multi-language AOP [44], easing the implementation of (domain-specific) as-
pect languages and providing support for the detection and resolution of aspect
interactions. The on-going Geppetto project aims at exploring the possibili-
ties offered by an implementation of Reflex in Squeak, using ByteSurgeon,
enjoying the flexibility of true runtime code transformation.

Acknowledgements. We thank David Röthlisberger and the anonymous re-
viewers for their comments.

References

[1] R. Keller, U. Hölzle, Binary component adaptation, in: ECOOP’98, LNCS 1445,
1998, pp. 307–340.

[2] D. L. Parnas, On the criteria to be used in decomposing systems into modules,
CACM 15 (12) (1972) 1053–1058.

[3] R. Stroud, Z. Wue, Using metaobject protocols to satisfy non-functional
requirements, in: Advances in Object-Oriented Metalevel Architectures and
Reflection, CRC Press, 1996, pp. 31–52.

[4] É. Tanter, J. Piquer, Managing references upon object migration: Applying
separation of concerns, in: Proceedings of the XXI International Conference of
the Chilean Computer Science Society (SCCC 2001) (jan 2001).

[5] J. McAffer, Meta-level architecture support for distributed objects, in:
Proceesings of the Fourth International Workshop on Object-Orientation in
Operating Systems, 1995., 1995, pp. 232–241.

22

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-Oriented Programming, in: M. Aksit, S. Matsuoka (Eds.),
Proceedings ECOOP ’97, Vol. 1241 of LNCS, Springer-Verlag, Jyvaskyla,
Finland, 1997, pp. 220–242.

[7] S. Ducasse, Evaluating message passing control techniques in Smalltalk, Journal
of Object-Oriented Programming (JOOP) 12 (6) (1999) 39–44.

[8] J. H. Heinz-Dieter Bocker, What tracers are made of, in: Proceedings of
OOPSLA/ECOOP ’90, 1990, pp. 89–99.

[9] F. Pachet, F. Wolinski, S. Giroux, Spying as an Object-Oriented Programming
Paradigm, in: Proceedings of TOOLS EUROPE ’93, 1993, pp. 109–118.

[10] J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the Rescue, in:
Proceedings ECOOP ’98, Vol. 1445 of LNCS, Springer-Verlag, 1998, pp. 396–
417.

[11] B. Lewis, Debugging backwards in time, in: Proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG 2003) (oct
2003).

[12] A. J. Ko, B. A. Myers, Designing the whyline: a debugging interface for
asking questions about program behavior, in: Proceedings of ACM CHI 2004
Conference on Human Factors in Computing Systems, Vol. 1, 2004, pp. 151–158.

[13] A. H. Borning, D. H. Ingalls, Multiple inheritance in Smalltalk-80, in:
Proceedings at the National Conference on AI, Pittsburgh, PA, 1982, pp. 234–
237.

[14] B. Garbinato, R. Guerraoui, K. R. Mazouni, Distributed programming in
GARF, in: R. Guerraoui, O. Nierstrasz, M. Riveill (Eds.), Proceedings of the
ECOOP ’93 Workshop on Object-Based Distributed Programming, Vol. 791 of
LNCS, Springer-Verlag, 1994, pp. 225–239.

[15] J. K. Bennett, The design and implementation of distributed Smalltalk, in:
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 318–
330.

[16] P. L. McCullough, Transparent forwarding: First steps, in: Proceedings
OOPSLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 331–341.

[17] K. Beck, Instance specific behavior: Digitalk implementation and the deep
meaning of it all, Smalltalk Report 2(7).

[18] J.-P. Briot, Actalk: A testbed for classifying and designing actor languages
in the Smalltalk-80 environment, in: S. Cook (Ed.), Proceedings ECOOP ’89,
Cambridge University Press, Nottingham, 1989, pp. 109–129.

[19] Y. Yokote, M. Tokoro, Experience and evolution of ConcurrentSmalltalk, in:
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 406–
415.

23

[20] G. A. Pascoe, Encapsulators: A new software paradigm in Smalltalk-80, in:
Proceedings OOPSLA ’86, ACM SIGPLAN Notices, Vol. 21, 1986, pp. 341–
346.

[21] B. Foote, R. E. Johnson, Reflective facilities in Smalltalk-80, in: Proceedings
OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 327–336.

[22] J. McAffer, Meta-level programming with coda, in: W. Olthoff (Ed.),
Proceedings ECOOP ’95, Vol. 952 of LNCS, Springer-Verlag, Aarhus, Denmark,
1995, pp. 190–214.

[23] W. R. LaLonde, M. V. Gulik, Building a backtracking facility in Smalltalk
without kernel support, in: Proceedings OOPSLA ’88, ACM SIGPLAN Notices,
Vol. 23, 1988, pp. 105–122.

[24] G. Kiczales, J. des Rivières, D. G. Bobrow, The Art of the Metaobject Protocol,
MIT Press, 1991.

[25] É. Tanter, M. Ségura-Devillechaise, J. Noyé, J. Piquer, Altering Java semantics
via bytecode manipulation, in: Proceedings of GPCE’02, Vol. 2487 of LNCS,
Springer-Verlag, 2002, pp. 283–89.

[26] M. Tatsubori, S. Chiba, M.-O. Killijian, K. Itano, OpenJava: A class-based
macro system for java, in: 1st OOPSLA Workshop on Reflection and Software
Engineering, Vol. 1826 of LNCS, Springer Verlag, 2000, pp. 117–133.

[27] J. Bachrach, K. Playford, The Java Syntactic Extender (JSE), Proceedings of
OOPSLA ’01, ACM SIGPLAN Notices 36 (11) (2001) 31–42.

[28] M. Dahm, Byte code engineering, in: Proceedings of JIT ’99, Düsseldorf,
Deutschland, 1999, pp. 267–277.

[29] S. Chiba, M. Nishizawa, An easy-to-use toolkit for efficient Java bytecode
translators, in: Proceedings of GPCE’03, Vol. 2830 of LNCS, 2003, pp. 364–
376.

[30] D. A. Smith, A. Kay, A. Raab, D. P. Reed, Croquet, A Collaboration System
Architecture, in: Proceedings of the First Conference on Creating, Connecting
and Collaborating through Computing (2003).

[31] Jython, http://www.jython.org/.

[32] Java debug interface (jdi),
http://java.sun.com/j2se/1.4.2/docs/jguide/jpda/jarchitecture.html.

[33] S. Liang, G. Bracha, Dynamic class loading in the Java virtual machine, in:
Proceedings of OOPSLA ’98, ACM SIGPLAN Notices, 1998, pp. 36–44.

[34] E. Bruneton, R. Lenglet, T. Coupaye, ASM: A code manipulation tool to
implement adaptable systems, in: Proceedings of Adaptable and extensible
component systems (nov 2002).

[35] S. Chiba, Load-time structural reflection in Java, in: Proceedings of ECOOP
2000, Vol. 1850 of LNCS, 2000, pp. 313–336.

24

[36] E. Miranda, A Sketch for an Adaptive Optimizer for Smalltalk written in
Smalltalk, unpublished (2002).

[37] R. Hirschfeld, AspectS – Aspect-Oriented Programming with Squeak, in:
M. Aksit, M. Mezini, R. Unland (Eds.), Objects, Components, Architectures,
Services, and Applications for a Networked World, no. 2591 in LNCS, Springer,
2003, pp. 216–232.

[38] F. Rivard, Smalltalk : a Reflective Language, in: Proceedings of REFLECTION
’96, 1996, pp. 21–38.

[39] J. Ferber, Computational reflection in class-based object-oriented languages, in:
Proceedings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 317–326.

[40] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future:
The story of Squeak, A practical Smalltalk written in itself, in: Proceedings
OOPSLA ’97, ACM SIGPLAN Notices, ACM Press, 1997, pp. 318–326.

[41] A. Goldberg, D. Robson, Smalltalk 80: the Language and its Implementation,
Addison Wesley, Reading, Mass., 1983.

[42] A. Hannan, Squeak Closure Compiler,
http://minnow.cc.gatech.edu/squeak/ClosureCompiler.

[43] É. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial behavioral reflection: Spatial
and temporal selection of reification, in: Proceedings of OOPSLA ’03, ACM
SIGPLAN Notices, 2003, pp. 27–46.

[44] É. Tanter, J. Noyé, A versatile kernel for multi-language AOP, in: Proceedings
of the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE 2005), Vol. 3676 of LNCS, Tallin, Estonia,
2005.

25

