A Pattern Language for Reverse Engineering

A revised version of these patterns is published in: Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz
Object-Oriented Reengineering Patterns, Morgan-Kaufman, 2002.
http://ww. i am uni be. ch/ ~scg/ OORP/

Serge Demeyer, Stéphane Ducasse and Sander Tichelaar * 2
Software Composition Group, Institut fir Informatik (IAM)
Universitét Bern, Neubriickstrasse 10, CH-3012 Berne, Switzerland
{deneyer, ducasse, ti chel }@ am uni be. ch
http://ww.iam uni be.ch/ ~scg/

Abstract. This pattern language describes how to reverse engineer an object-oriented soft-
ware system. Since the only way to achieve a truly reusable object-oriented design is recog-
nised to be iterative development, reverse engineering is indeed an essential facet of any
object-oriented development process. The pattern language itself covers the different phases
one encounters when reverse engineering a large software system: from being unfamiliar
with a software system up untill preparations for actual reengineering.

What you read here is a short version of a complete pattern language. We present only five
patterns in full detail and include a summary for the remaining patterns.

Patterns for Reverse Engineering

This pattern language describes how to reverse engineer an object-oriented software system. Reverse engineer-
ing might seem a bit strange in the context of object-oriented development, as this term is usually associated
with “legacy” systems written in languages like COBOL and Fortran. Yet, reverse engineering is very relevant
in the context of object-oriented development as well, because the only way to achieve a truly reusable object-
oriented design is recognized to be iterative development (see [Boo94], [GR95], [JGJ97], [Ree96]). Iterative
development involves refactoring existing designs and consequently, reverse engineering is an essential facet
of any object-oriented development process.

The patterns have been developed and applied during the FAMOOS project [http://www.iam.unibe.ch/
~famoos/]; a project whose goal is to produce a set of re-engineering techniques and tools to support the
development of object-oriented frameworks. Many if not all of the patterns have been applied on software
systems provided by the industrial partners in the project (i.e., Nokia and Daimler-Chrysler). These systems
ranged from 50.000 lines of C++ up until 2,5 million lines of Ada. Where appropriate, we refer to other known
uses we were aware of while writing.

In its current state, the pattern language can still be improved and we welcome all kinds of feedback that
would help us do that. We are especially interested in course grained comments —does the structure work? is
the set of forces complete? is the naming OK ?— rather than detailed comments on punctuation, spelling and
lay-out.

Acknowledgments. We would like to thank our EuroPLoP’99 shepherd Kyle Brown: his comments were so
good we considered including him as a co-author. We also want to thank both Kent Beck and Charles Weir
who shepherded a very rough draft of what you hold right now. Finally, we must thank all participants of the
FAMOOS project for providing such fruitful working context.

1This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and BBW-96.0015 as well as by the
European Union under the ESPRIT programme Project no. 21975.
2permission is hereby granted to copy and distribute this paper for the purposes of the EuroPLoP *99 conference proceedings.

Clusters of Patterns

The pattern language itself has been divided into clusters where each cluster groups a number of patterns
addressing a similar reverse engineering situation. The clusters correspond roughly to the different phases one
encounters when reverse engineering a large software system. Figure 1 provides a road map and below you
will find a short description for each of the clusters.

Interview During Demo
Read All The Code In One Hour First Contact

Skim The Documentation

Check The Database Extract Architecture

Check Method Invocations

— | Focus on Hot Areas|

Visualize the Structure

Understanding of the Application

Inspect the Largest

Refactor to Understand

Exploit the Changes

Step Through the Executiol

Focus by Wrapping
Write the Tests

Build Prototype

Resources spent

Figure 1: Overview of the pattern language using clusters.

First Contact. This cluster groups patterns telling you what to do when you have your very first contact with
the software system.

Extract Architecture. Here, the patterns tell you how to get to the architecture out of a system. This knowl-
edge will serve as a blueprint for the rest of the reverse engineering project.

Identify Hot Places. The patterns in this cluster describe how to get a detailed understanding of a particular
component in your software system.

Prepare Reengineering. Since reverse engineering often goes together with reengineering, this cluster in-
cludes some patterns that help you prepare subsequent reengineering steps.

Overview of Forces

All the patterns in this pattern language tell you how to address a typical reverse engineering problem. To
evaluate the situation before and after applying the pattern we introduce a number of forces. The forces are
meant to help you assessing whether the pattern is appropriate for your particular situation.

Limited Resources. Because your resources are limited you must select which parts of the system to reverse
engineer first. However, if you select the wrong parts, you will have wasted some of your precious
resources. In general the less resources you need to apply, the better.

Toolsand Techniques. For reverse engineering large scale systems, you need to apply techniques probably
accompanied with tools. However, techniques and tools shape your thoughts and good reverse engineer-
ing, requires an unbiased opinion. Also, techniques and tools do require resources which you might not
be willing to spend. In general, the less techniques and tools required, the better.

Reliable Info. A reverse engineer is much like a detective that solves a mystery from the scarce clues that are
available [WC96]. As with all good detective stories, the different clues and testimonies contradict each
other, thus your challenge is to assess which information is reliable and solve the mystery by coming up
with the most plausible scenario. In general, the more reliable the information you get, the better.

Abstraction. The whole idea of understanding the inner complexities of a software system is to construct
mental models of portions of it, thus a process of abstraction. Consequently, the reengineering taxonomy
of Chikofsky and Cross [CCI90], defines reverse engineering as "the process of analyzing a subject
system to [...] create representations of the system [...] at a higher level of abstraction”. Of course,
the target level of abstraction for your particular reverse engineering step depends very much on the
subsequent demands and so you don’t want to get too abstract. Still in general, the more abstract the
information obtained, the better.

Sceptic Colleagues. As a reverse engineer, you must deal with three kinds of colleagues. The first category
are the faithful, the people who believe that reverse engineering is necessary and who thrust that you are
able to do it. The second is the category of sceptic, who believe this reverse engineering of yours is just a
waste of time and that its better to start the whole project from scratch. The third category is the category
of fence sitters, who do not have a strong opinion on whether this reverse engineering will pay off, so
they just wait and see what happens. To save your reverse engineering from ending up in the waste bag,
you must keep convincing the faithful, gain credit with the fence sitters and be wary of the sceptic. In
general, the more credibility you gain, the better.

Format of a Reverse Engineering Pattern

The pattern presented hereafter have the following format.

Name. Names the pattern after the solution it proposes. The pattern names are verb phrases to stress the action
implied in applying them.

Intent. Summarizes the purpose of the pattern, including a clarifying Example on when and how to apply the
pattern.

Context. Presents the context in which the pattern is supposed to be applied. You may read this section as the
prerequisites that should be satisfied before applying the pattern.

Problem. Describes the problem the pattern is supposed to solve. Note that the prerequisites defined in the
"Context’ section are supposed to narrow the scope of the problem, so readers are encouraged to read
both sections together.

Solution. Proposes a solution to the problem that is applicable in the given context. This section may include
a Recipe or a list of Hints and Variations to be taken in account when applying the solution.

Forces Resolved. Describes the situation after applying the pattern. This description is done in terms of the
forces.

Rationale. Explains the technical background of the pattern, i.e. why it works.

Known Uses. Presents the know uses of this pattern. Note that all patterns in this pattern language have been
developed and applied in the context of the FAMOOS project. Yet, this section presents other reported
uses of the pattern we were aware of while writing the pattern.

Related Patterns. Links the pattern in a web of other patterns, explaining how the patterns work together to
achieve the global goal of reverse engineering. The section includes a Resulting Context which tells you
how you may use the output of this pattern as input for another one.

CLUSTER: FIRST CONTACT

All the reverse engineering patterns in this cluster are applicable in the very early stage of a reverse engineering
project when you are largely unfamiliar with the software system. Before tackling such a project, you need
an initial assessment of the software system. However, accomplishing a good initial assessment is difficult
because you need a quick and accurate result.

The patterns in this cluster tell you how to optimally exploit information resources like source code (READ
ALL THE CoDE IN ONE HOUR), documentation (SKIM THE DOCUMENTATION) and system experts (INTER-
VIEW DURING DEMO). The order in which you apply them depends mainly on your project and we refer you
to the ““Related Patterns™ section in each pattern for a discussion on the trade-offs involved. Afterwards you
will probably want to CONFER WITH COLLEAGUES and then proceed with EXTRACT ARCHITECTURE.

Forces Revisited

Limited Resources. Wasting time early on in the project has severe consequences later on. Consequently,
time is the most precious resource in the beginning of a reverse engineering project. This is especially
relevant because in the beginning of a project you feel a bit uncertain and then it is tempting to start an
activity that will keep you busy for a while, instead of something that confronts you immediately with
the problems to address.

Toolsand Techniques. In the beginning of a reverse engineering project, you are in a bootstrapping situation;
you must decide which techniques and tools to apply but you lack a profound basis to make such a
decision. Consequently, choose very simple techniques and very basic tools, deferring complex but time
consuming activities until later.

Reliable Info. Because you are unfamiliar with the system, it is difficult to assess which information is reliable.
Consequently, base your opinion on certified information but complement it using supplementary but less
reliable information sources.

Abstraction. At the beginning of the project you can not afford to be overwhelmed by too many details.
Consequently, favor techniques and tools that provide you with a general overview.

Sceptic Colleagues. This force is often reinforced in the beginning of a reverse engineering project, because
as a reverse engineer —or worse, a consultant— there is a good chance that you are a newcomer in a
project team. Consequently, pay attention to the way you communicate with your colleagues as the first
impression will have dire consequences later.

[72]
S
e T 3
°| S >
=] g I
21 @ | e R
i s |=|=|0
S| S| | S| o
S, |2 8|S
= K2 [~ = o
e o = g I
— o O] [&]
d | Fle|<|lwn
READ ALL THE CODE IN ONE HOUR | ++ | ++ | + | - +
SKIM THE DOCUMENTATION ++ | ++ | -
INTERVIEW DURING DEMO ++ + | 0|+ | -

Table 1: How each pattern of FIRST CONTACT resolves the forces. Very good: ++, Good: +, Neutral: 0, Rather
Bad: -, Very bad: - -

READ ALL THE CODE IN ONE HOUR

| ntent

Make an initial evaluation of the condition of a software system by walking through its source code in a limited
amount of time.

Example. You are facing a 500 K lines C++ program, implementing a software system to display
multi-media information in real time. Your boss asks you to look how much of the source code
can be resurrected for another project. Before actually identifying what may be reused, you will
leaf through the source code to get a feeling for its condition.

Context

You are starting a reverse engineering project of a large and unfamiliar software system. You have the source
code at your disposal and you have reasonable expertise with the implementation language being used.

Problem

You need an initial assessment of the internal state a software system to plan further reverse engineering efforts.

Solution

Take the source code to a room where you can work undisturbed (no telephones, no noisy colleagues). Grant
yourself a reasonably short amount of study time (i.e., approximately one hour) to walk through the source
code. Take notes sparingly to maximize the contact with the code.

After this reading time, take about the same time to produce a report about your findings, including list of (i)
the important entities (i.e., classes, packages, ...); (ii) the coding idioms applied (i.e., C++ [Cop92], [Mey98],
[Mey96]; Smalltalk [Bec97]); and (iii) the suspicious coding styles discovered (i.e., “code smells” [Fow99]).
Keep this report short, and name the entities like they are mentioned in the source code.

Hints. The fact that you are limited in time should force you to think how you can extract the most useful
information. Below are some hints for things to look out for.

o Functional tests or units tests convey important information about the functionality of a software system.
o Abstract classes and methods reveal design intentions.

o Classes high in the hierarchy often define domain abstractions; their subclasses introduce variations on a
theme.

e Occurrences of the Singleton pattern [GHJV95] may represent information that is constant for every
complete execution of a system.

e Surprisingly large constructs often specify important chunks of functionality that should be executed
sequentially.

o Some development teams apply coding styles and if they did, it is good to be aware of them. Especially
naming conventions are crucial to scan code quickly.

For ces Resolved

Limited Resources. By applying this pattern, you spend 1/2 a day (plus the time to collect the source code) to
end up with a short list that is a reasonable basis for planning further reengineering efforts.

Toolsand Techniques. Good source code browsers can speed you up and inheritance hierarchy browsers can
give you a feel for the structure of a software system. However, be wary of fancy tools as they quickly
overwhelm you with too much unnecessary information and may require a lot of time to configure cor-
rectly. Printing out the source code and reading a paper version may serve just as well.

Reliable Info. The concentrated contact with the code —and code is the only testimony you are sure is correct®-
provides you with a rather unbiased view to start with. Moreover, by applying this pattern —especially in
combination with SKiMm THE DOCUMENTATION- you may already have encountered some contradicting
pieces of information, which is definitely worthwhile to explore in further depth.

Abstraction. The information you get out is fairly close to the source code, consequently the abstraction level
is quite low. However the fact that you work under time pressure forces you to skip details driving you
towards an abstract view of the software system.

Sceptic Colleagues. The mere effect of asking quite precise questions after only 1/2 a day of effort raises your
credit tremendously, usually enough for being allowed to continue your attempts.

Rationale

Reading the code in a short amount of time is very efficient as a starter. Indeed, by limiting the time and yet
forcing yourself to look at all the code, you mainly use your brain and coding expertise to filter out what seems
important. This is a lot more efficient than extracting human readable representations or organizing a meeting
with all the programmers involved.

Moreover, by reading the code directly you get an unbiased view of the software system including a sense
for the details and a glimpse on the kind of problems you are facing. Because the source code describes the
functionality of the system —no more, no less- it is the only reliable source of information. Be careful though

3Remember the old Swiss saying: ”If the map and the terrain disagree, trust the terrain”

with comments in the code. Comment can help you in understanding what a piece of software is supposed to
do. However, just like other kinds of documentation, comments can be outdated, obsolete or simply wrong.

Finally, acquiring the vocabulary used inside the software system is essential to understand it and commu-
nicate about it with other developers. This pattern helps to acquire such a vocabulary.

Known Uses

While writing this pattern, one of our team members applied it to reverse engineer the Refactoring Browser
[RBJ97]. The person was not familiar with Smalltalk, yet was able to identify code smells such as “Large
Constructs” and “Duplicated Code”. Even without Smalltalk experience it was possible to get a feel for the
system structure by a mere inspection of class interfaces. Also, a special hierarchy browser did help to identify
some of the main classes and the comments provided some useful hints to what parts of the code were supposed
to do. Applying the pattern took a bit more than an hour, which seemed enough for a relatively small system
and slow progress due to the unfamiliarity with Smalltalk.

The original pattern was suggested by Kent Beck, who stated that it is one of the techniques he always
applies when starting consultancy on an existing project. Since then, other people have acknowledged that it is
one of their common practices.

Related Patterns

If possible, READ ALL THE CODE IN ONE HOUR in conjunction with SKIM THE DOCUMENTATION to
maximize your chances of getting a coherent view of the system. To guide your reading, you may precede this
pattern with INTERVIEW DURING DEMO, but then you should be aware that this will bias your opinion.

Resulting Context. This pattern results in a list of (i) the important entities (i.e., classes, packages, ...); (ii)
the presence of standard coding idioms and (iii) the suspicious coding styles discovered. This is enough to
start GUESS OBJECTS and CHECK THE DATABASE to improve the list of important entities. Depending on
whether you want to wait for the results of SKim THE DOCUMENTATION, you should consider to CONFER
WITH COLLEAGUES.

SKIM THE DOCUMENTATION

| ntent

Make an initial guess at the functionality of a software system by reading its documentation in a limited amount
of time.

Example. You must develop a geographical information system. Your company has once been
involved in a similar project, and your boss asks you to check if some of the design of this previous
project can be reused. Before doing any design extraction on the source code, you will skim the
documentation to see how close this other system is to what you are expected to deliver.

Context

You are starting a reverse engineering project of a large and unfamiliar software system. You have the doc-
umentation at your disposal and you are able to interpret the diagrams and formal specifications contained
within.

Example. If the documentation relies on use cases (see [JGJ97]) for recording scenarios or
formal languages for describing protocols, you should be able to understand the implications of
such specifications.

Problem

You need an initial idea of the functionality provided by the software system in order to plan further reverse
engineering efforts.

Solution

Take the documentation to a room where you can work undisturbed (no telephones, no noisy colleagues).
Grant yourself a reasonably short amount of study time (i.e., approximately one hour) to scan through the
documentation. Take notes sparingly to maximize the contact with the documentation.

After this reading time, take about the same time to produce a report about your findings, including a list
of (i) the important requirements; (ii) the important features (iii); the important constraints; (iv) references to
relevant design information. Include your opinion on how reliable and useful each of these are. Keep this
report as short as possible and avoid redundancy at all cost (among others, use references to sections and/or
page numbers in the documentation).

Depending on the goal of the reverse engineering project and the kind of documentation you have at your
disposal, you may steer the reading process to match your main interest. For instance, if you want insight into
the original system requirements then you should look inside the analysis documentation, while knowledge
about which features are actually implemented should be collected from the end-user manual or tutorial notes.
If you have the luxury of choice, avoid spending too much time to understand the design documentation (i.e.,
class diagrams, database schema’s, ...): rather record the presence and reliability of such documents as this will
be of great help in later stages of the reverse engineering.

Be aware for documentation that is outdated with respect to the actual system. Always compare version
dates with the date of delivery of the system and make note of those parts that you suspect unreliable.

Avoid to read the documentation electronically if you are not sure to gain significant browsing functionality
(e.g., hypertext links in HTML or PDF). This way you will not spend times with versions, file format and
platform issues that certain word processors and CASE tools do not succeed to address.

Hints. The fact that you are limited in time should force you to think how you can extract the most useful
information. Below are some hints for things to look out for.

o A table of contents gives you a quick overview of the structure and the information presented.
e \ersion numbers and dates tell you how up to date the documentation is.
o References to other parts of the documentation convey chronological dependencies.

o Figures are a always a good means to communicate information. A list of figures, if present, may provide
a quick path through the documentation.

e Screen-dumps, sample print-outs, sample reports, command descriptions, reveal a lot about the function-
ality provided in the system.

o Formal specifications, if present, usually correspond with crucial functionality.

o An index, if present contains the terms the author deems significant.

For ces Resolved

Limited Resources. By applying this pattern, you spend 1/2 a day (plus the time to collect the documentation)
to end up with a short list that is a reasonable basis for planning further reengineering efforts.

Toolsand Techniques. As reading the documentation only requires the physical document, the tool inter-
ference is really low. Yet, when CASE tools have been applied, it may be necessary to consult the
documentation on line. Note that CASE tools often enforce some documentation conventions so be sure
to be aware of them.

No special techniques are necessary to apply this pattern, unless formal specification or special diagrams
are used.

Reliable Info. The success of this pattern depends heavily on the quality of the documentation. Applying this
pattern (especially combined with READ ALL THE CODE IN ONE HOUR), you may have encountered
some contradicting pieces of information, which is definitely worthwhile to explore in further depth.

Abstraction. The abstraction level you get out depends largely on the abstraction level of the available docu-
mentation, but is usually quite high because documentation is supposed to be written at a certain abstrac-
tion level.

Sceptic Colleagues. Unless good documentation is available, sceptics will almost certainly consider this ac-
tivity a waste of time and you will probably loose some credibility with the faithful and fence sitters.
This is a negative effect, so reduce its potential impact by limiting the time spend here.

Rationale

Knowing what functionality is provided by the system is essential for reverse engineering. Documentation
provides an excellent means to get an external description of this functionality.

However, documentation is either written before or after implementation, thus likely to be out of sync with
respect to the actual software system. Therefore, it is necessary to record the reliability. Moreover, documenta-
tion comes in different kinds, i.e. requirement documents, technical documentation, end-user manuals, tutorial
notes. Depending on the goal of your reengineering project, you will record the usability of each of these
documents. Finally, documentation may contain large volumes of information thus reading is time consuming.
By limiting the time you spend on it, you force yourself to classify the pieces of information into the essential
and the less important.

Related Patterns

You may or may not want to SKIM THE DOCUMENTATION before READ ALL THE CODE IN ONE HOUR
depending on whether you want to keep your mind free or whether you want some subjective input before
reading the code. INTERVIEW DURING DEMO can help you to collect a list of entities you want to read about
in the documentation.

Resulting Context. This pattern results in a list of (i) the important requirements; (ii) the important features
(iii); the important constraints; (iv) references to relevant design information plus an opinion on how reliable
and useful each of these are. Together with the result of READ ALL THE CODE IN ONE HOUR and SKIM
THE DOCUMENTATION this is a good basis to CONFER WITH COLLEAGUES and then proceed with GUESS
OBJECTS and CHECK THE DATABASE.

INTERVIEW DURING DEMO

| ntent

Obtain aninitial feeling for the functionality of a software system by seeing a demo and interviewing the person
giving the demo.

Example. You are asked to extend an existing database application so that it is now accessible
via the world-wide web. To understand how the end-users interact with the application, you will
ask one of the current users to show you the application and use that opportunity to chat about the
systems user-interface. And to understand some of the technical constraints, you will also ask one
of the system maintainers to give you a demo and discuss about the application architecture.

Context

You are starting a reverse engineering project of a large and unfamiliar software system. You have found
somebody to demonstrate the system and explain its usage.

Problem

You need an idea of the typical usage scenario’s plus the main features of a software system in order to plan
further reverse engineering efforts.

Solution

Observe the system in operation by seeing a demo and interviewing the person who is demonstrating. Note that
the interviewing part is at least as enlightening as the demo.

After this demo, take about the same time to produce a report about your findings, including (i) some typical
usage scenarios or use cases; (ii) the main features offered by the system and whether they are appreciated or
not; (iii) the system components and their responsibilities; (iv) bizarre anecdotes that reveal the folklore around
using the system.

Hints. The person who is giving the demo is crucial to the outcome of this pattern so care is demanded
when selecting the person. Therefore, consider to apply this pattern several times with different kinds of
persons giving the demo. This way you will see variances in what people find important and you will hear
different opinions about the value of the software system. Always be wary of enthusiastic supporters or fervent
opponents: although they will certainly provide relevant information, you must spend extra time to look for
complementary opinions in order to avoid prejudices.

Below are some hints concerning people you should be looking for, what kind of information you may
expect from them and what kind of questions you should ask them.

o An end-user should tell you how the system looks like from the outside and explain you some detailed
usage scenarios based on the daily working practices. Ask about the situation in the company before the
software system was introduced to assess the scope of the software system within the business processes.
Probe for the relationship with the computer department to divulge bizarre anecdotes.

o A person from the maintenance/development team should clarify the main requirements and architecture
of a system. Inquire how the system has evolved since delivery to reveal some of the knowledge that is
passed on orally between the maintainers. Ask for samples of bug reports and change requests to assess
the thoroughness of the maintenance process.

o A manager should inform you how the system fits within the rest of the business domain. Ask about the
business processes around the system to check for unspoken motives concerning your reverse engineering
project. This is important as reverse engineering is rarely a goal in itself, it is just a means to achieve
another goal.

For ces Resolved

Limited Resources. By applying this pattern, you spend 1/2 a day (plus the time to set-up the demo) to end
up with a short list that is a reasonable basis for planning further reengineering efforts.

Toolsand Techniques. Except for the equipment necessary to run the software system —which should be read-
ily available- this pattern does not require anything special. The interviewing technique to apply requires
a special listening ear though.

Reliable Info. A demo is a reliable means to dig out what features are considered important, but you cannot
trust on it to omit irrelevant features. Of course the reliability of the information obtained depends largely
on the person who is giving the demo. Therefore, if possibly cross-check any information against other
more reliable sources (requirements, progress and delivery reports, source code, log files, ...).

Abstraction. The abstraction level achieved by seeing a demo is quite abstract, though it depends on the person
who is giving a demo.

Sceptic Colleagues. The users and maintainers of a software system are usually quite eager to show you the
system and tell you what they like and dislike about it. If you have a good listening ear this is a good
way to boost your credibility.

Rationale

Interviewing people working with a software system is essential to get a handle on the important functionality
and the typical usage scenario’s. However, asking predefined questions does not work, because in the initial
phases of reverse engineering you do not know what to ask. Merely asking what people like about a system
will result in vague or meaningless answers. On top of that, you risk getting a very negative picture because
people have a tendency to complain.

Therefore, hand over the initiative to the user by requesting for a demo. First of all, a demo allows users to
tell the story in their own words, yet is comprehensible for you because the demo imposes some kind of tangible
structure. Second, because users must start from a running system, they will adopt a more positive attitude
explaining you what works. Finally, during the course of the demo, you can ask lots of precise questions,
getting lots of precise answers, this way digging out the expert knowledge about the system’s usage.

Known Uses

One anecdote from the very beginning of the FAMOOS project provides a very good example for the potential
of this pattern. For one of the case studies —a typical example of a 3-tiered application with a database layer,
domain objects layer and user-interface layer— we were asked ’to get the business objects out’. Two separate
individuals were set to that task, one took a source code browser and a CASE tool and extracted some class
diagrams that represented those business objects. The other installed the system on his local PC and spend
about an hour playing around with the user interface to came up with a list of ten questions about some strange
observations he made. Afterwards, a meeting was organized with the chief analyst-designer of the system and
the two individuals that tried to reverse engineer the system. When the analyst-designer was confronted with
the class-diagrams he confirmed that these covered part of his design, but he couldn’t tell us what was missing

nor did he tell us anything about the rationale behind his design. It was only when we asked him the ten
questions that he launched off into a very enthusiastic and very detailed explanation of the problems he was
facing during the design — he even pointed to our class diagrams during his story! After having listened to
the analyst-designer, the first reaction of the person that extracted the class diagrams from the source code was
"Gee, | never read that in the source code’.

Related Patterns

For optimum results, you should perform several attempts of INTERVIEW DURING DEMO with different kinds
of people. Depending on your taste, you may perform these attempts before, after or interwoven with READ
ALL THE CODE IN ONE HOUR and SKIM THE DOCUMENTATION.

Resulting Context. This pattern results in (i) some typical usage scenarios or use cases; (ii) the main features
offered by the system and whether they are appreciated or not; (iii) the system components and their respon-
sibilities; (iv) bizarre anecdotes that reveal the folklore around using the system. Together with the result of
READ ALL THE CODE IN ONE HOUR and SkIM THE DOCUMENTATION this is a good basis to CONFER
WITH COLLEAGUES and then move on to GUESS OBJECTS and CHECK THE DATABASE.

CLUSTER: EXTRACT ARCHITECTURE

The patterns in FIRST CONTACT should have helped you getting an initial feeling of the software system. Now
is the right time to draw some blueprints of the complete system that will serve as a roadmap during the rest
of the reverse engineering project. The main priority in this stage of reverse engineering is to get an accurate
picture without spending too much time on the hairy details.

The patterns in this cluster tell you how to derive a system blueprint from source code (GUESS OBJECTS)
and from a database schema (CHECK THE DATABASE). With these blueprints you will probably want to
proceed with IDENTIFY HOT PLACES.

Forces Revisited

Reliable Info. Since the blueprints resulting from these activities will influence the rest of your project, accu-
racy is the single most important aspect. Consequently, take special precautions to make the extracted
blueprints as reliable as possible. In particular, plan for an incremental approach where you gradually
improve the blueprints while you gain a better understanding of the system.

Limited Resources. Results coming from this stage of reverse engineering are always worthwhile. Conse-
quently, consider EXTRACT ARCHITECTURE a very important activity and plan to spend a considerable
amount of your resources here. However, via an incremental approach you can stretch your resources in
time.

Tools and Techniques. While extracting an architecture, you can afford the time and money to apply some
heavyweight techniques and purchase some expensive tools. Yet —because accuracy is so important—
do never rely on techniques and tools and always make a conscious assessment of their output.

Abstraction. Architectural blueprints are meant to strip away the details. Yet, computer science has this
strange phenomenon that details are crucial to the overall system [Bro87]. Consequently, favor different
blueprints that emphasize one perspective and choose the most appropriate ones when necessary. Adapt
the notation to the kind of blueprint you are making ([Dav95] — principle 21).

Sceptic Colleagues. Good blueprints help a lot because they greatly improve the communication within a
team. However, since they strip away details, you risk to offend those people who spend their time on
these details. Also, certain notations and diagrams may be new to people, and then your diagrams will
just be ignored. Consequently, take care in choosing which blueprints to produce and which notations to
use — they should be helpful to all members of the team.

[72]
S
=y 8
e\ c =
=] % &
3 D o <@
S| g <@ ol o
I Ke) o] 2
= |2 s | S| B
E|lo| 5| 8| @
1 o (D) o
| = x| <| on
GUESs OBJECTS - -+ |+ T
CHECK THE DATABASE | - | - | ++ ++

Table 2: How each pattern of FIRST CONTACT resolves the forces. Very good: ++, Good: +, Neutral: 0, Rather
Bad: -, Very bad: - -

GUESS OBJECTS

| ntent

Progressively refine a model of a software system, by defining hypotheses about what should be in the code
and checking these hypotheses against the source code

Example. You are facing a 500 K lines C++ program, implementing a software system to display
multi-media information in real time. Your boss asks you to look how much of the source code
can be resurrected from another project. After having READ ALL THE CODE IN ONE HOUR, you
noticed an interesting piece of code concerning the reading of the signals on the external video
channel. You suspect that the original software designers have applied some form of observer
pattern, and you want to learn more about the way the observer is notified of events. You will
gradually refine your assumption that the class VIDEOCHANNEL is the subject being observed by
reading its source code and tracing interesting paths.

Context

You are in the early stages of reverse engineering a software system: you have an initial understanding of its
functionality and you are somewhat familiar with the main structure of its source code. Due to this, you have
identified a certain aspect of the system as especially important. You have on-line access to the source code of
the software system and the necessary tools to manipulate it (i.e., from an elementary grep to a professional
browser). You have reasonable expertise with the implementation language being used.

Problem

You must gain an overall understanding of the internal structure of a software system and report this knowledge
to your colleagues so that they will use it as a kind of roadmap for later activities.

Solution

Take a notepad and/or sketchpad (not necessarily as an electronic tool). Based on your experience, and the little
you already understand from the system, devise a model that serves as your initial hypotheses of what to expect
in the source code. Check these hypotheses against the source code, using whatever tools you have available.
Consciously keep track of which parts of the source code confirm and which parts contradict your hypotheses.
Based on the latter, refine the initial model, recheck the hypotheses and rework the list of confirmations and
contradictions. Do this until you obtain a more or less stable model.

Note that it is a good idea to sort the entities in your hypotheses models according to the probability of
appearance in source-code. This is especially useful as names inside the source-code do not always match
with the concepts they represent. This may be due to particular coding conventions or compiler restrictions
(identifiers cannot exceed a certain length), or because of the native language of the original programmer.*

Afterwards, sit down to produce a boxes- and arrows diagram describing your findings. As a rule of the
thumb, make sure your diagram fits on one page. It is better to have two distinct diagrams, where each provides
a clean perspective on the system than one messy diagram with too many details too read and memorize. People
should be able to redraw the diagram from memory after they have seen it once; it is only then that your diagram
will really serve as a roadmap.

Variations. The pattern itself is quite broad and thus widely applicable. Below are some suggestions of
possible variants.

e Guess Patterns. While having READ ALL THE CODE IN ONE HOUR, you might have seen some symp-
toms of patterns. You can use a variant of GUESS OBJECTS to refine this knowledge. (See the better
known pattern catalogues [GHJV95], [BMR*96], [Fow97] for patterns to watch out for. See also [Bro96]
for a discussion on tool support for detecting patterns.)

o Guess Object Responsibilities. Based on the requirements resulting from SKiMm THE DOCUMENTATION,
you can try to assign object responsibilities and check the resulting design against the source code. (To
assign object responsibilities, use the noun phrases in the requirements as the initial objects and the
verb phrases as the initial responsibilities. Derive a design by mapping objects on class hierarchies
and responsibilities on operations. See [WBWW?90] for an in depth treatment on responsibility-driven
design.)

e Guess Object Roles. The usage scenarios that you get out of INTERVIEW DURING DEMO may serve to
define some use cases that in turn help to find out which objects fulfill which roles. (See [JCJO92] for
use cases and [Ree96] for role modeling.)

o Guess Process Architecture. The object-oriented paradigm is often applied in the context of distributed
systems with multiple cooperating processes. A variant of GUESS OBJECTS may be applied to infer
which processes exist, how they are launched, how they get terminated and how they interact. (See
[Lea96] for some typical patterns and idioms that may be applied in concurrent programming.)

4In one particular reverse engineering experience, we were facing source code that was a mixture of English and German. As you can
imagine, grep is not a very good tool to check occurrences of English terms in German texts.

For ces Resolved

Limited Resources. The amount of resources you invest in this pattern depends mainly on the level of detail
and accuracy that you want to achieve. Be wary of the hairy details though, as this pattern tends to have
an exponential effort/gain curve. For detailed information, consider switching to STEP THROUGH THE
EXECUTION instead.

Toolsand Techniques. Applying this pattern does not require a lot of tools: a a simple grep may be sufficient
and otherwise a good code browser will do. Probably you will also need a tool for producing the final
blueprint, as it is likely that someone will have to update the blueprint later on in the project. However,
choose a a simple drawing tool rather then a special purpose CASE tool, as you will need a lot of freedom
to express what you found.

In itself, the pattern does not require a lot of techniques. However, a large repertoire of knowledge about
idioms, patterns, algorithms, techniques is necessary to recognize what you see. As such, the pattern
should preferably be applied by experts, yet lots of this expertise may be acquired on the job.

Reliable Info. The blueprints you extract by applying this pattern are quite reliable because of the gradual
refinement of the hypotheses and confirmation against source code. Yet, be sure to keep the blueprint up
to date while your reverse engineering project progresses and your understanding of the software system
grows.

Abstraction. If applied well, the different blueprints you achieve by means of GUESS OBJECTS provide the
ideal abstraction level. That is, each blueprint provides a unique perspective on the software system that
highlights the important facts and strips the unimportant details. Yet, navigating between the various
blueprints provides you all the necessary perspectives to really understand the system.

Sceptic Colleagues. The results of GUESS OBJECTS pattern should drastically increase the confidence of
your team in the success of the reverse engineering project. This is because the members of the team
will normally experience an “aha erlebness”, where the little pieces of knowledge they have fit the larger
whole.

Rationale

Clear and concise descriptions of a system are a necessary ingredient to plan team activities. However, being
clear and concise is for humans to decide, thus creating them requires human efforts. On the other hand, they
must accurately reflect what’s inside the system, so somehow the source-code should be incorporated in the
creation process as well. GUESS OBJECTS addresses this tension by using a mental model (i.e., the hypotheses)
as the primary target, yet progressively refines that model by checking it against source code. Moreover, con-
ciseness implies loss of detail, hence the reason to extract multiple blueprints offereing alternative perspectives.

Known Uses

In [MN97], there is a report of an experiment where a software engineer at Microsoft applied this pattern (it is
called "the Reflexion Model’ in the paper) to reverse engineer the C-code of Microsoft Excel. One of the nice
sides of the story is that the software engineer was a newcomer to that part of the system and that his colleagues
could not spend too much time to explain him about it. Yet, after a brief discussion he could come up with an
initial hypotheses and then use the source code to gradually refine his understanding. Note that the paper also
includes a description of a lightweight tool to help specifying the model, the mapping from the model to the
source code and the checking of the code against the model.

Related Patterns

All the patterns in the FIRST CONTACT cluster are meant to help you building the initial hypotheses to be
refined via GUESS OBJECTS. Next, some of the patterns in IDENTIFY HOT PLACES may help you to refine
this hypothesis.

Resulting Context. After this pattern, you will have a series of blueprints where each contains one perspec-
tive on the whole system. These blueprints will help you during later reverse engineering steps, in particular the
ones in IDENTIFY HOT PLACES and PREPARE REENGINEERING. Consequently, consider applying CONFER
WITH COLLEAGUES after applying GUESS OBJECTS.

CHECK THE DATABASE

| ntent

Get a feeling for the data model inside a software system by checking the database schema.

Example. You are asked to extend an existing database application so that it is now accessible via
the world-wide web. The initial software system manipulates the business objects (implemented
in C++) stored inside a relational database. You will reconstruct the data model underlying your
business objects by mapping the table definitions in the database on the corresponding C++ classes.

Context

You are in the early stages of reverse engineering a software system, having an initial understanding of its
functionality. The software system employs some form of a database to make its data persistent.

You have access to the database and the proper tools to inspect its schema. Or even better, you have samples
of data inside that database and maybe you are even able to spy on the database queries during the execution of
the system. Finally, you have some expertise with databases and knowledge of how data-structures from your
implementation language are mapped onto the data-structures of the underlying database.

Problem

You want to derive a data model for the persistent data in a software system in order to guide further reverse
engineering efforts.

Solution

Check the database schema to reconstruct at least the persistent part of the data model. Use your knowledge
of how constructs in the implementation language are mapped onto database constructs to reverse engineer the
real data model. Make samples of data inside the database to refine the data-model.

For ces Resolved

Limited Resources. Reconstructing the data model from the database schema takes considerable resources,
although it depends largely on the underlying technology. Factors that affect this force in a positive way
are the quality of the database schema (is it in normal form?), the correspondence between the database

paradigm and the implementation language paradigm (inheritance hierarchies do not map directly to
relational tables), the expressiveness of the database schema (does it include foreign keys ?). On the
other hand, the reverse engineering of database schemas may include techniques like data sampling and
run-time inspection, which takes even more resources.

Tools and Techniques. This pattern can do without a lot of tool support: a dump of the database schema and
some samples of data inside the tables is something all database systems can provide. However, there
are some tools available to support you in recovering object models (see [HEH*96], [PB94], [JSZ97]).

This pattern requires substantial technical expertise, because it requires knowledge of ways to manipulate
data structures in both the implementation language and the database, plus ways to map one onto the
other.

Reliable Info. Because the pattern is based on analyzing persistent data, the reliability of the reconstructed
data model is usually quite high. However, if the database system is manipulated by different software
systems and if each of these software systems is build with different implementation technologies (CASE
tools, 4GL, ...), the reliability of the data model tends to decrease because the database schema provides
the most common denominator of all implementation technologies involved. Data sampling is a good
way to cope with this problem though.

Abstraction. The abstraction level of the reconstructed data model tends to be low, as it is closer to the under-
lying database schema than it is to the implementation language. However, this depends largely on the
amount of resources spent. For instance, with data sampling and run-time inspection one can drastically
improve the abstraction level.

Sceptic Colleagues. If applied well, this pattern increases your credibility considerably, because a well de-
fined data model is normally considered a collective source of knowledge which greatly improves the
communication within a team. Moreover, almost all software engineers will have experience with data
models and will appreciate their presence.

Rationale

Having a well defined central data model is a common practice in larger software projects that deal with
persistent data. Not only, it specifies common rules on how to access certain data structures, it is also a great
aid in assigning development tasks. Therefore, it is a good idea to extract an accurate data model before
proceeding with other reverse engineering activities.

Known Uses

The reverse engineering and reengineering of database systems is a well-known problem, drawing certain
attention in the literature (see [HEH96], [PB94], [JSZ97]). Note the recurring remark that the database
schema alone is too weak a basis and that data sampling and run-time inspection must be included for successful
reconstruction of the data model.

Related Patterns

CHECK THE DATABASE requires an initial understanding of the system functionality, like obtained by applying
patterns in the cluster FIRST CONTACT.

There are some patterns that describe various ways to map object-oriented data constructs on relational
database counterparts. See among others [KC98], [CKR99].

Resulting Context. CHECK THE DATABASE results in a data model for the persistent data in your software
system. Such a data model is quite rough, but it may serve as an ideal initial hypotheses to be further refined
by applying GUuEss OBJECTS. The data model should also be used as a collective knowledge that comes in
handy when doing further reverse engineering efforts, for instance like in the clusters IDENTIFY HOT PLACES
and PREPARE REENGINEERING. Consequently, consider to CONFER WITH COLLEAGUES after CHECK THE
DATABASE.

CLUSTER: IDENTIFY HOT PLACES

All the reverse engineering patterns in this cluster are applicable in the later stages of a reverse engineering
project when you are familiar with the overall structure of a software system, but need detailed understanding
about parts of it. In such a situation, you can afford to spend some time obtaining information because you are
quite certain that your investment will pay off. Therefore, the patterns in this cluster involve quite a lot of tools
and rely on quite technical knowledge.

INSPECT THE LARGEST

Identify important functionality by looking at large constructs.

Example. You are facing an object-oriented system and you want to find out which classes do the
bulk of the work. You will produce a list of all classes where the number of methods exceeds the
average number of methods per class, sort the list and inspect the largest classes manually.

ExpPLOIT THE CHANGES

Recover design issues by asking where, how and why the developers have been changing the implementation.

Example. You must understand an old but evolving software system, where the evolution is
controlled through a configuration management system. You will filter out those modules that
have been changed most often and find out what these changes where about and why they were
necessary.

Example. You must understand an object-oriented framework that has been adapted several times
as the developers gained insight into the problem domain. You will filter out all classes where the
number of methods and attributes has decreased significantly and find out where that functionality
has been moved to. With that knowledge, you will make a guess at the design rationale underlying
this redistribution of functionality.

VISUALIZE THE STRUCTURE

Obtain insight in the software system’s structure —including potential design anomalies— by means of well-
known visualisations.

Example. You want to understand an object-oriented class structure in order to improve it. In
particular, you would like to redistribute responsibilities, by splitting large superclasses and hook-
ing the subclasses underneath the appropriate ancestor. To analyse the situation, you will display
the inheritance hierarchies, paying special attention to large classes high up in the hierarchy. Af-
terwards, for classes identified that way, you will display a graph showing which method accesses
which attributes to analyse the class’ cohesion and find out whether a split is feasible.

CHECK METHOD INVOCATIONS

Find out how a class is related to other classes by checking the invocations of key methods in the interface of
that class. Two examples of key methods that are easy to recognise are constructors and overridden methods.

Example. You have identified a number of classes that represent part of the domain model. You
want to learn about the aggregation relationships between these classes and therefore, you will
inspect for all constructor methods which methods are invoking them.

Example. You have identified a part of a class hierarchy where the designers relied on template
methods to customise the design. To learn how the subclasses interact with their superclasses, you
will retrieve all methods overriding another one, and inspect who is invoking these methods.

STEP THROUGH THE EXECUTION

Obtain a detailed understanding of the run-time behaviour of a piece of code by stepping through its execution.

Example. You have a piece of code that implements a graph layout algorithm and you must
understand it in order to rewrite it. You will feed a graph into the program and use the debugger to
follow how the algorithm behaves.

CLUSTER: PREPARE REENGINEERING

The reverse engineering patterns in this cluster are only applicable when your reverse engineering activi-
ties are part of a larger reengineering project. That is, your goal is not only understanding what’s inside the
source code of a software system, but also rewriting parts of it. Therefore, the patterns in this cluster will take
advantage of the fact that you will change the source code anyway.

WRITE THE TESTS

Record your knowledge about how a component reacts to a given input in a number of black box tests, this way
preparing future changes to the system.

Example. You are asked to extend a parser for a command language so that it is able to parse
two additional commands. Before actually changing the of parser, you will write a number of test
programs that check whether the parser accepts all valid command sequences and rejects some
typical erronous ones.

REFACTOR TO UNDERSTAND

Obtain better readable —thus more understandable— and better organised —thus more extensible— code via
renaming and refactoring.

Example. You are asked to extend a parser for a command language so that it is able to parse two
additional commands. Before actually extending the parser, you will improve the readability of the
source code. Among others, you will rename key methods and classes to reflect your understanding
of a parser and you will split long and complex methods into smaller ones. As an example of the
former, you will rename the class StreamIntf into Scanner and the method rdnxt into nextToken.
An example of the latter would be to split the nextToken method, so that it becomes a large case
statement, where each branch immediately invokes another method.)

BUILD A PROTOTYPE

Extract the design of a critical but cryptic component via the construction of a prototype which later may
provide the basis for a replacement.

Example. You have a piece of code that implements a graph layout algorithm. You have an idea
on how the algorithm works, but the code is too cryptic to map your knowledge of the algorithm
onto the code. You will write a prototype that implements your understanding of the algorithm and
map pieces of your code onto the existing code.

FocusBY WRAPPING

Wrap the parts you consider unnecessary for the future reengineering in a black box component.

Example. You have to migrate a graph manipulation program from a Unix to Macintosh user-
interface platform. The original program is well designed and has separated out most of the plat-
form specific operations into a separate layer. You will clean up this layering by moving all plat-
form specific behaviour into a separate layer, this way wrapping the obsolete part into a separate
component.

CLUSTER: MISCELLANEOUS

The patterns in this cluster do not fit in any other category.

CONFER WITH COLLEAGUES

Share the information obtained during a reverse engineering step to boost the collective understanding about a
software system.

Example: Your team has to reverse engineer a workflow system containing lots of complex
rules managing the workflow processes. Each team member investigates a part of the system and
as such the knowledge about the workflow rules is distributed over the team. To increase the
overall understanding, you will devote 15 minutes of the weekly team meeting to discuss reverse
engineering results made during the last week.

‘|9pOWI-elep 8y aulyal 0} aseqeiep auy) apisul elep Jo
sajdwies ay) as "|opouwl elep [eal syl Joaulbua asIanal 0] S1aNNIS
-Uu09J aseqerep o0luo paddew ate abenbue| uoneuswa|dwi ayy ul
S10NJISU0I MOy JO aBpajmouy INOA s "[apoW eep ayl Jo Lied
asisiad a8y 1ses| 1B 19N41SU0J3. 01 BWBYIS asegelep ayl 498y)d

'sBuipuly InoA Buiqriosap weibeip smol
-le pue -saxoq e adnpold ‘spremiayy sasayiodAy ayl oaydal
pue [9poW [erIul 8yl aulydl ‘BP0 32Inos ay) Isulebe sasayiod
-AY 853y 23y "9p09I 324N0S 8y} Ul 193dXa 01 Jeym Jo sasayiod
-AY Jeniul InoA se SaAlas Teyj) |apoW e asINap ‘WBISAS ay) W)
pueisiapun Apeaije noA aj31| 8yl pue ‘aousiiadxa JnoA uo paseg

"S1I0Y)3 BulisaulBus as1anal
Jayuiny spInb 01 1apJo Ul WB)SAS a1emyos e ul erep
asislad ayj 10§ [9pOL BIEP B SALISP 0} JUBM NOA

‘SalIAIIOR Jale| J0) dewpeod JO puly e se 1 asn
[11Mm A3 1841 0s SanBiajj0a INoA 01 abpajmou| Siyl
uodal pue walsAs a1em1os B JO 2INJonJls [eulal
-ul 3y} Jo Buipuelsiapun [je4an0 ue ureh 1snw NoA

3asSvavivq 3IHL MO3HD

$123rdQ ssano

uonn|os

wa|qo.d

JINLO3ILIHOYY LOVHLIX]

uislled

"Wwa)sAs ayy Buisn punose
3I0|X{|04 BY} [eaAal Tey) salopdsue alieziq (A1) ‘sanljigisuodsal
J15y1 pue syusuodwiod wiglsAs ays (1) ‘1ou o parerdaidde ate Asyy
Jaylaym pue wisIsAs ay) Ag pasayo sainjesy urew ayy (11) sased
asn 10 solleuads abesn [ealdAl awos (1) 4o 1s1] e Buipnjoul 1odal
e 9onpo.d spremialy “Buneiisuowap st oym uosiad ayr Buimsin
-J21ul pue owsap e Buleas Aq uolrelado ul WLISAS AUl aAISSqO

"uolewWIOUI UBISAP JUBA
-9]al 01 saaualayal (A1) ‘syurensuod uenodwi ayy (1) sainyes)
wenodwi ayy (1) ‘suswadinbas Juepodwi ayy (1) o 1si) e Bul
-pnjoul Lodal e 8onpoud spremisyy “uoleIuaWnNIop ayl ybnouays
uR9S 0] awil Apnis Jo Junowre 1oys Ajqeuoseal e J]asinoA juels

paJanoasip sajA1s Buipod snoiaidsns aya (1) ¢
paijdde swoipt Buipod ayp (11) ‘sannua wueuodwi ay (1) 40 1si| e
Buipnjour uodas e 8dnpoud spremiayy ‘8pod 324nos ay1 ybnoay
>[em 0] awil Apnis JO Junowe 1oys Ajqeuosesal e J[3sInoA Juelo

's1ioya Burisauibua asianal Jayuny uejd o3 Jap
-10 Ul WaISAS a1/emyos e Jo sainjea) urew ay} snid
S,014eud2s abesn [eaIdA1 syl JO ©apI U paau NOA

's1I08 Burisauibua asianal 1yl
-Iny ue|d 01 JBpJO Ul WAISAS a1emiyos ayl Aq papIA
-04d Alljeuonouny ay Jo eapl [eniul Ue pasu NOA

"syoys bul
-19au1bua as1anal Jayuiny uejd 0] WalsAs alemiyos e
91€1S [eUJalUI B JO JUBLUSSASSE |RIlIUI UR Pasu NOA

O3 ONIdNA MIIAGTLN]

NOILVLNIWNO0Q IHL INIMAS

4NOH
3INO NI 300D IH] TV avay

uonn|os

wsa|qo.d
LOVINOD 1Sydl4

uislled

'9p09
J0 82a1d 8y} JO 81BIS [eula)ul ay] 19adsul 03 pue UoIINIaXa dais Aq
dais ay1 mojjoy) 01 1abbBngap syl asn “aousnbas uoneiado few.iou
® youne| 0] apo9 Jo 3dald ayy ul erep indul sAnelussaldal pasd
"SPOYIaLWL UBPPLLIBAO pUE S1019NJ1SUOI 3Je aslubodal 0) Ases ale
Teyl spoylaw Ay Jo sajduwexa om| ‘Spoyiaw asayl Buiyoaul si
oYM 19adsul pue Sse|o ay} JO 89eLIaIUI 8y Ul SPOYIaW AdY 109|9S
‘Arewoue ubisap fenualod (11) 1o

‘Buipueisiapun welboid sdjay (1) :sa1106a1ed 0] JO BUO Ul SWd)I
3y BulAyisse|a ‘suondwinsse 1981109 J0 1s1] © 89npoud ‘splemisiy
"1981109 aJe suondwinsse JN0A JaY18yM %23Yd 0} JaSMoiq 3pod ay}
asn pue suondwnsse awos J|3sInoA ayejnwiioy ‘sinoAe| [eaiydelh
3say] uo paseg -ainonas weiboud ayy Jo sinoAe| [earydesb Jo
Sa118s ® NOA Moys 01 |00] uonesijensiA welbosd ayy 1onJsul
uenodwi wayl saxew Jeys sanssi ubisap

ay1 Jo uonduosap e Buipnjoul ‘sued WaISAS [e19N49 JO 1S1| B 99Np
-04d ‘qyBisul s1y1 YU Aressadau sem 11 Aym pue 1noge st abueyd
31 1eym J[3sIn0oA yse pue Jadojanap Jeulbrio ayl o ajoJ ayl ul
J]9sanoA 1nd ‘186.1e1 yoes 104 "sabueyd Juanbaiyaueriodwi Jo s1o6
-1e] JO 1s1] ® 9)1dwod 01 |esodsip INOA e sueaw JaAsIeYM 3SN
‘(90RpBIUI [RUIBIX® "8°1) Pasn aq pjhoys Asyl moy Jo uonduias
-op e Buipnjoul ‘ueniodwi Jeadde Jeyl S19NAISU0I 3Y) |l 4O ISI|
© 30Np0Id 'SIONJISUOD Palejal Jaylo Yim Jayiabiol yiom s1onns
-U02 8S3Y]1 MOY pueISIspun 0} JapJo Ul $1oNJISuod asoyl Buowe
1596Je| 8y} 10} 9PO0I 32INOS 3] 9SMOIYG "SJUSLLIBINSLaW 3Say) 0}
Buiploaoe 1s1] Bunnsal ayl L0S "WL1SAS By} Ul S1ONJISU0D ay) |8
10} Sjuawalnseaw JO 18s palilli] B 193]]09 0} |00} SILIIBW B asM)

*3p09 JO 9931d ® JO InoIARYaQ SWI-uni
8y} Jo BulpuelsIapun Pajie1sp € Ure1qo 01 JUem NOA

"Wia1sAs au Ul sasse|d Jay1o
8y} 01 paje|aJ SI SSe[d & MOY 1IN0 pulj 01 JUBM NOA

‘salewoue ubisap Jenualod 1noge abpa
-|mou| Bulpnjoul ‘wislsAs a1emiyos e Jo Lied pajos)
-3 © 40 24N1oNJ1S 3y Ul 1yBISul Ure1qo 03 JUeM NOA

"UOIINJOAS S, WIAISAS a1 Burinp ajoJ A3y e pake|d
1ey; ubisap ay1 ul sured asoyl Apluspl 1SNW NOA

‘Alifeuon
-ounj JO sYuNyYd jueuodwl YIIM puodssllod Teyl
8p02 921Nn0s 8y} U1 sade|d asoyl AJnuspl ISNW NOA

NOILNO3IXF IHL HONOYH] d31S

SNOILVOOAN]| AOHL3N MO3IHD

JINLONYLS IHL IZITVNSIA

SIONVHD IH] 1101dXJ

15394V 3HL 103dSN|

uonn|os

wsa|qo.d
S30V1d 1OH A4ILN3A]

uislled

‘undan|q waisAs |[eJano
ue uo uoirewoul ay) dew 0} 3svavivq
JHL MO3IHD Ppue $103rdQ $SIAN9

sBuipuy
togwh 0] SINOVITI0D HLIA d3dNOD
SMBIA BAIJeUIB)[E

196 0] NOILVLNINNDOQ IHL WINS pue
YNOH INO NI 30D IH] 1TV avay

wialsAs ayl Buisn punoJe
310|104 3Y1 [eaA3J Ty} S810pI3UE alezIq

sanliqls
-uodsal J1ay) pue siusuodwod WalsAs ayl

10U J0 pajeIdaldde ate Ay Jaylaym pue
WiaIsAs ayl Ag pasayo sainies) ulew ay)

S9Sed 3sn 10 SoLIeuUads abesn eaidAl

Wwa1sAs ay1 asn 01 moy
aleJISUOWBpP Ued oym Apogawos e

wa1sAs Buruuny e
OW3Q ONIYNA MIIAYILN|

‘undan|q wiaisAs |[elano
ue uo uolrewoul ay) dew 0} 3svavivq
JHL MO3IHD Ppue S$103rdQ $SIAN9

sBuipuy
togwh 0] SINOVITI0D HLIA d3dNOD
SMB3IA BAITeUISY e

196 0] OW3Q ONIYNA MIIAYILN| pue
YNOH INO NI 30D IH] 1TV avay

"9A0QR 8] JO YIea J0J SSau|ny
-asn pue AIjigel|as 8yl JO JUSLUSSasSe U
“UoITewWI0)UI UBISAp JUBAS|S. 0] S80UBIALSI

S)uIRISU02 Juenoduwi
seaneay uenodwi

Sluswalinbal jueniodwi

UIY)IM PauIeIuod
suoneolyIdads |ewlo) pue sweibe
-1p 8y} 181dJd1Ul 0] 3|Ce aJe NoA e

NOIL

uoljeluswnoop e
-VINIWNNOO0Q 3FIHL WIMS

sannua
jJuepodwi JO 11| 8Y) BUlal 0) ISVAV.LIVQ
JHL XO3IHD pue sLO3rdQ SS3AND

sBurpuy
togm: 0] SINOVITI0D HLIM d3dNOD

paJanodsip sajA1s Buipod snoiaidsns ay)

paljdde swoipi Buipod ayy e abenbue|
SMBIA 9AI
S uoneuawaldwi syl ylim asiiadxe e
-euJa)fe 196 0] OW3AQ ONIMNA MIIAYTL (- ‘sobe
-N| pue NOILVLNIWNDOO0Q IHL WINS e -Xoed ‘sasse|d *a'1) Sallua uenodwi ay) e 9p0J 92IN0S ® 4NOH 3INO
NI 300D 3IH] 17y avay
¢ XU Teym 1INsay sausinbaiaid ulaned

"WIBISAS a1emyyos Jeljiwejun pue abue| e Jo 19aload BuliaaulBus as1aAal B BullIelS 848 NOA :IX8IU0D

1OVINOD 1SdIH

[9pOWEIEP 3} BU1J4 0] JUBM NOA

11 S30V1d LOH A41LN3a| Ul susened e

wis1sAs ay) JO SjuLIgan|q [[eJaA0 Ja10

urelqo 0] psau NoA JI s103rdQ SSINS e INoA Jo Lied Juaisisiad ay) Jo [spowi eepe e

wia1sAs

aseqerep
BulAjlapun ay1 Jo sainjoniis-erep
3yl oo paddew ale abenb
-ue| uonejuawajdwi JnoA wouy
SaInjonJIs-elep Moy Jo abpajmou

elep sy
Jo sajdwres pue ewayds su 19ads
-ul 0} sjoo} Jadoud ayy Buipnjoul
‘aseqelep ayl 0} SSadde aney noA

aseqelep e Jo WIoy
awos sAojdwa walsAs alemijos

3Svavivqg 3IHL MO3HD

pasn Bulaq abenbue| uoneiusws|d
-WI 8yl yum asiiadxa ajgeuoseal

U aen
swunidan|q ay auljal 0] Juem noA -diuew 01 sj001 Aressadau ay snjd (aunyoanyaue ssadoid ssanb
J1 S3OV1d LOH A4ILN3A] Ul wESEQ e e 903 324N0S 3y} 0] SSadde aulj-uo e _mw_oh Hom.Eo ssanb ,mm_:
[9pow elep 8y} ul palss WaISAs 8joym 8yl uo aAndadsiad e WISAS a1emyos e ”_Emwcogmm_ Hom.E.o ssand
-19)ul 8Je NOA J1 3Svavivg IHL MO3IHD e Hulureluod suo yoes ‘sulidan|q Jo saliase e 1o s1oadse Jueniodwi Jo abpajmouy| e swioped ssanb :suerren)
$103r90 $s3N9
¢ IXaU Tey JInsay saysinbaJaid uJaned

"(LOVLNOD LS¥lI4 ul sulaned ay) Aq paurelgo usag aAey 1ybiw Buipuelsispun [eniul SIy1) *8p0d 824N0S SH O 84MINJIS UIBW 8y YN Jeljiwe)
TeyMaWIOS aJe NoA pue Aljeuonouny sl Jo BulpuelsIapun [eNIul Ue 8ABY NOA “WISAS a1emijos e BulisaulBus asiansl Jo sabels ALies sy Ul aJe NOA :1X81U0D
JUNLOTLIHOYY 1OVH1XT

SAUO J3|[ewWS 0Jul S1onJ}
-u09 Jabiue| asay) Jo awos 11 ds 0] Juem noA J1 Bulioioeyal

Jlayloyoes 0 pare|
-9J 2B S3SSB|D MOY 1IN0 pul) 03 SNOILYIOAN]| AOHLIAN
M23HD (8p0d 83In0s pajuslio-19algo Jo ased ayl ul)

“INOIABYS(Q BWII-UNJ 8y} Jo uondso
-Jad Janaq & 186 01 NOILND3IXT IHL HONOYUH] dILS

Sal|
-ewoue ubisep enuslod Jo 1s1|

1ed pajoa|as ayy ul ybisul e

1asmolq spoo e e

|00} uonesijensiA weiboid e e
3¥NL

Wwa)sAs aJemjos ayl Joyed e e
' MOS 8 011 -ONYLS 3IHL 3IZITVNSIA

l1ay104oes 0] paje
-9J 2B S3SSB|D MOY 1IN0 pul) 03 SNOILYIOAN]| AOHLIN
M03HD (8p02 824N0S palualio-103lqo Jo ased ay) ul)

“IN0IARYS(Q aWI-unJ ayl Jo uondao
-Jad Jenaq e 196 01 NOILND3IXT IHL HONOYH] d3ILS

"SIONJISU0D 3SOU] UO SaAl}
-0adsJad Jaylo urelgo 01 IMNLONYLS FIHL IZITVNSIA

UOIIN|OAS S, WR)SAS
ayl Buunp ajos Ay e pakerd
1eyr sued ubissp Jo 151 B e

[00) SOLIIBW B Jo/pue WaISAS
juswabeuew uoneInbiyuod e e
(so1sw abueyd ‘aseqerep
uoleInBIyUOI:SJURLIBA)
SIONVHD IH] 11071dX3

9pod
92IN0S Y] JO S9Sea|al [elonss e

SBUO J3|[ewWS 0Jul S1onJ}
-u02 Jahue| S8y} JO WOS H|ds 0} Juem noA §i Bulioloesal

l1ay104oes 0] paje
-9J 2B S3SSB|D MOY 1IN0 pul) 03 SNOILYIOAN]| AOHLIN
M03HD (8p02 824N0S palualio-103lqo Jo ased ay) ul)

“IN0IARYS(Q aWI-unJ ayl Jo uondao
-Jad Jenaq e 196 01 NOILND3IXT IHL HONOYH] d3ILS

"SIONJISU0D 3SOU] UO SaAl}
-0adsJad Jaylo urelgo 01 IUNLONYLS FIHL IZITVNSIA

Aijeuonouny yuepodwi Bul
-Jussaidal S1oNJISU0D JO ISI| B e

SO118W BZIS JO Jaquinu e YlIm
painBIIuod SI [00] SOLIIBW By e

1asmolq spoo e e
15394V IHL 1D3dSN]

¢ IXau ey

1nsay

salsinbalaid uJsned

*3P02 924N0S S JO 81N1ONJIS UTRW BU1 YIIM

JTerjiwrey Ajdre) are noA pue Alijeuonouny sii Jo BuIpuBISISpUN [[eJ9A0 Ue dARY NOA "WRISAS a1emyos e BulisaulBus asienal Jo abels Jale| e Ul aJe NOA [1X81U0)

S30V1d 10H AdJILN3A]|

9p02 Jo 92a1d TR 9p09 Jo 89aid e JO InoiAey
laauiBuaal 0] pasu NOA JI ONIYIINIONITY FdvdIdd e -9¢ awin-uni ayl oul ybisul e

elep
indul aanelussaldal Jo 18s ®

Jabbngap aAnoelayul Ue

WIA)SAS a1emyos a1 Jo ued e

NOILND
-3X3 IHL HONOHYH | d31S

“INOIABYS(Q BWII-UNJ 8y} Jo uondso wiay) usamiaq sdiysuon
-Jad Janaq ® 186 01 NOILND3IXT IHL HONOYUH] dILS e -BJaJ BY) PUB SasSB|D JO 1SI| &

pauly
-op sI poylew Buipuodsaliod
ay1 alaym sadejd ay3 01 oI
-0AUl poylaw e wody dwnl 01
NOA SMO| e 1eyl JasMmo.d apod e

|00} uonesijensiA weiboid e

WIA)SAS 91eMyos aul Jo ued e

* (Sspoy1aw UsppILIIan0 ‘spo

® (oW JOJONNUOD :SIUBLIEA)
SNOIL
-VOOAN| AOHLIA MO3HD

Bibliography

[Bec97]
[BMR'96]

[Bo094]

[Bro87]
[Bro96]

[CCI90]
[CKR99]

[Cop92]
[Dav95]
[Fow97]
[Fow99]
[GHJIV95]
[GR95]

[HEHT96]
[9CJ092]
[9GJ97]
[95Z297]
[KC98]
[Lead6]

[Mey96]
[Mey98]
[MN97]

K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stad. Pattern-Oriented Software Architecture
— A System of Patterns. John Wiley, 1996.

G. Booch. Object Oriented Analysis and Design with Applications. The Benjamin Cummings Publishing
Co. Inc., 2nd edition, 1994.

F. P. Brooks. No silver bullet. IEEE Computer, 20(4):10-19, Apr. 1987.

K. Brown. Design reverse-engineering and automated design pattern detection in smalltalk. Technical Report
TR-96-07, North Carolina State University, 1996.

E. J. Chikofsky and J. H. Cross Il. Reverse engineering and design recovery: A taxonomy. IEEE Software,
pages 13-17, Jan. 1990.

J. Coldewey, W. Keller, and K. Renzel. Architectural Patterns for Business Information Systems. Publisher
Unknown, 1999. To Appear.

J. O. Coplien. Advanced C++: Programming Styles and Idioms. Addison-Wesley, 1992.

A. M. Davis. 201 Principles of Software Development. McGraw-Hill, 1995.

M. Fowler. Analysis Patterns: Reusable Objects Models. Addison-Wesley, 1997.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley, Reading, MA, 1995.

A. Goldberg and K. S. Rubin. Succeeding With Objects: Decision Frameworks for Project Management.
Addison-Wesley, Reading, Mass., 1995.

J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Database reverse engineering: From
requirements to CARE tools. In Automated Software Engineering, Vol. 3 Nos 1/2, June 1996. 1996.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering — A Use
Case Driven Approach. Addison-Wesley/ACM Press, Reading, Mass., 1992.

I. Jacobson, M. Griss, and P. Jonsson. Software Reuse. Addison-Wesley/ACM Press, 1997.

J. H. Jahnke, W. Schéfer, and A. Ziindorf. Generic Fuzzy Reasoning Nets as a Basis for Reverse Engineering
Relational Database Applications. In Proceedings of ESEC/FSE’97, number 1301 in LNCS, pages 193-210,
1997.

W. Keller and J. Coldewey. Accessing relational databases: A pattern language. In R. Martin, D. Riehle, and
F. Bushmann, editors, Pattern Languages of Program Design 3, pages 313-343. Addison-Wesley, 1998.

D. Lea. Concurrent Programming in Java — Design principles and Patterns. The Java Series. Addison-
Wesley, 1996.

S. Meyers. More Effective C++. Addison-Wesley, 1996.
S. Meyers. Effective C++. Addison-Wesley, second edition, 1998.

G. Murphy and D. Notkin. Reengineering with reflexion models: A case study. IEEE Computer, 17(2):29-36,
Aug. 1997.

27

[PB94]
[RBJ97]

[Ree96]
[WBWW90]
[wC96]

W. J. Premerlani and M. R. Blaha. An approach for reverse engineering of relational databases. Communi-
cations of the ACM, 37(5):42-49, May 1994.

D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for smalltalk. Journal of Theory and Practice of
Object Systems (TAPQS), 3(4):253-263, 1997.

T. Reenskaug. Working with Objects: The OOram Software Engineering Method. Manning, 1996.
R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall, 1990.

L. Wills and J. H. Cross, Il. Recent trends and open issues in reverse engineering. Automated Software
Engineering, 3(1-2):165-172, June 1996.

