

.
x-

-

A Pattern Language for
Reverse Engineering1

Serge Demeyer(*), Stéphane Ducasse(+), Oscar Nierstrasz(+)

(*) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/
(+) University of Berne - SCG - http://www.iam.unibe.ch/~scg/

Abstract. Since object-oriented programming is usually associated with iterative develop-
ment, reverse engineering must be considered an essential facet of the object-oriented paradigm
The reverse engineering pattern language presented here summarises the reverse engineering e
perience gathered as part of the FAMOOS project, a project with the explicit goal of investigating
reverse and reengineering techniques in an object-oriented context. Due to limitations on Euro-
PLOP submissions, only part of the full pattern language is presented, namely the patterns describ
ing how to gain an initial understanding of a software system.

This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

Copyright 2000 by Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

A revised version of these patterns is published in: Serge Demeyer,
Stéphane Ducasse, Oscar Nierstrasz, Object-Oriented Reengineering
Patterns, Morgan Kaufmann, 2002. www.iam.unibe.ch/~scg/OORP

1. In Proceedings of EuroPLoP'2000, UVK GmbH, pp. 189-208.

c

http://www.iam.unibe.ch/~scg/OORP/index.html

system.
ent, as

L and
pment
 be iter-
pment
tial fac-

gi-
. Many
l part-

0 lines
s we

ns
 writ-
Tim Cox,
isap-

 FA-
tly im-

at-
ly to the
low is a

your

ing

 un-
Chapter 1

Reverse Engineering Patterns
1. Introduction
This pattern language describes how to reverse engineer an object-oriented software
Reverse engineering might seem a bit strange in the context of object-oriented developm
this term is usually associated with "legacy" systems written in languages like COBO
Fortran. Yet, reverse engineering is very relevant in the context of object-oriented develo
as well, because the only way to achieve a good object-oriented design is recognized to
ative development (see [Booc94a], [Gold95a], [Jaco97a], [Reen96a]). Iterative develo
involves refactoring existing designs and consequently, reverse engineering is an essen
et of any object-oriented development process.

The patterns have been developed and applied during the FAMOOS project (http://
www.iam.unibe.ch/~famoos/); a project with had the explicit goal to produce a set of re-en
neering techniques and tools to support the development of object-oriented frameworks
if not all of the patterns have been applied on software systems provided by the industria
ners in the project (i.e., Nokia and Daimler-Chrysler). These systems ranged from 50.00
of C++ up until 2,5 million lines of Ada. Where appropriate, we refer to other known use
were aware of while writing.

Acknowledgments. We would like to thank our EuroPLoP shepherds Mary Lynn Man
(2000), Kyle Brown (1999), Kent Beck and Charles Weir (1998) and all participants of the
ers workshops where parts of this language has been discussed. Of course there is also
our contact person with the publisher: thanks for your patience —we hope we will not d
point you. Next, we thank all participants of the FAMOOS project for providing such a fruitful
working context. And finally, we thank our colleagues in Berne, both in and outside the
MOOS team: by workshopping earlier versions of this pattern language you have grea
proved this manuscript.

2. Clusters of Patterns
The pattern language has been divided into clusters where each cluster groups a number of p
terns addressing a similar reverse engineering situation. The clusters correspond rough
different phases one encounters when reverse engineering a large software system. Be
short description for each of the clusters, while figure 1 provides a road map.

• First Contact. This cluster groups patterns telling you what to do when you have
very first contact with a software system.

• Initial Understanding. Here, the patterns tell you how to obtain an initial understand
of a software system, mainly documented in the form of class diagrams.

• Detailed Model Capture. The patterns in this cluster describe how to get a detailed
derstanding of a particular component in your software system.

http:/www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/

eer-
neering
• Prepare Reengineering. Since reverse engineering often goes together with reengin
ing, this cluster includes some patterns that help you prepare subsequent reengi
steps.

Figure 1: Overview of the four clusters in the pattern language.
Illustrating how understanding gradually increases with the amount of resources you spend

Resources spent

S
ys

te
m

 U
nd

er
st

an
di

ng

First Contact
• Read all the Code in One Hour
• Skim the Documentation
• Interview During Demo
• Confer with Colleagues

Initial Understanding
• Speculate about Domain Objects
• Analyze the Persistent Data
• Inspect the Largest Entities

Detailed Model Capture
• Derive the “true” Public Interface
• Step Through the Execution
• Reconstruct the Iterations

Prepare Reengineering
• Write the Tests
• Refactor to Understand
• Build a Prototype

soft-
to doc-
e main
spend-

Chapter 2

Initial Understanding
The patterns in First Contact should have helped you getting some first ideas about the
ware system. Now is the right time to refine those ideas into an initial understanding and
ument that understanding in order to support further reverse engineering activities. Th
priority in this stage of reverse engineering is to get an accurate understanding without
ing too much time on the hairy details.

The patterns in this cluster tell you:

• How to extract a domain model from source code (Speculate about Domain Ob-
jects), with one variant concerning pattern extraction (Speculate about Patterns) and
another concerning process architecture extraction (Speculate about the Architec-
ture).

• How to extract a class model from a database (Analyze the Persistent Data).
• How to identify important chunks of functionality (Inspect the Largest Entities).

With this information you will probably want to proceed with Detailed Model Capture.

s about
ainst the

 in the

ays to

in but

ia

m

ob-

se

e prob-
r in the
s model

a class
e. For
ur expe-

and op-
 avail-
oncepts
Speculate about Domain Objects
AKA: Map business objects onto classes

Intent: Progressively refine a domain model against source code, by defining hypothese
which objects should be represented in the system and checking these hypotheses ag
source code.

Problem

You do not know how concepts from the problem domain are mapped onto classes
source-code.

This problem is difficult because:

• There are many problem domain concepts and there is a countless number of w
represent them in the programming language used.

• Lots of source-code won’t have anything to do with representing the problem doma
rather with implementing solution domain issues (user-interface, database, ...).

Yet, solving this problem is feasible because:

• You have a rough understanding of the system’s functionality (for example obtained v
Skim the Documentation and Interview During Demo), thus an initial idea of what
aspects of the problem domain should represented.

• You have development expertise, so you can imagine how you would model the proble
domain yourself.

• You are somewhat familiar with the main structure of the source code (for example
tained by Read all the Code in One Hour) and you have the necessary tools to brow
it, so that you can find your way around.

Solution

Use your development expertise to conceive a hypothetical class model representing th
lem domain. Refine that model by inspecting whether the names in the class model occu
source code and by adapting the model accordingly. Repeat the process until you’re clas
stabilizes.

Steps
1. With your understanding of the requirements and usage scenarios, develop

model that serves as your initial hypothesis of what to expect in the source cod
the names of the classes, operations and attributes make a guess based on yo
rience and potential naming conventions (see Skim the Documentation).

2. Enumerate the names in the class model (that is, names of classes, attributes
erations) and try to find them in the source code, using whatever tools you have
able. Take care as names inside the source-code do not always match with the c

like-

s) and
r hy-

rocess

o not

tion
 mod-
to an

t ap-

the
s but

f mis-

eses.

(See

 phrases
rf90b]

les up
 a 100
ing a

ng the
stand-
nt con-

f En-
they represent.1 To counter this effect, you may rank the names according to the
lihood that they appear in the source code.

3. Keep track of the names which appear in source code (confirm your hypothese
the names which do not match with identifiers in the source code (contradict you
pothesis). Note that mismatches are positive, as these will trigger the learning p
that you must go through when understanding the system.

4. Adapt the class model based on the mismatches. Such adaptation may involve
(a) renaming, when you discover that the names chosen in the source code d
match with your hypothesis;
(b) remodelling (refactoring), when you find out that the source-code representa
of the problem domain concept does not correspond with what you have in your
el. For instance, you may transform an operation into a class, or an attribute in
operation.
(c) extending, when you detect important elements in the source-code that do no
pear in your class diagram;
(d) seeking alternatives, when you do not find the problem domain concept in
source-code. This may entail trying synonyms when there are few mismatche
may also entail defining a completely different class model when there are a lot o
matches.

5. Repeat from step 2 until you obtain a class model that is satisfactory.

Hints

The most difficult step while applying this pattern is the development of an initial hypoth
Below are some hints that may help you to come up with a first class model.

• The usage scenarios that you get out of Interview During Demo may serve to define
some use cases that in turn help to find out which objects fulfil which roles.
[Jaco92a] for use cases and [Reen96a] for role modeling.)

• Use the noun phrases in the requirements as the initial class names and the verb
as the initial method names, as suggested in responsibility-driven design (See [Wi
for an in depth treatment.)

Tradeoffs

Pros
• Scale. Speculating about what you’ll find in the source code is a technique that sca

well. This is especially important because for large object-oriented programs (over
classes) it quickly becomes impractical to apply the inverse process, which is build
complete class model from source code and afterwards condensing it by removi
noise. Besides being impractical, the latter approach does not bring a lot of under
ing, because you are forced to focus on the irrelevant noise instead of the importa
cepts.

1. In one particular reverse engineering experience, we were facing source code that was a mixture o
glish and German. As you may expect, this complicates matters a lot.

 code

ools,

s,
 source
tation

e en-
s. Oth-
stem,

s a
nt as the
sess the

pplied
ode of
comer

ain him
thesis
 also in-

m the

ept as-
cludes

th-

-

• Applicability . The pattern is applicable in all situations where you have the source
available.

• Return on Investment. The technique is quite cheap in terms of resources and t
definitely when considering the amount of understanding one obtains.

Cons
• Requires Implementation Expertise. A large repertoire of knowledge about idiom

patterns, algorithms, techniques is necessary to recognize what you see in the
code. As such, the pattern should preferably be applied by experts in the implemen
language.

Difficulties
• Consistency. You should plan to keep the class model up to date while your revers

gineering project progresses and your understanding of the software system grow
erwise your efforts will be wasted. If your team makes use of a version control sy
make sure that the class model is controlled by that system too.

Rationale

If you Speculate about Domain Objects, you go through a learning process which gain
true understanding. In that sense, the contradictions of your hypotheses are as importa
confirmations, because mismatches force you to consider alternative solutions and as
pros and cons of these.

Known Uses

In [Murp97a], there is a report of an experiment where a software engineer at Microsoft a
this pattern (it is called 'the Reflection Model' in the paper) to reverse engineer the C-c
Microsoft Excel. One of the nice sides of the story is that the software engineer was a new
to that part of the system and that his colleagues could not spend too much time to expl
about it. Yet, after a brief discussion then newcomer could come up with an initial hypo
and then use the source code to gradually refine his understanding. Note that the paper
cludes a description of a lightweight tool to help specifying the model, the mapping fro
model to the source code and the checking of the code against the model.

The article [Bigg94a] reports several successful uses of this pattern (it is called the ’conc
signment problem’ in the paper). The authors describe a special tool DESIRE, which in
advanced browsing facilities, program slicing, Prolog-based query language,

Related Patterns

All the patterns in the First Contact cluster are meant to help you in building the initial hypo
esis now to be refined via Speculate about Domain Objects. Afterwards, some of the pat
terns in Detailed Model Capture (in particular, Step Through the Execution) may help you
to improve this hypothesis.

s. Oth-

sis

of
t in un-
rvices.

e
e also

multi-
de can

hannel.
attern,

ad the
hat the

sis
uild a

system
ectors
What Next

After this pattern, you will have a class model representing the problem domain concept
er patterns will help you deriving other views on the system, for instance Analyze the Persist-
ent Data when you want to learn about the valuable data inside a system, or Inspect the
Largest Entities when you want to identify the important functionality.

Consider to Confer with Colleagues after you did Speculate about Domain Objects, in
order to confirm you results with other findings.

Speculate about Patterns

Intent: Like Speculate about Domain Objects, except that you build and refine a hypothe
about occurrences of architectural, analysis or design patterns.

Description

While having Read all the Code in One Hour, you might have noticed some symptoms
patterns. Knowing which patterns have been applied in the system design may help a lo
derstanding it: for instance a Singleton pattern may point to important system-wide se
You can use a variant of Speculate about Domain Objects to refine this knowledge. See th
better known pattern catalogues [Gamm95a], [Fowl97b] for patterns to watch out for. Se
[Brow96c] for a discussion on tool support for detecting patterns.

Example

You are facing a 500 K lines C++ program, implementing a software system to display
media information in real time. Your boss asks you to look at how much of the source co
be resurrected for another project. After having Read all the Code in One Hour, you noticed
an interesting piece of code concerning the reading of the signals on the external video c
You suspect that the original software designers have applied some form of observer p
and you want to learn more about the way the observer is notified of events. You will re
source code and trace interesting paths, this way gradually refining your assumption t
class "VideoChannel" is the subject being observed.

Speculate about the Architecture

Intent: Like Speculate about Domain Objects, except that you build and refine a hypothe
about the architecture of a system. Especially useful in a distributed setting, where you b
hypothesis for the interacting processes in a distributed system.

Description

“A software architecture is a description of the subsystem and components of a software
and the relationships between them” [Busc96a] (a.k.a. Components and Conn

gn of a

stems
m, you
corre-

ses ex-
6a] for
tyles.
gram-
[Shaw96a]). The software architecture is typically associated with the coarse level desi
system and as such it is crucial in understanding the overall structure.

Moreover, the object-oriented paradigm is often applied in the context of distributed sy
with multiple cooperating processes. To understand the inner workings of such a syste
must know about its architecture as this will help you mapping parts of the code to the
sponding process.

Therefore, a variant of Speculate about Domain Objects may be applied to infer which
components and connectors exist, or in the context of a distributed system, which proces
ist, how they are launched, how they get terminated and how they interact. (See [Busc9
a catalogue of architectural patterns and [Shaw96a] for a list of well-known architectural s
See [Lea96a] for some typical patterns and idioms that may be applied in concurrent pro
ming and [Schm00a] for architectural patterns in distributed systems.)

.

 im-

traces

s
ata in-

a-

n-
atabase

ia

able ob-
the rest

se steps

onds to

spond-

tween
xplic-
Analyze the Persistent Data
Intent: Learn about objects that are so valuable that they are stored in a database system

Problem
You do not know which objects are valuable for the functioning of the system.

This problem is difficult because:

• “Valuable” is a subjective property, depending on which functionality is considered
portant for your reverse engineering project.

• Objects are run-time entities while most system descriptions are static. Run-time
quickly generate huge amounts of data.

Yet, solving this problem is feasible because:

• The software system employs some form of a database to make its data persistent. Thu
there exists some form of database schema providing a static description of the d
side the database.

• The database comes with the necessary tools to inspect the actual objects inside the d
tabase, so you can exploit the presence of legacy data to fine-tune your findings.

• You have some expertise with mapping data-structures from your implementation la
guage onto a database schema, enough to reconstruct a class model from the d
schema.

• You have a rough understanding of the system’s functionality (for example obtained v
First Contact), so you can put additional information in context.

Solution
Check the entities that are stored in the database, as these most likely represent valu
jects. Derive a class model representing those entities to document that knowledge for
of the team.

Steps

The steps below assume you start with a relational database, which is quite a typical situation
with object-oriented systems. If you have another kind of database system, some of the
may still be applicable.

Note that steps 1-3 are quite mechanical and can be automated quite easily.

1. Collect all table names and build a class model, where each table name corresp
a class name.

2. For each table, collect all column names and add these as attributes to the corre
ing class.

3. Collect all foreign keys relationships between tables and draw an association be
the corresponding classes. (If the foreign key relationships are not maintained e

aming

d in the
nce rela-
tations

ble, as
 rela-
ese ta-

case,
ce re-

 a sit-
repre-
licated
s. To
ck the
itly in the database schema, then you may infer these from column types and n
conventions.)

After the above steps, you will have a class model that represents the entities being store
relational database. However, because relational databases cannot represent inherita
tionships, there is still some cleaning up to do. (The terminology for the three represen
of inheritance relations in steps 4-6 stems from [Fros94a].)

4. Check tables where the primary key also serves as a foreign key to another ta
this may be a “one to one” representation of an inheritance relationship inside a
tional database. Examine the SELECT statements that are executed against th
bles to see whether they usually involve a join over this foreign key. If this is the
transform the association that corresponds with the foreign key into an inheritan
lationship. (see figure 2 (a)).

5. Check tables with common sets of column definitions, as these probably indicate
uation where the class hierarchy is “rolled down” into several tables, each table
senting one concrete class. Define a common superclass for each cluster of dup
column definitions and move the corresponding attributes inside the new clas
name the newly created classes, you can use your imagination, or better, che
source code for an applicable name. (see figure 2 (b))

Figure 2: Mapping a series of relational tables onto an inheritance hierarchy.
(a) one to one; (b) rolled down; (c) rolled up

Person
id: ObjectID
name: String
address: String

Student
studentNr: Integer
class: String

Teacher
salary: Real

Person
id: ObjectID
name: String
address: String

Student
id: ObjectID
studentNr: Integer
class: String

Teacher
id: ObjectID
salary: Real

Inheritance Hierarchy
Tables with foreign key relationships

Student
id: ObjectID
name: String
address: String
studentNr: Integer
class: String

Teacher
id: ObjectID
name: String
address: String
salary: Real

Tables with common column definitions

Person
id: ObjectID
name: String
address: String
studentNr: Integer<<optional>>
class: String<<optional>>
address: String<<optional>>
salary: Real<<optional>>
address: String<<optional>>
salary: Real<<optional>>

Large table with many optional columns

(a)

(b)
(c)

dicate
 have
nst this
, then
quested

 model
should
ries are

mu-
d with
eople
resent,

 the
hat this

s, it
attern

t he
ntation

pertise

ce of
st op-
o, the da-
re, its
ction.

ftware
access
 There-
6. Check tables with many columns and lots of optional attributes as these may in
a situation where a complete class hierarchy is “rolled up” in a single table. If you
found such a table, examine all the SELECT statements that are executed agai
table. If these SELECT statements explicitly request for subsets of the columns
you may break this one class into several classes depending on the subsets re
(see figure 2 (c))

When you have incorporated the inheritance relationships, consider to improve the class
exploiting the presence of the legacy system as a source of information. In particular you
inspect data samples to check for missing constraints and you should check at which que
executed against the database engine to infer missing foreign keys.

Tradeoffs

Pros
• Team communication. By capturing the database schema you will improve the com

nication within the reverse engineering team and with other developers associate
the project (in particular the maintenance team). Moreover, many if not all of the p
associated with the project will be reassured by the fact that the data schema is p
because lots of development methodologies stress the importance of the data.

• Model of critical information . The database usually contains the critical data, hence
need to model it because whatever future steps you take you should guarantee t
critical data is maintained.

Cons
• Limited Scope. Although the database is crucial in many of today’s software system

involves but a fraction of the complete system. As such, you cannot rely on this p
alone to gain a complete view of the system.

• Requires Database Expertise. The pattern requires a good deal of knowledge abou
underlying database plus structures to map the database schema into the impleme
language. As such, the pattern should preferably be applied by people having ex
in mappings from the chosen database to the implementation language.

Difficulties
• Polluted Database Schema. The database schema itself is not always the best sour

information to reconstruct a class model for the valuable objects. Many projects mu
timize database access and as such often sacrifice a clean database schema. Als
tabase schema itself evolves over time, and as such will slowly deteriorate. Therefo
is quite important to refine the class model using data sampling and run-time inspe

Rationale

Having a well-defined central database schema is a common practice in larger so
projects that deal with persistent data. Not only does it specify common rules on how to
certain data structures, it is also a great aid in dividing the work between team members.

rse en-

a of re-
that the
tion must

erly-
r con-
tored in

eign
ogether,
-time

, as

map ob-
ell98a],

are
s to be

o
neering
fore, it is a good idea to extract an accurate data model before proceeding with other reve
gineering activities.

Known Uses
The reverse engineering and reengineering of database systems is a well-explored are
search (see among others [Hain96a], [Prem94a], [Jahn97b]). Note the recurring remark
database schema alone is too weak a basis and that data sampling and run-time inspec
be included for successful reconstruction of the data model.

• Data sampling. Database schemas only specify the constraints allowed by the und
ing database system and model. However, the problem domain may involve othe
straints not expressed in the schema. By inspecting samples of the actual data s
the database you can infer other constraints.

• Run-time inspection. Tables in a relational database schema are linked via for
keys. However, it is sometimes the case that some tables are always accessed t
even if there is no explicit foreign key. Therefore, it is a good idea to check at run
which queries are executed against the database engine.

Related Patterns
Analyze the Persistent Data requires an initial understanding of the system functionality
obtained by applying patterns in the cluster First Contact.

There are some idioms, patterns and pattern languages that describe various ways to
ject-oriented data structures on relational database counterparts. See among others [K
[Cold99a]

What Next

Analyze the Persistent Data results in a class model for the persistent data in your softw
system. Such a data model is quite rough, but it may serve as an ideal initial hypothese
further refined by applying Speculate about Domain Objects. The data model should als
be used as a collective knowledge that comes in handy when doing further reverse engi
efforts, for instance like in the clusters Detailed Model Capture and Prepare Reengineer-
ing. Consequently, consider to Confer with Colleagues after Analyze the Persistent Data.

.

s of

ent.

 the

ia

lly

ide the
ethods).
he same
 the en-

rics.

 sys-
as po-
t of
esting
er of
dica-
Inspect the Largest Entities

Intent: Identify important code by using a metrics tool and inspecting the largest entities

Problem

You do not know where the important functionality is implemented in the million line
source code you are facing.

This problem is difficult because:

• There is no easy way to discern important from less important code.

• The system is large, so there is too much data to inspect for an accurate assessm

Yet, solving this problem is feasible because:

• You have a metrics tool at your disposal, so you can quantify the size of entities in
source-code.

• You have a rough understanding of the system’s functionality (for example obtained v
First Contact), so you can put additional information in context.

• You have the necessary tools to browse the source-code, so you can verify manua
whether certain entities are indeed important.

Solution

Use the metrics tool to collect a limited set of measurements concerning the entities ins
software system (i.e., the inheritance hierarchy, the packages, the classes and the m
Display the results in such a way that you can easily assess different measurements for t
entity. Browse the source code for the large or exceptional entities to determine whether
tity represents important functionality.

Steps

The following steps provide some heuristics to identify important functionality using met

1. Identify large inheritance hierarchies.

As inheritance is the most commonly used modeling concept in object-oriented
tems it is a good idea to identify the largest subtree in the inheritance hierarchy
tential candidates for providing important functionality. To do this, compile a lis
classes with the metrics "Number of Descendant Classes" and "Hierarchy N
Level" as the main indicators, and "Number of Methods for Class" plus "Numb
Attributes for Class" as secondary indicators. Sort the list according the main in

 hier-

ce it is
sses
ods

e list
k for

system,
orth-

 deli-
w are

the
den-

g all
f pars-

t-
y. Here
 reason

de or
tors to identify those classes at the root or at the bottom of the large inheritance
archies (see Table 1).

2. Classes.
Classes represent the unit of encapsulation in an object-oriented system, hen
worthwhile to identify the most important ones. To do this, compile a list of cla
with the metric "Lines of Code for Class" as main indicator and "Number of Meth
for Class" plus "Number of Attributes for Class" as secondary indicator. Sort th
according to each of the criteria and inspect to top ten of each of them. Also, loo
classes where the measurements do not correlate like the other classes in the
they represent classes with exceptionally high or low values and are probably w
while to investigate further (see Table 2).

Hints

Identifying important pieces of functionality in a software system via measurements is a
cate activity which requires expertise in both data collection and interpretation. Belo
some hints you might consider to get the best out of your data.

• Which metrics to collect? In general, it is better to stick to the simple metrics, as
more complex ones involve more computation, yet will not perform better for the i
tification of large entities.
For instance, to identify large methods it is sufficient to count the lines by countin
carriage returns or new-lines. Most other method size metrics require some form o
ing and this effort is usually not worth the gain.

• Which metric variants to use? Usually, it does not make a lot of difference which me
ric variant is chosen, as long as the choice is clearly stated and applied consistentl
as well, it is preferable to choose the most simple variant, unless you have a good
to do otherwise.
For instance, while counting the lines of code, you should decide whether to inclu

Number of
Descendant Classes

Hierarchy Nesting
Level

Number of Methods &
Attributes for Class

(a) root of large
inheritance hierarchy

large small (~= 0) Large values indicate a
lot of impact on the
subclasses.

(b) leaves of large
inheritance hierarchy

small (~= 0) large Small values indicate a
lot of impact from the
parent classes.

Table 1: Identify large inheritance hierarchies.

Lines of Code for
Class

Number of Methods
for Class

Number of Attributes
for Class

(a) large code size large Uncorrelated

(b) many methods Uncorrelated large Uncorrelated

(c) many attributes Uncorrelated Uncorrelated large

Table 2: Identify large classes.

s been
usu-
g the

 it
pplying
s go
 in the
 rely
 can

 some

on the
ily have
t your
any

 large
ortant

care
entity is
nts for
bclass-
ant.

uld be
tter to

ty, and
les ac-
lues.

her
r, met-
code
y quite
e diffi-

rge
ber of
 often

. Still,

en
exclude comment lines, or whether you count the lines after the source code ha
normalized via pretty printing. However, when looking for the largest structures it
ally does not pay off to do the extra effort of excluding comment lines or normalizin
source code.

• What about coupling metrics? Part of what makes a piece of code important is how
is used by other parts of the system. Such external usage may be revealed by a
coupling metrics. However, coupling metrics are usually quite complicated, thu
against our principle of choosing simple metrics. Moreover, there is no consensus
literature on what constitute “good” coupling metrics. Therefore, we suggest not to
on coupling metrics. If your metrics tool does not include any coupling metrics you
safely ignore them. Otherwise it is better to calculate them after you have identified
large entities.

• Which thresholds to apply? Due to the need for reliability, it is better not to apply
thresholds.1 First of all, because selecting threshold values must be done based
coding standards applied in the development team and these you do not necessar
access to. Second, because “large” is a relative notion and thresholds will distor
perspective of what constitutes “large” within the system as you will not know how m
“small” entities there are.

Note that many metric tools include some visualization features to help you scan
volumes of measurements and this is usually a better way to quickly focus on imp
entities.

• How to interpret the results? Large is not necessarily the same as important, so
must be taken when interpreting the measurement data. To assess whether an
indeed important, it is a good idea to simultaneously inspect different measureme
the same entity. For instance, combine the size of the class with the number of su
es, because large classes that appear high in a class hierarchy are usually import

However, formulas that combine different measurements in a single number sho
avoided as you loose the sense for the constituting elements. Therefore it is be
present the results in a table, where the first column shows the name of the enti
the remaining columns show the different measurement data. Sorting these tab
cording to the different measurement columns will help you to identify extreme va

• Should I browse the code afterwards? Measurements alone cannot determine whet
a entity is truly important: some human assessment is always necessary. Howeve
rics are a great aid in quickly identifying entities that are potentially important and
browsing is necessary for the actual evaluation. Note that large entities are usuall
complicated, thus understanding the corresponding source code may prove to b
cult.

• What about small entities? Small entities may be far more important than the la
ones, because good designers tend to distribute important functionality over a num
highly reusable and thus smaller components. Conversely, large entities are quite
irrelevant as truly important code would have been refactored into smaller pieces

1. Most metric tools allow you to focus on special entities by specifying some threshold interval and th
only displaying those entities where the measurements fall into that interval.

 enti-
ould
 code

se the
rent
n de-
ality.

will
at you

llect
ples is

se they
vest-
 brows-

lps in
98b],
ent to
to as-

data,
d data.
hib-
different larger entities will share the important smaller entities, thus via the larger
ties you are likely to identify some important smaller entities too. Anyway, you sh
be aware that you are only applying a heuristic: there will be important pieces of
that you will not identify via this pattern.

Tradeoffs

Pros

• Scale. The technique is readily applicable to large scale systems, mainly becau
metrics tool typically returns 20% of the entities for further investigation. When diffe
metrics are combined properly (preferably using some form of visualization) one ca
duce quite rapidly which parts of the system represent important chunks of function

Cons

• Inaccurate. Quite a lot of the entities will turn out not to be important and this you
only know after you analyzed the source code. Moreover, there is a good chance th
will miss important functionality.

Difficulties

• Interpretation of data . To really assess the importance of a code entity, you must co
several measurements about it. Interpreting and comparing such multi-valued tu
quite difficult and requires quite a lot of experience.

Rationale

The main reason why size metrics are often applied during reverse engineering is becau
provide a good focus (between 10 to 20/% of the software entities) for a relatively low in
ment. The results are somewhat unreliable, but this can easily be compensated via code
ing.

Known Uses

In several places in the literature it is mentioned that looking for large object entities he
program understanding (see among others, [Mayr96a], [Kont97a], [Fior98a], [Fior
[Mari98a], [Lewe98a], [Nesi98a]). Unfortunately, none of these incorporated an experim
count how much important functionality remains undiscovered. As such it is impossible
sess the reliability of size metrics for reverse engineering.

Note that some metric tools visualize information via typical algorithms for statistical
such as histograms and Kiviat diagrams. Visualization may help to analyze the collecte
Datrix [Mayr96a], TAC++ [Fior98a], [Fior98b], and Crocodile [Lewe98a] are tools that ex
it such visualization features.

func-
, if you
lly,

didates
]), just
Related Patterns

What Next

By applying this pattern, you will have identified some entities representing important
tionality. Some other patterns may help you to further analyze these entities. For instance
Step Through the Execution you will get a better perception of the run-time behavior. Fina
in the case of a object-oriented code, you can Derive the “true” Public Interface to find out
how a class is related to other classes.

Even if the results have to be analyzed with care, some of the larger entities can be can
for further reengineering: large methods may be split into smaller ones (see [Fowl99a
like big classes may be cases of a God Class.

nding
994.

 The

n in

w-

 Stad,

ss In-

via

cteri-

C++

.

g:

p.43-

s, Add-

orks

e En-
, no.

riented
ead-

ACM

ets as
EC/
Chapter 3

References
[Bigg94a] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster, "Program Understa

and the Concept Assignment Problem", Communications of the ACM, Vol. 37(5), May 1

[Booc94a] Grady Booch, Object Oriented Analysis and Design with Applications (2nd edition),
Benjamin Cummings Publishing Co. Inc., 1994.

[Brow96c] Kyle Brown, “Design Reverse-Engineering and Automated Design Pattern Detectio
Smalltalk,” Ph.D. thesis, North Carolina State University, 1996.

[Brow98a] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III and Thomas J. Mo
bray, “AntiPatterns,” 1998.

[Busc96a] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael
Pattern-Oriented Software Architecture — A System of Patterns, John Wiley, 1996.

[Cold99a] Jens Coldewey, Wolfgang Keller and Klaus Renzel, Architectural Patterns for Busine
formation Systems, Publisher Unknown, 1999, To Appear.

[Deme00a] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz, “Finding Refactorings
Change Metrics,” OOPSLA’2000 Proceedings, ACM Press, 2000.

[Fior98a] F. Fioravanti, P. Nesi, and S. Perli, "Assessment of System Evolution through Chara
zation," ICSE’1998 Proceedings, IEEE Press, 1998.

[Fior98b] F. Fioravanti, P. Nesi, and S. Perli, "A Tool for Process and Product Assessment of
Applications," CSMR’1998 Proceedings, IEEE Press, 1998.

[Fowl97b] Martin Fowler, Analysis Patterns: Reusable Objects Models, Addison-Wesley, 1997

[Fowl99a] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refactorin
Improving the Design of Existing Code, Addison-Wesley, 1999.

[Fros94a] Stuart Frost, "Modeling for the RDBMS legacy", Object Magazine, September 1994, p
51.

[Gamm95a] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Pattern
ison Wesley, Reading, MA, 1995.

[Gold95a] Adele Goldberg and Kenneth S. Rubin, Succeeding With Objects: Decision Framew
for Project Management, Addison-Wesley, Reading, Mass., 1995.

[Hain96a] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick and D. Roland, “Database revers
gineering: From requirements to CARE Tools,” Automated Software Engineering, vol. 3
1-2, June 1996.

[Jaco92a] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard, Object-O
Software Engineering — A Use Case Driven Approach, Addison-Wesley/ACM Press, R
ing, Mass., 1992.

[Jaco97a] Ivar Jacobson, Martin Griss and Patrik Jonsson, Software Reuse, Addison-Wesley/
Press, 1997.

[Jahn97b] Jens. H. Jahnke, Wilhelm. Schäfer and Albert. Zündorf, “Generic Fuzzy Reasoning N
a Basis ofr Reverse Engineering Relational Database Applications,” Proceedings of ES
FSE'97, LNCS, no. 1301, 1997, pp. 193-210.

n-
Bush-

sing

n-Wes-

elop-
e

ge
emey-

ction
96.

y,”

8.

g of
49.

od,

riented
2000.

 Disci-

ed
[Kell98a] Wolfgang Keller and Jens Coldewey, “Accessing Relational Databases: A Pattern La
guage,” Pattern Languages of Program Design 3, Robert Martin, Dirk Riehle and Frank
mann (Eds.), pp. 313-343, Addison-Wesley, 1998.

[Kont97a] K. Konogiannis, "Evaluation Experiments on the Detection of Programming Patterns U
Software MEtrics," In WCRE’1997 Proceedings, IEEE Press, 1997.

[Lea96a] Doug Lea, Concurrent Programming in Java, Design Principles and Patterns, Addiso
ley, The Java Series, 1996.

[Lewe98a] C. Lewerentz and F. Simon, "A Product Metrics Tool Integrated into a Software Dev
ment Environment," ECOOP’98 Workshop Reader, Lecture Notes in Computer Scienc
1543, Springer-Verlag 1998.

[Mari98a] Radu Marinescu, “Using Object-Oriented Metrics for Automatic Design Flaws in Lar
Scale Systems,” Object-Oriented Technology (ECOOP'98 Workshop Reader), Serge D
er and Jan Bosch (Eds.), LNCS 1543, Springer-Verlag, 1998, pp. 252-253.

[Mayr96a] J. Mayrand, C. Leblanc and E. Merlo, "Experiment on the Automatic Detection of Fun
Clones in a Software System Using Metrics", ICSM 1996 Proceedings, IEEE Press 19

[Murp97a] Gail Murphy and David Notkin, “Reengineering with Reflexion Models: A Case Stud
IEEE Computer, vol. 8, 1997, pp. 29-36.

[Nesi98a] P. Nesi, "Managing OO Projects Better", IEEE Software, July/August, pp.50-60, 199

[Prem94a] William J. Premerlani and Michael R. Blaha, “An Approach for Reverse Engineerin
Relational Databases,” Communications of the ACM, vol. 37, no. 5, May 1994, pp. 42-

[Reen96a] Trygve Reenskaug, Working with Objects: The OOram Software Engineering Meth
Manning Publications, 1996.

[Schm00a]Douglas C. Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann, Pattern-O
Software Architecture: Patterns for Concurrent and Networked Objects, Wiley & Sons

[Shaw96a]Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging
pline, Prentice-Hall, 1996.

[Wirf90b] Rebecca Wirfs-Brock, Brian Wilkerson and Lauren Wiener, Designing Object-Orient
Software, Prentice Hall, 1990.

	A Pattern Language for Reverse Engineering
	Reverse Engineering Patterns
	1. Introduction
	2. Clusters of Patterns

	Initial Understanding
	Speculate about Domain Objects
	Analyze the Persistent Data
	Inspect the Largest Entities

	References

