

A Group Based Approach for
Coordinating Active Objects

Juan Carlos Cruz, Stéphane Ducasse

1

Abstract.

Although coordination of concurrent objects is a fundamental as-
pect of object-oriented concurrent programming, there is only little support
for its specification and abstraction at the language level. This is a problem
because coordination is often buried in the code of the coordinated objects,
leading to a lack of abstraction and reuse. Here we present CoLaS, a coordi-
nation model and its implementation based on the notion of Coordination
Groups. By clearly identifying and separating the coordination from the co-
ordinated objects CoLaS provides a better abstraction and reuse of the coor-
dination and the coordinated objects. Moreover CoLaS’s high dynamicity
provides better support for coordination of active objects.

1 Introduction

Coordination technology addresses the construction of open, flexible systems from ac-
tive and independent software entities in concurrent and distributed systems. Although
coordination is a fundamental aspect of object-oriented programming languages for
concurrent and distributed systems, existing object-oriented languages provide only
limited support for its specification and abstraction [Frol93a, Aksi92a]. Furthermore, in
these languages it is not possible to abstract coordination patterns from the representa-
tion of the coordinated objects. Coordination policies are generally hard-wired into ap-
plications making them difficult to understand, modify and customize. This is a serious
problem when developing open and flexible systems. In those systems the coordination
policies need to be adapted dynamically to respond to new coordination requirements.

In this paper we introduce a coordination model called CoLaS based on the notion
of

coordination groups

. The CoLaS coordination model is based on the specification
and

enforcement

 of cooperation protocols, multi-action synchronizations, and proactive
behaviour within groups of collaborating active objects. The current version of CoLaS
is implemented in Smalltalk on top of the Actalk platform [Brio96a].

Coordination groups are high-level abstractions for managing the coordination as-
pect in concurrent object-oriented systems. We roughly define a

 coordination group

 as
a set of policies that regulates the activities of a group of active objects — called

par-
ticipants

. Groups are specified independently of the internal representation of their par-
ticipants. This independence allows for a clear separation of computation and coordina-
tion concerns (as promoted by coordination languages [Gele92a]). Separation of con-
cerns promotes design with a greater potential for reuse. Active objects may be reused
independently of how they are coordinated, and coordination patterns can be reused in-

1.

Author’s address:

 Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10,
CH-3012 Berne, Switzerland.

Tel:

 +41 (31) 631.3315.

Fax:

 +41 (31) 631.3965.

E-mail:

 {cruz, ducasse}@iam.unibe.ch.

WWW:

 http://www.iam.unibe.ch/~cruz

.

dependently on different groups of active objects. Coordination groups support dynam-
ic evolution of coordination in three distinct axes: (1) groups are created dynamically
at any time; (2) participants join and leave the coordination groups whenever they want,
and (3) their behaviour can be modified dynamically to adapt to new coordination re-
quirements.

This paper is organized as follows: Section 2 discusses existing problems in the re-
alization of the coordination in software systems, and establishes a list of requirements
for an ideal coordination language for active objects. Section 3 introduces the CoLaS
coordination model. Section 4 goes into the details by describing how CoLaS proposes
a solution to the classical Gas Station example [Helm85a]. Section 5 presents some dy-
namic aspects of the approach. Section 6 illustrates proactive behaviour using the Elec-
tronic Vote example [Mins97a]. Section 7 evaluates the CoLaS model with respect to
the problems and requirements defined in Section 2. Finally Section 8 concludes with
a discussion evaluating our contributions compared with related work.

2 Language Support for Coordination in COO Systems

We consider that the primary tasks of coordination in concurrent object systems
(COOs) are: (1) to support the creation of active objects, (2) to enforce cooperation ac-
tions between active objects, (3) to synchronise the occurrence of those actions in the
system, and (4) to enforce proactive behaviour [And96b] on the system based on the
state of the coordination. Providing a

high level

 construct for explicitly specifying co-
ordination separately from the computation and supporting dynamic evolution of the re-
quirements addresses the following common problems:

No separation of computational and coordination concerns.

In most con-
current object systems coordination policies are hard-coded into the actions of the co-
operating objects [Frol93a, Lope97a] making understanding, modification and custom-
isation difficult. This lack of separation of concerns promotes design with poor poten-
tial for reuse [Aksi92a]. In those systems objects cannot be reused independently of
how they are coordinated and coordination patterns cannot be reused independently on
different groups of objects.

Lack of high level coordination abstractions.

Existing concurrent object-ori-
ented languages (COOLs) offer low level support for the expression and abstraction of
complex object cooperations and large scale synchronizations involving more than just
a pair of objects [Aksi92a]. For example, in Java coordination can be modelled at a very
low level of abstraction: threads model asynchronous activities;

the synchronized

 key-
word,

 the wait

,

notify

 and

notifyAll

 methods are used to coordinate activities across
threads. While the set of provided constructs can be used to solve non trivial coordina-
tion problems, in practise only expert programmers are able to handle them appropri-
ately. Java programmers tend to rely on design patterns [Lea96a] to solve common co-
ordination problems.

Dynamic Evolution of Coordination.

The fact that coordination is mixed within
the application code makes the coordination evolution difficult to realize. Indeed, three

main changes in a coordination group can impact it: (1) the

creation

 of new coordina-
tion groups, (2) the

addition/removal of new participants

 to a coordination group (i.e.
new objects come into play or leave the application), and (3) the

addition/removal of
coordination policies

. The changes range broadly from local redefinition and recompi-
lation of coordination and/or participants to the overall system redefinition and recom-
pilation

The integration of coordination into a COOL should propose a solution to these
problems. In the following we elaborate on the requirements for such an ideal language.

2.1 Requirements for a Coordination Language for Active Objects

Coordination Specification.

Are the coordination policies fixed within the sys-
tem? Can coordination policies be incrementally specified? Is the coordination ex-
pressed declaratively or procedurally?

It must be possible for programmers to define new coordination policies
[Mins97a] within the system, their specification should be

user-defined

. Contrary to
Synchronizers [Frol93a] that do not support incremental definition of the synchroniza-
tion policies, the coordination policies should be defined

incrementally

 from others like
in [Aksi94a, Mukh95a, Duca98c]. Finally, as proposed in [Frol93a, Andr96b, Mins97a]
policies should be

declarative

 to avoid programmers deal with low-level details on how
the coordination occurs.

Coordination Properties.

Is the coordination: data-driven or control driven
[Arbad96b]? Transparently integrated in the host languages? Non-intrusive? Is the co-
ordination centralized (i.e. objects are coordinated using a central coordinator agent),
decentralized (i.e. objects communicate explicitly to realize the coordination) or hybrid
(i.e. achieved through the cooperation of both the objects and a coordinator agent)
[Mukh95a]?

As COOLs promote data encapsulation and behaviour over data, the coordination
in COOs must be

control driven

[Frol93a, Mukh95a, Arba96b, Mins97a].

Contrary to Linda based approaches [Kiel96a] where the coordinated objects are
aware of the virtual shared space to which they communicate, coordination should be

transparent

 from the point of view of the coordinated objects [Frol93a, Mukh95a,
Mins97a]. Moreover, it should be

non-intrusive

: based on public interface of the coor-
dinated object and not relying on their internal data.

Finally, the coordination must be based on a

hybrid

 model [Frol93a, Aksi94b,
Mukh95a, Mins97a]. The problem with centralized models [Agha93c, Andr96b] is that
objects are forced to interact with a coordinator agent, and with decentralized models
[Papa96a] is that objects must know other objects to realize coordination. The reusabil-
ity of objects and coordination is limited in both cases.

Coordination Behaviour.

Is coordination limited to synchronization of actions; or
Can actions be enforced [Duca98c] and/or initiated [Andr96b] by the system? What
kinds of information should be referred to by the coordination policies [Bloo79a]?

Coordination should not be limited (as in [Frol93a,Aksi94a]) to the synchroniza-
tion of messages, it should be possible to enforce actions in coordinated objects as a re-
action to certain messages received by the objects. Moreover, it should be possible to
initiate actions in the system (i.e. proactive actions) depending on the state of the coor-
dination [Andr96b, Mins97a]. The coordination state should take into account the state
of the coordinated objects [Papa96a] and the history of the coordination.

Evolution.

Can coordination policies be created and/or modified dynamically? Do co-
ordination policies support the addition and removal of coordinated objects? Can we de-
fine new coordination patterns dynamically?

The coordination should be highly

dynamic

: objects must be able to join and/or leave
the coordination at any time, coordination policies must be modifiable on the fly, and
new coordination patterns must be able to be created at run-time [Andr96b]. A highly
dynamic system will be able to respond to new coordination requirements.

Formal Properties.

Can we prove that the behaviour of an object is compatible with
the coordination policies of the system? Can we prove that the coordination will devel-
op correctly (i.e. safe)?

Ideally we would like to have a formal model fully integrated to the coordination lan-
guage that checks the ability of objects to be coordinated. Furthermore, we would like
to be able to prove certain safety and liveness properties of the coordination like dead-
lock freeness, termination, etc. The formal model should not be limited to the specifi-
cation and the verification of the coordination as in [Alle94c] but causally connected to
the language in the sense of “executable specification”.

A Quick Overview of CoLaS.

According to these requirements, CoLaS is a

hybrid

model that supports

user-defined explicit

 and

non-intrusive

 object group coordination
based on the

transparent

synchronisation and

enforcement

 of exchanged messages.
Moreover, coordination is not limited to coordinator state. CoLaS supports the

dynamic

evolution of the coordination.

3 The CoLaS Coordination Model

We propose a coordination model for COOs based on the notion of coordination groups.
A coordination group specifies, encapsulates and enforces the coordination of a group
of cooperating concurrent objects. The CoLaS model is built out of two kind of entities:
the participants and the coordination groups.

3.1 Participants

In CoLaS the participants are

active objects

 [Briot96a]: objects that have control over
concurrent message invocations. Incoming messages are stored into a mailbox until the
object is ready to process them. By default, an active object treats its incoming messag-
es in a sequential way. In CoLaS active objects communicate by exchanging messages
concurrently in an

asynchronous

 way. Replies are managed using

explicit futures

 so the
objects are not blocked while waiting for their replies.

3.2 Coordination Groups

A

Coordination Group

 (group in the following) is an entity that specifies and enforces
the coordination of a group of participants to perform a common task. According to our
notion of coordination the primary tasks of a group are: (1) to enforce cooperation ac-
tions between participants, (2) to synchronize the occurrence of those actions, and (3)
to enforce proactive actions [Andr96b] (in the following proactions) in participants
based on the state of the coordination.

Coordination Specification.

A group is composed of five elements: a Role Speci-
fication, a Coordination State, a Cooperation Protocol, Multi-Action Synchronizations
and Proactions (Fig. 1).

•

The Role Specification:

 defines the roles that participants may play in the group.
Similar to connector roles [Alle94c], a role identifies abstractly entities sharing
the same coordination behavioural specification within the group. Each role has
an associated role interface.

•

The Coordination State:

 defines information needed for the group coordination.
It is global to the group and/or local to each participant in a given role.

•

The Cooperation Protocol:

 defines implications between participant actions (e.g.
the treatment of a message implies some other actions).

•

The Multi-Action Synchronizations:

 specifies synchronisation constraints over
messages exchanged by participants.

•

The Proactions:

 specifies actions that must be executed by the group depending
on the coordination state, independently of the messages exchanged by the par-
ticipants.

The last three elements are specified using rules [Andr96b].

Object Group Participation.

Objects join groups by enrolling to group

roles

. To
play a role in a group, an object should possess at least the functionalities required by
this role (interface compatibility). A role can be played by more than one object. Ob-
jects join and leave a group at any time without disturbing other participants.

Cooperation
Protocol

R1 R2

R3

Coordination Group

rules
...

message

Participants

participant

non-coordinated

role

 objectcoord.
state

Figure 1 a Coordination Group

Coordination Enforcement.

When a participant handles a message waiting in its
mailbox, the group checks if cooperation and/or multi-action synchronisation rules ap-
ply to this message. If so, the group enforces them (e.g. sends new messages, forbid oth-
ers, etc.). Synchronisation rules are verified prior to the cooperation rules. They con-
strain the execution of the message and the actions specified in the cooperation rules.
In contrast, as proaction rules do not depend on messages but on the state of coordina-
tion they are repeatedly checked. In every case, the group guarantees the consistency of
participants during the enforcement process.

4 A Detailed View of the CoLaS Model

To help in understanding CoLaS, we present the classical Gas Station example
[Helm85a]. Using this example we show the different elements of our model as well
as their characteristics. This example illustrates the following coordination problems:

•

Transfer of information between entities:

car drivers communicate with cashiers
to get authorizations to take gas from pumps. Pumps receive authorizations from
cashiers to give fuel to drivers. Money and gas representations flow between par-
ticipants.

•

Multi-action synchronizations:

 there are different synchronisation constraints
that have to be respected: cashiers must not authorize pumps to give fuel before
being paid by drivers. Pumps must not give fuel to drivers before being authorized
by cashiers.

•

Management of access to shared resources:

 Cashiers must not authorize more
drivers to take gas than there are pumps. They must prevent several drivers from
getting gas from the same pump at the same time because there is only one hose
per pump.

•

Dynamic evolution of the coordination.

 New participants can leave or join the
system (i.e. when a pump malfunctions or when new car drivers want to take gas).

4.1 A Case Study - The Gas Station System

Problem Description.

The gas station consists of

p

 pumps where car drivers can
take gas for their cars. At a particular moment in time

n

 car drivers can come to the gas
station to obtain gas, but only

p

 of them will be served at the same time. This is because
each pump has only one hose to discharge gas. A car driver first has to

pay an amount
of money to one of the

m

 cashiers. Then, the cashier orders a free pump to prepare to
pump fuel. The driver receives an authorization from the cashier to take his gas, and fi-
nally he takes the amount of gas he paid for. In Fig. 2 we show the UML description of
the different participants of the gas station as well as the interaction diagrams that de-
scribes the different cooperation actions that should be enforced during the coordina-
tion. Both actions pay(amount) and takeHose(pump) correspond to actions initiated by
car-drivers. Note that this example does not really reflect reality: the cashier should be
considered as an automatic machine but we follow the original example [Helm85a].

4.2 Role Specification

In the gas station example, participants play one of the following roles: car-drivers,
cashiers and pumps. Roles in a group are defined by sending the message

defineRoles:

to a coordination group (line 2 in Fig. 3). The minimal interface that an object should
support to play a role is specified sending the message

defineInterface:forRole:

 (e.g. an
object that participates as a cashier should at least understand the messages

receive-
Cash:

 and

convertMoneyToFuel:replyTo:

 line 4 in Fig. 3).

4.3 Coordination State

The coordination state of a group is specified by declaring variables. It is global to the
group (

group coordination variables

), and/or local to each participant (

per-role coordi-
nation variables

) in a role. Coordination state variables are created using the messag-
es:

defineVariable:initialValue:

and/or

defineParticipantVariable:forRole:initialValue:

 re-
spectively (lines 7 and 8 in Fig. 3). In the example, the per-role variable represents the
state of a pump (busy/free).The variable

isFree

 is used to guarantee exclusive access of
drivers to pumps.

CarDriver Cashier
price:Money
cash: Money

setPrice(price:Money)
receiveCash(money:Money)
convertMoneyToFuel():Fuel

Pump

tank: Fuel

prepareFuel(fuel: Fuel)
dischargeFuel()

fillPump(fuel:Fuel)

:CarDriver :Cashier :Pump

:CarDriver :Pump

pay(money)

receiveCash(money)
prepareFuel(fuel)

takeFuel(pump)

takeHose(pump)

tank: Fuel
cash: Money

pay (money: Money)
takeFuel (pump: Pump)
takeHose(pump: Pump)

dischargeFuel()

Figure 2 UML description of gas station classes, and interaction diagrams
of the cooperation actions

Figure 3 Role Specification and Coordination State of the Gas Station

1. gasStation := CoordinationGroup new name: 'gas-station'.
2. gasStation defineRoles : #('drivers' 'cashiers' 'pumps').
3. gasStation defineInterface: #(’pay:’ ’takeFuel:’ ’takeHose:’) forRole: ’drivers’.
4. gasStation defineInterface: #(’receiveCash:’ ’convertMoneyToFuel:replyTo:’)
5. forRole: ’cashiers’.
6. gasStation defineInterface: #(’prepareFuel:’ ’dischargeFuel’) forRole: ’pumps’.
7. gasStation defineVariable: ’whichPump’ initialValue: nil.
8. gasStation defineParticipantVariable: 'isFree' forRole: 'pumps' initialValue: true.

4.4 Coordination Behaviour Specification.

The coordination, i.e. the cooperation protocol, the multi-action synchronizations and
the proactions, is specified using two different types of rules [Andr96b, Mins97a,
Duca98c] as follows:

Rule1

 = <Message> <Operator> <Clauses>

Message = <Role> <MethodSelector> <Arguments>

Operator =

ImpliesBefore | ImpliesAfter | Disable | Ignore | Atomic

Rule2

 = <Condition> < ProOperator> <Clauses>

ProOperator =

Once | Always

In Rule1 <Message> describes the message being treated (the symbol “*”can be
used to specify any message). <Operator> specifies the semantics of the <Clauses>. In-
deed for the operators

ImpliesBefore

 or

ImpliesAfter

 that specify a cooperation protocol,
<Clauses> are possible

coordination actions

 (like sending a message to another partici-
pant, changing the coordination state, etc.) that occurs before or after the message exe-
cution. For the operators

Disable

,

Ignore

 and Atomic that specify multi-action synchro-
nizations, <Clauses> are synchronisation conditions (referring to the state of the group,
or to message information like the sender/receiver or arguments) that constrain the mes-
sage execution (depending on the operator the message is ignored or delayed). For the
Atomic operator, <Message> represents a set of messages that must be executed at the
same time (i.e. those messages can refer to messages in different roles). In Message
<Role> represents a role of the group and <MethodSelector> <Arguments> a message.

Rule2 specifies proactions [Andr96b]. For <ProOperator> operators Once and Al-
ways, the <Clauses> are the actions that are performed when the <Condition> referring
to the state of the coordination holds. We explain these operators later in this paper. In
CoLaS rules are added to a group by sending the message addRule:<Rule>.

4.4.1 Cooperation Protocol Specification

A cooperation protocol is specified by a set of implication rules (operators ImpliesBe-
fore and ImpliesAfter) that define coordination actions that must be triggered before or

Figure 4 Cooperation Specification

1. [r1] drivers pay: money ImpliesAfter [cashiers receiveCash: money]
2.
3. [r2] cashiers receiveCash: money ImpliesBefore [
4. | quantityReply pump |
5. quantityReply := CoordFuture new.
6. receiver convertMoneyToFuel: money replyTo: quantityReply.
7. pump := group selectAParticipantWithRole : ’pumps’
8. that : [:participant | valueVariable: 'isFree' ofParticipant: participant].
9. group setVariable : 'isFree' ofParticipant : pump value : false.
10. group setVariable : ’whichPump’ value : pump.
11. pump prepareFuel: (quantityReply getValue).
12. sender takeFuel: pump]
13.
14. [r3] drivers takeHose: pump ImpliesAfter [pump dischargeFuel]
15.
16. [r4] pumps dischargeFuel ImpliesAfter [
17. group setVariable : ’isFree’ ofParticipant : receiver value : true]

after the execution of a message. In the gas station example Fig. 4, four implication
rules are defined:

Rule 1 (line 1): The driver invokes his method pay: specifying the amount of mon-
ey of gas he wants to buy. This triggers a receiveCash: action at the cashier.

Rule 2 (line 3): The cashier receives a receiveCash: message from a driver. This
triggers a set of actions. First, the cashier converts the money into an amount of
gas (line 6). Then the group selects a free pump (line 7) and generates two mes-
sages: one to the selected pump to prepare to give fuel (line 11) and another to the
driver to indicate that he can take his gas (line 12). Additionally the state of the
pump is changed to indicate it is busy (line 9).

Rule 3(line 14): The driver invokes its method takeHose indicating he will take
gas from a pump. This triggers a dischargeFuel: action to the pump.

Rule 4(line 16): The pump receives dischargeFuel: from a driver. After the gas is
discharged the group coordination state is updated. The state of the pump is set to
free.

Coordination Actions. As shown in the above rules, the coordination actions are the
following:

• Manipulations of the coordination state (rules 2 and 4). Their value is accessed
(resp. assigned) using valueVariable: (resp. setVariable:value:) for the group co-
ordination variables and valueVariable:ofParticipant: (resp. setVariable:value:of-
Participant:) for per-role coordination state variables.

• Evaluation of participant state-predicates [Papa96a]: state predicates are used to
check conditions based on internal participant state. These kinds of actions are not
used in the gas-station example.

• Selection of a participant: a participant playing a role is selected by sending the
message selectAParticipantWithRole: <aRole> that: <predicate> (line 7) to the
group. This expression returns non-deterministically a participant playing the role
<role> satisfying the condition <predicate>.

• Sending an asynchronous message to a participant: By default messages are sent
asynchronously to participants (lines 11 and 12). If the receiver represents a role
the message is multicasted to each object playing that role.

• Sending a synchronous recursive message to a participant: As in Actalk
[Briot96a] where an active object may send a synchronous message to itself by
using the pseudo-variable self. In ColaS the pseudo variable receiver is used to
send a synchronous message to the receiver of the message triggering the rule
(line 6).

4.4.2 Multi-Action Synchronizations
While the cooperation part of the group defines the cooperation protocol, multi-action
synchronizations define constraints on how these cooperation actions occur. When a
participant wants to treat a message the group verifies if synchronisation rules apply to
this message. Depending on the rule semantics and the value of the conditions associ-
ated with the rules, messages are ignored or delayed. Because of the non-determinism

in which participant actions may occur in the concurrent system, multi-action synchro-
nisation constraints are necessary to ensure properties such as: (1) mutual exclusion, (2)
temporal ordering and (3) atomicity of invocations processed by the group.

In CoLaS these three types of synchronizations are specified by combining rules us-
ing the operators Ignore, Disable and Atomic.

• Invocation exclusions are specified using Ignore and Disable operators. They en-
sure that if a certain synchronisation condition is not satisfied a message is ig-
nored (i.e. not processed) or delayed. In Fig. 5 line 1 the variable isFree is used
in a Disable rule to control exclusion of receiveCash: invocations from drivers
when all pumps are busy.

• Temporal ordering is based on the past invocation history. The combination of
coordination state variables keeping coordination historical information and Dis-
able based rules allow one to express that invocations occur at the right time.

• Atomic based rules ensure the indivisible execution of messages in multiple ob-
jects. While the synchronisation condition is not satisfied and not all the messages
in the atomic rule are ready to be processed, those message are delayed.

Synchronisation Conditions. Inspired by [Bloo79a] CoLaS synchronisation con-
ditions refer to the following information. Note that they are basically state queries
whereas coordination actions in the cooperation protocol are state queries and changes
(message sending and coordination variable assignment).

• the invoked message (its arguments, its sender, its receiver) accessed using the
predefined variables msg, arguments, sender, and receiver lines (6,12,17 Fig. 4).

• the coordination state of the group and the coordination state of each participant
as shown in coordination actions description section (line 4 Fig. 5).

• the keyword true is used to specify rules without conditions.

• the current time in the system: Time information is used to determine the relative
order of invoked messages in participants. The current value of the time is ob-
tained by sending the message now to the group (i.e. a centralized notion of time).

• historical information: historical information concerns information about wheth-
er a given action has occurred or not. This information differs from synchronisa-
tion state information in that it refers to actions that are already completed, as op-
posed to those still in progress. Historical information are stored using group and/
or per-role coordination variables. In Fig. 4 line 9 the per-role variable isFree is
used to identify pumps already assigned to pump fuel.

Figure 5 Multi-Action Synchronisations

1. [r5] cashiers receiveCash: money Disable: [
2. | aParticipant |
3. aParticipant := group selectAParticipantWithRole : ’pumps’
4. that : [:participant | group valueVariable : 'isFree'
5. ofParticipant : participant].
6. (aParticipant isNil)]

4.4.3 Proactive Behaviour
Until now the coordination of the system has been purely reactive. Coordination Ac-
tions are done in response to the treatment of a message. But they cannot be initiated on
their own. To introduce proactive behaviour [Andr96b] CoLaS supports proactions that
ensure that certain Coordination actions are carried out by the group at a certain time,
assuming that a certain coordination condition holds at that time. Two kinds of proac-
tions are specified by the operators Once and Always. Once ensures that proactions are
executed only one time when the condition is satisfied. Always ensures that the proac-
tions are executed each time the condition is satisfied. The evaluation of the conditions
is done periodically by the group.

4.5 Participants: Creation and Enrollment in Groups
After having specified a group we present how active objects are created and then how
they join the groups.

Creation. In CoLaS active object classes are subclasses of the class ActiveObject. This
special class manages transparently to programmers all aspects related with the internal
activity of objects and their interaction with a group. Car drivers, cashiers and pumps
are represented by classes Driver, Cashier, and Pump. Instances of these classes are cre-
ated in lines 2, 5 and 6 in Fig. 6.

Enrollment. Active objects participate in a groups by playing a given role. An active
object can join a group at any time by sending a message addParticipants:withRole: to a
group. To enrol an object have to respect some interface obligations associated with the
role. These obligations guarantee to the group the capacity of the object to play a such
role in the cooperation enforced inside the group. They are verified during the enroll-
ment process.

5 Dynamic Aspects

CoLaS supports three types of dynamic coordination changes: (1) new participants can
join or leave the group at any time (as shown in Fig. 7), (2) new groups can be created
and destroyed at any time, and (3) the coordination behaviour can be changed by add-
ing and removing rules to the group (lines 1, 3, and 8 Fig. 8).

Figure 6 Creation of participants and enrollment

1. | drivers cashier pumps |
2. drivers:= OrderedCollection with: (CarDriver new name: ’Dr1’)
3. with: (CarDriver new name: ’Dr2’)
4. with: (CarDriver new name: ’Dr3’).
5. cashier := Cashier new .
6. pumps := OrderedCollection with: (Pump new name: ’P1’) with: (Pump new name: ’P2’).
7.
8. gasStation addParticipants: drivers withRole: 'drivers'.
9. gasStation addParticipant: cashier withRole: 'cashiers'.
10. gasStation addParticipants: pumps withRole: 'pumps'.

New Members Joining The Group. As shown below new participants can join or
leave a group at any time. When a pump malfunctions, drivers should not use it any
more, so it is removed from the group (line 2 Fig. 7). Line 4 shows how a new driver is
added to the group. Both operations are done transparently to the group without modi-
fying the coordination behaviour.

Coordination behaviour changes-Managing Races. The rules 1, 2 and the
rules 3,4 (Fig. 4) form two sets of cooperation actions. The first group handles the pay-
ment of the gas, and the notification and preparation of drivers and pumps. The second
group the pumping of the fuel. Drivers can decide when they want to pay, and when
they want to take their gas. In this solution it is possible that a driver pays before anoth-
er, but that the other takes the hose before, thus getting the amount of gas purchased by
the driver. In Fig. 8 we modify dynamically the coordination state and policies to avoid
this race condition. To prevent it we define a new per-role variable called whoPayed in
which we store the identification of the driver authorized to serve gas from that pump
rule 5 (line 6). We include a Ignore synchronization rule (line 8) to ignore dischargeFuel
invocations coming from drivers not authorized to take gas from that pump.

6 Illustrating Proactive Behaviour - The Electronic Vote

Now we illustrate how CoLaS supports fairness in the Electronic Vote example pro-
posed by [Mins97a]. With this example we show how proactive behavior is used in Co-
LaS to solve a coordination problem.

Problem Description. Assume that there is a specific issue on which an open group
of participants is asked to vote. Every participant in the group can initiate a vote on any
issue he chooses. Each voter may actually vote by sending a result of his vote back to
the initiator. The system must guarantee that the vote is fair: (1) a participant can vote
at most once, and only within the time period allotted for this vote, (2) the counting is

Figure 7 Dynamic addition and removal of participants

1. (p := pumps withName: ’P1’) outOfOrder.
2. gasStation removeParticipant : p.
3.
4. gasStation addParticipant: (Driver new withName: ’Dr4’) withRole: 'drivers'.

Figure 8 Managing Races

1. gasStation defineParticipantVariable: 'whoPayed' forRole: 'pumps' initialValue: nil.
2.
3. [r6] cashiers receiveCash: money ImpliesAfter [
4. | pump |
5. pump := group valueVariable:’whichPump’.
6. group setVariable: ’whoPayed’ ofParticipant: pump value: sender]
7.
8. [r7] pumps dischargeFuel
9. Ignore: [
10. | whoPayed |
11. whoPayed := group valueVariable: 'whoPayed' ofParticipant: receiver .

done correctly, and (3) the result of the vote is sent to all the participants after the dead-
line expiration.

Coordination Specification. In the electronic vote example Fig. 9, four rules de-
fine the coordination: rules 1 and 2 define cooperation rules, rule 3 a multi-action syn-
chronization rule, and rule 4 a proaction rule.

Rule 1 (line 9): A voter initializes a vote by invoking his method startVote:dead-
line: and fixes a deadline. This triggers a multicasted message voteOn:initiator: to
all members of the group by passing the initiator of the vote.

Rule 2 (line 19): When the vote initiator receives the votes of the group members
he counts them. Positive and negative votes are counted using the global coordi-
nation variables NumYes and NumNot. The participant who voted is marked as
“has voted” (the variable whoVoted associated with each voter is set to true).

Rule 3 (line 25): Results coming from voters marked as “has voted”, or coming
after deadline expiration are ignored by the initiator of the vote.

Rule 4 (line 26): Once the deadline has expired the system calculates and sends
the result of the vote to all the participants.

As votes that arrived too late and votes sent twice by the same voter should not be count-
ed they are ignored as shown in the rule 3 using the Ignore operator. The Proaction Once
rule (rule 4) is used to send the final result of the vote once the deadline of the vote ex-

1. | adminVote |
2.
3. adminVote := CoordinationGroup new name: ‘electronic-voting’.
4. adminVote defineRoles : #(‘voters’).
5. adminVote defineVariables : #(‘deadline’ ‘numYes’ ‘numNot’) initialValues : #(0 0 0).
6. adminVote defineParticipantVariable : ‘hasVoted’ forRole: ‘voters’ initialValue : false.
7. adminVote defineInterface : #(‘startVote:deadline:’ ’ voteOn:initiator:’
8. ‘opinion:replyTo:’ ‘resultOf:’ ’sendFinalResult:’)
9. forRole : ‘voters’.
10.
11. [r1] voters startVote: issue deadline: aDeadline ImpliesAfter : [
12. group setVariable: ‘deadline’ value: aDeadline.
13. voters voteOn: issue initiator: receiver]
14.
15. [r2] voters resultOf: vote ImpliesAfter : [
16. (vote = ‘Yes’)
17. ifTrue: [group incrVariable: ‘numYes’]
18. ifFalse: [group incrVariable: ‘numNot’].
19. group setVariable: ‘hasVoted’ ofParticipant: sender value: true.]
20.
21. [r3] voters resultOf: vote Ignore : [
22. (group valueVariable: ‘deadline’ < TIme now)
23. or: [group valueVariable: ‘hasVoted’ ofParticipant: sender]]
24.
25. [r4] (Time now > (group valueVariable: ‘deadline’)) Once : [
26. ((group valueVariable: ‘numYes’) >= (group valueVariable: ‘numNot’))
27. ifTrue: [voters sendFinalResult: ‘Yes’]
28. ifFalse: [voters sendFinalResult: ‘Not’]]

Figure 9 Electronic Voting

pires. Note that the presented solution does not support the confidentiality of the vote
as in [Mins97a]. This situation is not linked to the CoLaS model but is just due to the
way this example is expressed. To support vote confidentiality, the result of the vote
should be returned to a new object dedicated to this task instead of the initiator.

7 Evaluation of the CoLaS Model

We now evaluate how CoLaS answers the problems and requirements we identified in
Section 2. CoLaS evaluates positively for the following properties:

• Separation of Concerns: The coordination is not hard-wired any more into the co-
ordinated objects. The coordination and computational aspects are specified sep-
arately in distinct entities: groups and participants.

• Enforcing Encapsulation: The coordination does not refer to the internals of co-
ordinated objects. It is only expressed using the interface of the coordinated ob-
jects. Moreover, a group encapsulates the coordination information (state, behav-
iour) in a single and identifiable entity.

• Multi Object Coordination Abstraction: The coordination is not limited to two
objects but to a group of objects. Moreover, the coordination specifies abstractly
the different behaviour of the participants in terms of roles and their respective
interfaces. Roles allows one to specify the coordination behaviour independently
of the effective participant number. Thus roles specify intentionally the behaviour
of a set of objects.

• High-Level Abstraction: The programmer no longer focuses on how to do the co-
ordination but on how to express it. All the low-level operations concerning the
coordination are managed by CoLaS. For example programmers do not lock or
unlock participants to guarantee their consistency. The group protects participant
states from third-party accesses by enforcing automatic locking policies.

• Dynamic Evolution of Coordination: The coordination behaviour specification is
not rigid any more. CoLaS supports dynamic coordination changes in three dis-
tinct aspects: (1) coordination behaviour can be changed dynamically by adding/
removing new rules, (2) new coordination groups can be created and destroyed at
any time, and (3) new participants can join or leave the group at any time without
disturbing other participants.

• Coordination Specification: Coordination is expressed declaratively in CoLaS by
using rules. Coordination rules are specified by users that incrementally included
them into groups. Rules are specified independently of the coordinated entities.

In the current state of CoLaS the following aspects are not supported:

• Composability of Coordination: Existing coordination patterns cannot be com-
bined into new ones.

• Formal Properties: We do not have yet a formal model of CoLaS that we can use
to formally validate properties of the coordination layer.

• Incremental Definition of Groups.

CoLaS a Language Independent Model. CoLaS is independent of any language.
It is only based on the control of message passing. That’s why it can be implemented in
languages that provides such a functionality like CLOS, MetaAxa (a reflective exten-
sion of Java) or OpenC++ or using code instrumentation for trapping the messages.

8 Related Work and Conclusions

CoLaS. In this paper we introduced the CoLaS coordination model and its implemen-
tation in Smalltalk that supports coordination of active objects in concurrent object-ori-
ented systems. CoLaS offers a high-level construct called Coordination Group that
specifies and enforces the coordination of collaborating active objects by means of
rules. Our approach mainly differs from similar approaches in that: (1) the cooperation
is specified and enforced within the group; (2) the coordination state includes per-role
information necessary to realize coordination; (3) the coordination includes the enforce-
ment of permanent actions depending on the coordination state; (4) the state of partici-
pants is taken in account in the coordination; and (5) we support dynamic evolution of
the coordination aspect: objects can join and leave the group at any time, coordination
rules can be added and removed on the fly, and new groups can be created at run-time.

Related Work. Traditionally the coordination layer of concurrent object-oriented
systems is developed using concurrent object-oriented languages. These languages pro-
vide only limited support for the specification of an abstraction of the coordination. In
the last few years, a new set of so-called coordination languages: Linda [Gele92a],
Gamma [Bana95a], Manifold [Arba96b], ActorSpace [Agha93c], Objective Linda
[Kiel96a] to cite a few, have been developed to support the construction of coordination
layers in software system. Due to space limitation we limit ourselves the approaches
that support object-oriented concurrent programming and we focus on different com-
parisons than the ones we already made in Section 2.

 In ObjectiveLinda [Kiel96a] objects are aware of the existence of a virtual shared
space to which they must communicate. The coordination is not transparent to the co-
ordinated objects. The same situation occurs with ACT [Aksit94a] contrary to CoLaS
and [Frol93a, Mukh95a, Mins97a, Duca98c]. In CoLaS as in most of the approaches
[Frol93a, Aksit94a, Mukh95a, Andr96b, Mins97a, Duca98c] the coordination is speci-
fied and encapsulated independently of the representation of the entities they coordi-
nate. Concerning other coordination properties, CoLaS is a hybrid model (as in
[Frol93a, Aksi92a, Mukh95a, Mins97a]), the coordination is achieved through the co-
operation of both objects and a coordinator agent.

 Groups behaviour not only constrains the treatment of messages as in [Frol93a,
Aksi92a] but also enforces coordinated actions on participants. Such enforcements are
done by reacting to certain messages or by initiating actions depending on the state of
the coordination. In Moses [Mins97a] coordination actions can be enforced too but the
actions only affect the receiver of the message (i.e. forward the message once it is re-
ceived and modify the control state of the receiver). CoLaS coordination actions can be
applied to any group participant. Moreover, CoLaS coordination rules may refer to dif-
ferent coordination information including participant states via state predicates. In Mo-

ses, coordination policies refer only to the local control state of object who has received
the message, and in [Frol93a] they refer only to the state of the Synchronizer.

 One the most important aspect of CoLaS is its support for dynamic evolution of the
coordination. A group is a complete dynamic entity that can be created and destroyed
at any time, and in which coordination rules can be added and removed, and participants
can join or leave the group at any time. Approaches like [Frol93a, Aksi92a, Mins97a]
do not manage the full dynamicity of the coordination.

Acknowledgment. The authors would like to thanks Oscar Nierstrasz, Tamar Rich-
ner, Serge Demeyer and the anonymous reviewers for their valuable comments.

References
[Agha93c] G. Agha and C. J. Callsen, ActorSpace: An Open Distributed Programming Paradigm,
Proc.4th ACM Conference on Principles and Practice of Parallel Programming, ACM SIGPLAN No-
tices, vol. 28, no. 7, 1993, pp. 23-323.
[Aksi92a] M. Aksit and L. Bergmans, Obstacles in Object-Oriented Software Development, OOPSLA
’92, ACM SIGPLAN Notices, vol. 27, no. 10, Oct. 1992, pp. 341-358.
[Aksi94a] M. Aksit, K. Wakita, J. Bosch, L. Bergmans and A. Yonezawa, Abstracting Object Inter-
actions Using Composition Filters, LNCS 791, 1994, pp. 152-184.
[Alle94c] R. Allen and D. Garlan, Formalizing Architectural Connection, ICSE’94, May 1994.
[Andr96b] J.-M. Andreoli, S. Freeman and R. Pareschi, The Coordination Language Facility: Coor-
dination of Distributed Objects, TAPOS, vol. 2, no. 2, 1996, pp. 635-667.
[Arba96b] F. Arbab, The IWIM Model for Coordination of Concurrent Activities, COORDINA-
TION’96, LNCS 1061, Springer-Verlag, 1996, pp. 34-55.
[Bana95a] J.-P. Banâtre and Daniel Le Métayer, Gamma and the Chemical Reaction Model, Coordi-
nation’95 Workshop, IC Press, Londres, 1995.
[Bloo79a] T. Bloom, Evaluating Synchronization Mechanisms, Proceedings of the Seventh Symposi-
um on Operating Systems Principles, 1979, pp. 24-32.
[Brio96a] J.-P. Briot, An Experiment in Classification and Specialization of Synchronization
Schemes, LNCS, vol. 1049, Springer-Verlag, 1996, pp. 227-249.
[Duca98c] S. Ducasse and M. Guenter, Coordination of Active Objects by Means of Explicit Connec-
tors, DEXA workshops, IEEE Computer Society Press, pp. 572-577.
[Frol93a] S. Frolund and G. Agha, A Language Framework for Multi-Object Coordination,
ECOOP’93, LNCS 707, Springer-Verlag, July 1993, pp. 346-360.
[Gele92a] D. Gelernter and N. Carriero, Coordination Languages and their significance, CACM, vol.
35, no. 2, February 1992.
[Helm85a] D. Helmbold and D. Luckman. Debugging Ada Tasking Programs, IEEE Software vol. 2,
no 2, March 1985, pp. 47-57.
[Kiel96a] T. Kielmann, Designing a Coordination Model for Open Systems,COORDINATION’96,
LNCS 1061, Springer-Verlag, 1996, pp. 267-284.
[Lea96a] D. Lea, Concurrent Programming in Java — Design principles and Patterns, Addison-Wes-
ley, 1996.
[Lope97a] C.V.Lopez and G. Kiczales, "D: A Language Framework for Distributed Programming",
Tech. Rep. TR SPL97-010P9710047, Xerox Parc., 1997.
[Mins97a] N. Minsky and V. Ungureanu, Regulated Coordination in Open Distributed Systems,CO-
ORDINATION’97, LNCS 1282, Springer-Verlag, 1997, pp. 81-97.
[Mukh95a] M. Mukherji and D. Kafura, Specification of Multi-Object Coordination Schemes Using
Coordinating Environments R Draft, Virgina Tech, 1995.
[Papa96a] M. Papathomas, ATOM: An Active object model for enhancing reuse in the development
of concurrent software, RR 963-I-LSR-2, IMAG-LSR, Grenoble-France, 1996.

