
HAL Id: hal-01829183
https://hal.univ-brest.fr/hal-01829183v2

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collectors
Steven Costiou, Mickael Kerboeuf, Alain Plantec, Marcus Denker

To cite this version:
Steven Costiou, Mickael Kerboeuf, Alain Plantec, Marcus Denker. Collectors. Programming Experi-
ence 2018 (PX’18), Apr 2018, Nice, France. ACM Press, pp.9, 2018, Companion of the 2nd Interna-
tional Conference on Art, Science, and Engineering of Programming. <10.1145/3191697.3214335>.
<hal-01829183v2>

https://hal.univ-brest.fr/hal-01829183v2
https://hal.archives-ouvertes.fr

Seeking and Finding Objects at Runtime with Collectors
S. Costiou

Lab-STICC, UMR CNRS 6285
Université de Brest, France, France

costiou@univ-brest.fr

M. Kerboeuf
Lab-STICC, UMR CNRS 6285

Université de Brest, France, France
kerboeuf@univ-brest.fr

A. Plantec
Lab-STICC, UMR CNRS 6285

Université de Brest, France, France
plantec@univ-brest.fr

M. Denker
RMoD, Inria Lille, UMR CNRS 9189, CRIStAL

Université de Lille, France
marcus.denker@inria.fr

ABSTRACT
Observing and modifying object-oriented programs often means
interacting with objects. At runtime, it can be a complex task to
identify those objects due to the live state of the program. Some
objects may exist for only a very limited period of time, others can
be hardly reachable because they are never stored in variables. To
address this problem we present the Collectors. They are dedicated
objects which can collect objects of interest at runtime and present
them to the developer. Collectors are non-intrusive, removable code
instrumentations. They can be dynamically specified and injected
at runtime. They expose an API to allow their specification and
the access to the collected objects. In this paper, we present an
implementation of Collectors in Pharo, a Smalltalk dialect. We
enrich the Pharo programming and debugging environment with
tools that support the Collectors API. We illustrate the use of these
API and tools through the collection and the logging of specific
objects in a running IOT application.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware prototyping; Object oriented frameworks; Integrated and visual
development environments; Object oriented development;

KEYWORDS
Object Oriented Debugging, Debugging, Object Tracking
ACM Reference Format:
S. Costiou, M. Kerboeuf, A. Plantec, and M. Denker. 2018. Seeking and
Finding Objects at Runtime with Collectors. In Proceedings of 2nd In-
ternational Conference on the Art, Science, and Engineering of Program-
ming (<Programming’18> Companion). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Interacting with running programs is interesting for many reasons,
for example monitoring applications, reverse engineering, debug-
ging... For such interaction, the first abstraction we can look for
is the source code, that we can modify to see changes of behavior
and get feedback. But at runtime, we may want to interact with ab-
stractions closer to our programming paradigm. In object-oriented
<Programming’18> Companion, April 9–12, 2018, Nice, France
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

programming we would look for objects, as they are the main enti-
ties that structure our programs. Behavior is expressed through the
classes of these objects, in which methods are defined. Within the
control flow of these methods, we will find other objects referenced
by instance variables or temporary variables. It is tempting to adopt
a pure object-centric view [14]. We would see these variables in the
source code as objects that we can interact with. In the end, we
would deal with objects instead of using exclusively source code.

From this point of view, imagine a developer who is debugging
a running program, and is looking to its source code. One of the
objects in particular is of interest and should be, for example,
logged somewhere. The developer could look for instances of this
object’s class in the running program – which would be a very
tedious task if performed manually. He/She could also look where
this class is instantiated in the code, then dig into the running
program’s structure and try to find objects of interest. This can also
be very tedious if multiple objects of different classes should be
targeted, and even impossible for objects with very short lifespans
if the program is still running. Moreover, it becomes a bit more
complex in dynamically typed systems, like Smalltalk, Python or
Ruby. In programs written in these languages, there is no guarantee
that a reference in the code will always be of the same type [11].
The developer could also try to locate positions of interest in the
code, e.g. after a temporary variable is assigned, and insert code
that somehow mark the object, so that it can easily be retrieved
while the program is executing. This could be very intrusive,
especially if the inserted code should check for conditions before
marking the object. It also makes it unpractical: What if the
developer wants to change the condition? How to ensure that the
base code is not polluted by manual instrumentations that could be
forgotten by the developer?

To help the developer interact with objects from the variables
in the source code, we introduce the Collectors. Collectors are
first-class objects that target entities in the source code. Objects
referenced by these targets will be collected at runtime, and pre-
sented to the developer. Collectors provide a non-intrusive way
of gathering objects during the program execution and to interact
with them. They are available through an API that provides means
to:

(1) Dynamically specify in the control flow which object must
be collected

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Costiou, M. Kerboeuf, A. Plantec, and M. Denker

(2) Scope the collection of objects to specific conditions or to
specific entities (classes or objects)

(3) Provide references to the collected objects and means to
interact with them at runtime

The contribution of this paper is the description of the Collectors
solution and its API. On top of this API, we describe and show
an implementation of the Collectors tool-set in Pharo Smalltalk
[1]. It provides integrated support for the object-centric views
and interactions brought by Collectors. It is completed by an
illustration of object collection and logging in a running, remote
IOT application.

The paper is organized as follows: Section 2 explains the problem
through a simple example. Section 3 introduces Collectors. Section
4 demonstrates Collectors through a simple IOT application and
Section 5 discusses the Collectors solution and its limitations. Sec-
tions 6 explores other possibilities and related work. We conclude in
Section 7 with working directions and a summary of the Collectors
proposition.

2 THE PROBLEM
We consider the case of running object-oriented programs, for
which the developer needs to interact with specific objects. This
need may come from various reasons, for example debugging. A
developer may want to find objects of interest, e.g. to change their
behavior or to log their state. Looking for these objects can be a
problem because this need appears at runtime. A first research
could provide some results, but it may need to narrow down this
search to find more specific objects. That is often the case while
debugging, when exploring a runtime behavior to find bugs. Fur-
thermore, the objects found may have been changed in some way
by the developer, e.g. through behavior adaptation. In that case
they must be referenced somewhere if the developer wants to re-
vert these changes in the future. In the following, we describe and
emphasize this problem through an example of code written in a
Smalltalk fashion.

2.1 The IOT application example
Let us imagine an IOT application on a device with a temperature
sensor and a light sensor. The application has a main class IotApp
which runs a loop. Every second in this loop, the IotApp reads
the temperature and the light from the sensors. The GenericSensor
class models common behaviors and interface of all sensors. It
implements a method #readChannel:, which queries the sensor and
returns an interpreted physical sensor read. As shown in Listing 1,
this method takes an object as a parameter.

A physical sensor read is performed by an instance of class
SensorRead, in the #read: method. This method reads a physical
address, interprets the raw value if necessary, then returns the
value. In the code above, channel is declared as a temporary variable
(first line). At the end of the method, the ˆ symbol returns the
result of the sensor read. The GenericSensor is specialized into two
subclasses: TemperatureSensor and LightSensor. These classes model
temperature and light sensors that use the #readChannel: method
from their superclass. Instances of these class are referenced by

two instance variables in the IotApp class: temperatureSensor and
lightSensor.

Listing 1: The GenericSensor class
Class GenericSensor>>readChannel: index
| channel |
channel := self channelOfIndex: index.
^ SensorRead new read: channel

2.2 The problem
This application is running on a remote device. Let us suppose that
we have a remote access to the application. We would like to log
the state of specific objects, so we need to find those objects. Pharo
Smalltalk [1] for example provides reflective capabilities and tools
to interact with running programs. It allows the developer to find
references to objects. We could send the message #allInstances to a
class to recover all instances of this class. Then it would be possible
to find one of these instances, to inspect its structure, its relations,
its state and find the objects we are interested in. It seems granted
that any object could be found and modified at runtime. However,
we expose below three cases for which introspection capabilities
do not suffice to find objects of interest in a running program: the
limited lifespan object case, the "anonymous" object case and the
multiple instances case.

The limited lifespan object case. We call "limited lifespan ob-
jects" entities that are non-permanent objects or states, that exist
only for a very limited amount of time before being garbage col-
lected. It makes it impossible for the developer to find those objects
by inspecting the state of another object at runtime. Typically, these
objects are referenced by temporary variables, objects instantiated
within a local scope, and instance variables of these latter objects.
This case is illustrated in Listing 1 where the channel temporary
variable never exist long enough to be inspected. We can also see
in Listing 1 that the lifespan of instances of SensorRead, and by
extension their instance variables, are scoped by the #readChannel:
method execution.

The "anonymous" object case . Such "anonymous" objects are
instantiated objects to which cascaded messages are sent and the
execution result is returned without storing the object in any tem-
porary state. This is the case in Listing 1, where an instance of
SensorRead is created and never stored. There is no variable to in-
spect, and the developer would have to halt the system and inspect
the stack to find the object.

Themultiple instances case . In this application there could be
other sensors than the temperature sensor. All these sensors would
be modeled by subclassing the GenericSensor class, and all objects
would share the #readChannel: method from Listing 1. Modifying
the method will impact all objects sharing it. But when probing the
system, wemay be interested only by the SensorRead objects created
by instances of TemperatureSensor, and not all existing instances
using the method throughout the execution of the application.

Seeking and Finding Objects at Runtime with Collectors <Programming’18> Companion, April 9–12, 2018, Nice, France

2.3 Why it is not trivial
Imagine that the developer wants to do the following: Each time
a SensorRead object is created by the temperature sensor, then its
state is logged in a console. He/She will be facing the three prob-
lematic cases described above. First, dynamically inserting logging
instructions in the #readChannel: method where the objects are
created (Listing 1) will not work, as a modification of this method
will impact all instances of classes using it and not only the temper-
ature sensor. Second, the SensorRead objects have limited lifespans
in this method. Getting them manually by inspecting the program
is excluded. Finally, those objects are never stored so that there are
no explicit references to them. There are no practical ways to find
them with a debugger, or without complex instrumentation of the
code. Such instrumentation would imply inserting variables and
adapting the code to provide references to objects. Moreover, these
operations must not alter the original behavior of the method.

It becomes more complex if the wanted object must satisfy a spe-
cific condition, for example: Each time a SensorRead object created
by the temperature sensor has a value lower than zero then its state
is logged in a console. In addition, this condition could dynamically
change if the developer wants to narrow it down. And if at some
point during execution, the modified behavior of these objects is
not necessary anymore, all behavior changes must be reverted. The
code we presented as an example is very simple, and yet we can
illustrate three cases where it is not trivial to find specific objects
at runtime for a simple case of logging.

3 COLLECTORS
In this Section we present the Collectors, that allow the developer
to dynamically collect objects from the control flow and to interact
with them. They provide references to collected objects, so that the
developer can freely manipulate them. Collectors are composed of:

• A programming interface to specify which object to collect
in the control flow and how to interact with them

• A set of tools to help viewing the source code as objects
references with which we can interact

Objects that can be collected are (1) objects referenced by tem-
porary variables, (2) by instance variables or (3) receivers of spe-
cific messages in the control flow. These kind of collection can
be performed either through the Collectors tools or through their
programming interface. Collectors can be specified either before
or during runtime. The following subsections describe the Collec-
tors tools, API, model and its implementation for object-oriented
languages.

3.1 Collectors model
Collectors are first-class objects. They can be installed and released
at runtime through their API. Their purpose is to collect references
of objects at strategic places in the control flow ofmethods. How this
collection is done depends on how it is specified for each collector.
One collector can collect either:

• Objects referenced by a temporary variable, each time it is
accessed

• Objects referenced by a slot, each time it is accessed
• Objects receiving a specific message

For a given collector, object collection is performed each time
the collection condition is met within the specified control flow.
An object collection is permanent, unless the collector is released
by the developer, or the object is garbage collected or the collector
specification changes. In that latter case, all objects are released
before the collection can start again. It is the case if the developer
adds a condition or a scope to the collector.

Collectors cannot be composed themselves, i.e. they can target
only one of the items enumerated above. A Collector collecting an
instance variable cannot collect temporary variables. However it is
possible to compose a global object collection strategy by creating
multiple collectors.

Objects are released if reclaimed by thememory handler (garbage
collector, manual release...). Collectors only hold weak references of
objects, and never interfere with the programmemorymanagement.
Interaction is only possible during the object lifetime. Similarly,
a single object cannot be collected more than once. If a collector
attempts to collect an object already collected, then the reference
that it holds is not duplicated.

3.2 Collectors API
In the following we describe the Collectors programming interface
in a Smalltalk fashion. The Collector class provides the global in-
terface to define collectors, while its instances provide means to
interact with the collected objects. The API can be used both at
development time and at runtime. Collectors specification and mod-
ification is dynamic, provided the host language features means to
interact with the running program.

Specifying which entity to target. A collector can collect ei-
ther (1) objects referenced by a temporary variable, (2) by an in-
stance variable or (3a, 3b) by the receiver of a message. The result
of each API call returns a collector object. It is stored in a global
collection and can be accessed at any time. In the following, the
words preceded by a ’#’ character are parameters passed to the API.
The class keyword means these methods are static class methods.

Figure 1: Collecting objects referenced by a temporary vari-
able in a method.

(1) Collecting objects referenced by a temporary variable, within
a single method. It is performed each time the instance variable is
accessed (read/write).

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Costiou, M. Kerboeuf, A. Plantec, and M. Denker

Collector class>>
collectTemporary: #tempName
in: #methodName
fromClass: #className.

Figure 1 shows how objects referenced by a temporary variable
named temp are collected in a dummy method. Each time the tem-
porary variable is accessed, the object it references is collected (line
2, 6 and 7). The collection is performed after the variable has been
read or written. On a write access, the object is collected after the
value is stored in the variable. In that case, it is that new value that
is collected (lines 2 and 6). If the variable accessed references an
object that has already been collected, the object is not collected
twice. We can see this case at line 6 and 7), where a collection is
attempted two times in a row for the same object stored in temp.

Figure 2: Collecting objects referenced by an instance vari-
able.

(2) Collecting objects referenced by an instance variable. It is per-
formed each time the instance variable is accessed (read/write).

Collector class>>
collectInstVar: #ivarName
fromClass: #className.

Collecting an instance variable follows the same pattern as the
temporary variable collector. All using methods of the target in-
stance variable will trigger object collection after a read or a write
to this variable. This collection pattern is illustrated in Figure 2,
where the ivar instance variable is collected.

Figure 3: Collecting objects to which the #add: message is
sent in a method.

In that case, the ivar instance variable will also be collected each
time another method accesses it.

(3a) Collecting objects to which a message is sent, within a single
method. Every object receiving the message is collected.

Collector class>>
collectReceiversOf: #messageName
in: #methodName
fromClass: #className.

Figure 3 shows the collection of objects receiving an #add: mes-
sage. Like the instance and temporary variable collectors, the col-
lection is performed after the message is received by the object. All
objects receiving the specified message within the method body are
collected when the code executes, regardless of their class (lines 4
and 7).

Figure 4: Collecting objects to which the #add: message is
sent at a specific position in the code of a method.

(3b) Collecting objects to which a message is sent, within a single
method. Only a target object receiving the message within a single
statement is collected. This collector is specified by passing an abstract
syntax tree node (#anAstNode) representing a message send. This
interface is less practical to use as is, because the developer has to dig
into the AST of a method to find the appropriate AST node.

Collector class>>
collectReceiverOfNode: #anAstNode.

Figure 4 shows the collection of objects receiving a message
at a specific place in the control-flow. Other objects receiving the
same message but elsewhere in the control-flow are not collected.
Object collection is also performed after the message is received,
and regardless of the receiver’s class.

Accessing and releasing collectors. All collectors present in
the system can be retrieved at once, and the developer can browse
this list and select a particular collector. Collected objects are stored
in weak references. They can be retrieved and enumerated. Finally,
the developer can release the collector. It will stop collecting objects
and be removed from the Collectors global collection.

collectors := Collector allCollectors. "Get all collectors"
collector := collectors first. "Access first collector"
objects := collector collectedObjects. "Collected objects"
collector release "Release collector"

Scoping a collector. A collector can be scoped to a single object,
if the developer can provide a reference to this object. In that case,
object collection is active for the specified object only:

collector scopeToObject: anObject.

Seeking and Finding Objects at Runtime with Collectors <Programming’18> Companion, April 9–12, 2018, Nice, France

Multiple entities can compose a scope for a given collector. They
can be classes or individual objects. Object collection is performed
only if one of the scoping entities executes a statement for which a
collector is defined.

Defining actions for collected objects. The user can
specify an action to be performed each time an object is
collected or released. There is only one possible action
for the release and for the collection. It takes the form
of a block closure with two parameters, namely the col-
lected object and the collector that collected this object:

collector onCollectDo: aBlock.
collector onReleaseDo: aBlock

As an example, we can configure a collector to print each col-
lected object in the Transcript console of Pharo:

collector onCollectDo:
[:collectedObject :collector|

Transcript crShow: collectedObject printString].

Conditioning object collection. A collector can be configured
to collect only objects satisfying a specific condition. The con-
dition is evaluated each time a collector attempts to collect an
object. The condition takes the form of a block with one or
two parameters, namely the object or the object and its context:

collector condition: aBlock

For example, we can condition the object collection to only col-
lect objects with a specific state:

collector condition:
[:object :context| object class hasSlotNamed: #someState].

3.3 Collectors Tools
Collectors provide tools to help the developer specify object col-
lection and interaction. All the tools allow dynamic interaction
with the source code representing objects. Object collection can be
specified before or at runtime, on a program running locally or on
a remote device (e.g. an IOT object). The tools presented below are
from a Pharo Smalltalk [1] implementation of Collectors.

3.3.1 The control-flow object selector. The developer can ask
for object collection through a new contextual menu, which is
integrated in the code browser of Pharo. In any method that is
browsed by the developer it is possible to define a collector. This
menu allows the collection of objects references by instance and
temporary variables, and to which a message is sent.

Figure 6 shows the contextual menu spawned in a method from
the code browser. In this example, the receiver of the #read:message
will be collected. This object collection is made through the control
flow. Only the object receiving this message at this particular place
will be collected.

Other objects receiving the same message within the same
method but in another statement will not be collected. The source
code displayed in native code browsing tools is not altered by col-
lectors.

3.3.2 The Collectors browser. The Collectors browser provides
the developer with a view on all defined collectors. From this view,
one can explore collected objects, define actions to perform at col-
lection and at release time, express conditions for object collection
and explore entities to which the collector is scoped.

This is illustrated in Figure 5. The browser shows the list of
active collectors (A). Collectors can be renamed through a contex-
tual menu to help the developer identify their meaning. Collectors
specifications are shown in (B).

For example, in Figure 5, we see that the object that will be
collected is the receiver of the #read: message after it has been
sent. The part of the code representing this object is automatically
highlighted by the browser. The collector specification is the only
aspect of the collector that cannot be changed dynamically.

To collect objects from another part of the control flow, a new
collector must be defined. In (C) we can see the collect and release
actions. These actions are performed at collect or at release time.
This feature can be used to perform direct actions on collected
objects, or to pass them to another mechanism (e.g. an adaptation
mechanism).

Actions can be defined and changed dynamically, by coding
them in the browser and saving them through the contextual menu.
The defined actions are applied to the next object collection or
release, but not to already collected or released objects. (D) shows
a condition for object collection. Objects are collected only if the
condition is met. By default the condition is disabled. Like the
collect/release actions, the condition can be dynamically changed
through the browser editor and only apply for the next object
collection. Finally, in (E), we can see entities to which the selected
collector has been scoped.

For instance, the collector named Receiver of #read: is scoped to
an object aTemperatureSensor instance of a TemperatureSensor class.
It means that object collection will be performed only if this object
goes through the control flow highlighted in the specification pane
(i.e. in (B)). This scoping is dynamic and can evolve at runtime,
and multiple entities can scope the collector (classes and objects).
The browser allows the user to browse these entities through a
contextual menu.

3.3.3 Scoping collectors to objects. Collectors add a new pane to
the native Pharo inspectors. Upon inspection of an object, it is possi-
ble to see the defined collectors in the program. A contextual menu
allows to scope the collection operation to the current inspected
entity. Once scoped, a collector will perform object collection only
if the entity to which it is scoped goes through the adequate control
flow. An example is shown in Figure 7. We can see an inspector
on an instance of a TemperatureSensor class. In the collectors pane
we can see all defined collectors. We could, for example, scope the
collector defined in Figure 6 to the inspected temperature sensor.
This collector will then collect objects only when the temperature
sensor object executes the #readChannel: method.

3.4 Implementation
We implemented Collectors with Pharo [1] and we rely on the Re-
flectivity layer [12] to inject non-intrusive annotations on abstract
syntax tree of methods. These annotations give us access to reifi-
cations of the running program, which are instance or temporary

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Costiou, M. Kerboeuf, A. Plantec, and M. Denker

A

B

C

D

E

Figure 5: The Collectors browser: (A) collectors list, (B) collectors specification, (C) actions on collection and release of objects,
(D) condition for object collection and (E) the entities to which object collection is scoped

Figure 6: Defining collectors from source code

Figure 7: Scoping object collection to a given object

variables and receivers of messages. As we dynamically access these

reifications at runtime, we provide them to the associated collector
to gather objects of interest.

Methods for which Collectors are specified are recompiled for
the collection behavior to be active. However that is transparent
to the user, and to the environment tools. There are no visible
instrumentations when the user looks at the code. Collectors in-
strumentations do not interfere with the original behavior of the
code. A downside is that if the user manually modifies an instru-
mented method, the original behavior is restored and the collection
behavior is removed.

Alternative to Reflectivity, Aspect oriented techniques could
serve as another back-end for a Collectors implementation. We
made experiments of such implementation with PHANtom [3]. This
implementation is partial and scoped to the collection of objects
receiving a given message.

4 EXAMPLE ON AN IOT APPLICATION
In the following, we demonstrate the use of Collectors in an IOT
application. This example features a simple case of debuggingwhere
a developer wants to add log on specific objects in the running
system. The difficulty, as explained in Section 2, is to identify those
objects and to get references to them for interaction. Results and
demonstration of the experiment are available online.1

1https://kloum.io/costiou/collectors

Seeking and Finding Objects at Runtime with Collectors <Programming’18> Companion, April 9–12, 2018, Nice, France

4.1 The Sensor Monitoring Application usecase
As an illustration, we used the Sensor Monitoring Application use-
case [9]. It is a single threaded Pharo IOT application deployed on
a Raspberry Pi2 in which there is an unpredictable bug at runtime.
The bug comes from an erratic sensor read that may happen at
any time during the execution of the program. From the original
use-case we slightly changed the setup to fit our example, which
now uses two sensors (temperature and light). We deployed the
code from Section 2 as the main sensor access in the application.
As shown in Figure 8, the developer is remotely connected to the
application through Telepharo, the Pharo remote debugger. All
operations described below are executed at runtime.

Figure 8: The Sensor Monitoring App

4.2 The unanticipated logging operation
While debugging the Sensor Monitoring Application, we suspect a
problem in the temperature sensor readings. So we would like to log
SensorRead objects in a console when their values become erratic.
We would also like to scope this logging to SensorRead objects
created by the temperature sensor, and not all of them that may be
created by other entities in the system. As there is no way to predict
when the erratic values may appear it is impossible to know when
to start logging. We also cannot distinguish sensor readings created
by the temperature sensor from the ones created by others sensors.
That is because all sensors share the same method #readChannel:
from their super class, as described in Section 2. It is complicated
to know which are the objects that should be investigated.

4.3 Collecting and adapting objects
In the following, we describe how we used the Collectors API in
the IOT App to collect sensor readings objects and to log them
into a console. We programmatically use the API, but all of the
operations below can be performed in an interactive way using the
tools described in Section 3.3.

Collecting all SensorRead objects. We want all instances of
SensorRead to be logged in a console. They are instantiated in the
#readChannel: method from the class GenericSensor (see Listing
1). To collect them, we have to ask for the receivers of the #read:
message which is sent just after their creation:

collector := Collector collectReceiversOf: #read: in: #readChannel:
fromClass: #GenericSensor.

The collector will collect all objects receiving a #read: message
in the specified method. Fortunately there is only one receiver of
2https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

this message in the control flow (Listing 1). If there were many, and
if we wanted to collect only one of the receivers in the control flow,
we could have used the contextual menu in the class browser to
specify this receiver (Figure 6).

Once it has been defined, the collector starts collecting objects.
It can be accessed through a local variable if it has been stored by
the user, or through the Collectors interface #allCollectors. We can
then specify a collect action, which will print the sensor reads in
the console:
collector onCollectDo:

[:object :collector| Transcript crShow: object printString]

Instead of logging, we could apply more complex operations
on the collected objects (e.g. behavioral adaptation). In that case,
we should also specify a release action which will ensure that the
released objects are not affected by the collector anymore. However
that is not the case in this example.

Collecting only for the temperature sensor. Once specified,
the collect action logs every object at collection time. We can scope
the collector and its action to the temperature sensor object, which
is the sole instance of the TemperatureSensor class. Once scoped,
the collector will only collect and log sensor reads instantiated by
this object:

collector scopeToObject: temperatureSensor

Note that finding this temperatureSensor object can be subject
to the same problems from Section 2.2. We are able to find it using
the remote inspector of TelePharo, by inspecting the states of the
main running application (i.e. the sole instance of the IotApp class).

Scoping the collection to a specific condition. All tempera-
ture sensor readings are not that interesting, as most of them are
accurate. We are interested in readings with erratic values, to log
their full state and to understand what is wrong. Thus, we specify
a condition for object collection. Only sensor readings with values
outside of the reading bounds will be collected:

collector condition: [:object| object value > 1023
or:[object value < 0]]

5 DISCUSSION
We successfully used Collectors in a simple use-case of debugging
to log the state of specific objects. Collectors were remotely defined
in the IOT App from the developer’s computer. Objects of interest
were collected at runtime on the IOT object, on which was running
the app. Condition checks and collect time actions (i.e. the log-
ging) were also performed on the IOT object. The resulting traces
were dynamically displayed on the developer’s computer when
objects were collected. Only very specific objects were collected
and printed.

In regards to the original use-case [9], Collectors provided dy-
namic and non-intrusive instrumentations to observe the runtime.
We use remote debuggers as a support to remotely control Collec-
tors and get feedback from the collected objects. We thus avoid
direct code changes injection, and give the developer flexibility
on how to interact with objects of interest. Specifically, collectors
can be dynamically scoped to the control flow of specific objects.

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Costiou, M. Kerboeuf, A. Plantec, and M. Denker

Collection can be subject to conditions, and the developer can per-
form custom actions at collect time. Furthermore, a collector can be
released when it is no longer needed. This ensures that the original
program stops collecting objects, and thus stops performing actions
at collect time.

The logging demonstration in this paper is only meant to keep
the focus on the Collectors main purpose. There could be many
applications, from logging and debugging to behavior adaptation
of objects. For example, we successfully reproduced the same ex-
periment with Collectors but with an adaptation mechanism [2].
Collectors provided objects to the adaptation mechanism, which
applied per-instance logging behavior adaptation to them. In a way,
Collectors were a mean of scoping the adaptations to a restricted
and dynamic set of objects. In that case, Collectors could be consid-
ered as an explicit selection mechanism for Group-Based Adaptation
[13].

However, the current implementation and model are limited to
one thread. Collectors are also inefficient for methods on the stack
with running loops. For now, a collector will only be activated
once the loop finished and once the method is re-executed. How
Collectors affect performances remains to be studied, and how the
solution can scale in bigger programs has yet to be evaluated. There
are also no fail safe mechanism if an error occurs in the collect
action. For now it is the responsibility of the developer to handle
errors. However, error handling does not prevent the developer to
jeopardize the state of the collected objects. It is not sufficient to
guarantee that objects are preserved throughout the developer’s
actions.

The object focus of Collectors also has the drawback that ev-
erything is expressed from and for the object. Other solutions, for
example aspects [7], can provide access to a larger context of ex-
ecution. That particular point is part of a future extension of the
Collectors.

6 RELATEDWORK
In the following, we discuss the possibilities of acquiring objects
through runtimemodifications, through the control flow or through
direct object references.

One important aspect is the ability to inject removable code
instrumentations without manually modifying the code. For Col-
lectors, this comes from the implementation layer, Reflectivity [12].
This is why we also discuss related work from an implementation
perspective.

Easing the chase for objects through code update. The ex-
ample code we showed in Section 2.1 could be improved in a way
that it could solve part of or all of the problems we described.

It could be done through refactoring [4], but it would change
the structure of the program – which may not be desirable or even
possible at runtime.

Furthermore, it might not solve everything in larger, more com-
plex programs. Intrusive techniques, like dynamic software update
[15], may also change the program’s structure and make it difficult
to revert instrumentations.

Control FlowObject Collection. Selecting objects from the con-
trol flow means that somehow code has to be dynamically injected

to get references. This code would also need to be later removed,
when the target objects are no longer of interest. Such technique
is used for example in Context Oriented Programming [5] or in
Group-Based Adaptation [13].

Objects can be explicitly selected by manually inserting code,
if the developer already knows in which part of the code these
objects can be found. They can also be implicitly selected, when they
automatically become part of an active context. Because Collectors
are based on Reflectivity[12], they do not require manual insertion
or removing of instrumentation. Instead, object collection is explicit
and the developer has to define it in the control flow – although it
is implemented as hidden instrumentations of the AST.

Aspects [7] can provide access to objects at key points in the
control flow and trigger method calls on them. However and as far
as we know, Aspects mainly provide code as the main interacting
abstraction. By themselves, Aspects are a solution on top of which
the Collectors could be implemented.

Edit Transactions [10] embeds live modifications into change
sets that can be dynamically turned on and off. One could man-
ually design object selection in the control flow of the program,
and (de)activate them when needed. It could provide a dynamic
object collection at runtime, with live feedback and view on the
collected objects. The code instrumentation to gather the objects
has to be manually written into the control flown and the developer
always sees the instrumentations to collect objects as source code
modifications. It is another way of seeing objects from a running
program, from a code-centric oriented perspective.

Object references. Remote debuggers can provide entry points
in programs, e.g. to halt the system and open a view on the current
stack from which the user can search for references. It has the
disadvantage to stop the execution of the inspected thread. Pharo
[1] provides Telepharo3, that has a remote debugger, a remote code
browser and a remote scripting interface. With such dynamic tool,
it is possible to remotely query for all instances of a given class,
and then try to find objects of interest.

However it is highly unpractical, as there are no guarantee about
the number of objects it would return. It could be impossible to find
a particular object among thousands of references. It could also miss
objects or provide false positives because of ducktyping, if variables
in the code do not always refer to objects of the same types [11].
Also, this technique would not allow to get reliable references on
temporaries variables or on objects with a very short lifespan.

Listing references of objects of interest can be an interesting
alternative. For example the Chisel framework [6] provides an
object store that can reference objects of interest by name. These
objects must be manually named, and necessitate the user to profile
the application to identify and name them. This kind of solution is
also particularly resource consuming, as every object in the program
must be logged in a database for inspection by the user.

Implicit selection mechanisms in Group-Based Adaptation [13]
can automatically find and manage collections of objects satisfying
specific conditions. Objects can enter or leave a group, depending
on selection criteria. For example Reactive Object Queries [8] allow
the developer to automatically create and maintain views of objects.
Objects are selected through queries. Depending on its state an
3https://github.com/dionisiydk/TelePharo

Seeking and Finding Objects at Runtime with Collectors <Programming’18> Companion, April 9–12, 2018, Nice, France

object can enter or leave a view. The semantics of Collectors is
different because they do not select subsets of existing objects, but
try to collect all the marked entities in the control flow.

Although Collectors can evaluate conditions for object collec-
tion, these conditions are never reevaluated for collected objects.
Furthermore, Collectors explicitly target objects from the control
flow instead of querying potential objects from the entire object
space.

7 CONCLUSION
In this paper, we described three problems of finding objects at
runtime, namely:

(1) The limited lifespan object problem,
(2) The "anonymous" object problem,
(3) The multiple instances problem.
To address these problems we presented the Collectors. They

allow to target objects of interest at runtime from variables in
the source code. These objects are gathered and presented to the
developer for interaction. We presented the Collectors API and
tools, which provide object-centric views of variables from the
control flow.

We experimented Collectors on a use-case of remote debugging
in an IOT application. We used the Collectors on a runtime example
featuring the aforementioned problems. We were able to gather
objects by dynamically targeting them in the source code, and to
log them into a console. This would have been difficult without a
possibility to collect these objects at runtime.

We concluded by a discussion on Collectors and their application.
We drafted future works that should be done to evaluate further the
solution. We plan a more thorough investigation of the Collectors
impact on the overall performance of a runtime. We also plan to
investigate how to collect objects in multi-threaded applications.
Finally, and in regards to the studied related work, it would be
interesting to combine Collectors with features from other solutions.
For example, access to execution context could be added to the
Collectors specifications, or a finer management of the collected
objects collections.

ACKNOWLEDGMENTS
We would like to thanks the anonymous reviewers and the partici-
pants of the PX/18 Writer’s Workshop for their very interesting and
constructive discussion and feedback.

REFERENCES
[1] Andrew P Black, Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet. 2010.

Pharo by example. Lulu. com.
[2] Steven Costiou, Mickael Kerboeuf, Glenn Cavarle, and Alain Plantec. 2017. Lub:

A pattern for fine grained behavior adaptation at runtime. Science of Computer
Programming (2017). https://doi.org/10.1016/j.scico.2017.09.006

[3] Johan Fabry and Daniel Galdames. 2014. PHANtom: a modern aspect language
for Pharo Smalltalk. Software: Practice and Experience 44, 4 (2014), 393–412.

[4] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley Professional.

[5] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-oriented
programming. Journal of Object technology 7, 3 (2008).

[6] John Keeney. 2004. Completely unanticipated dynamic adaptation of software.
Ph.D. Dissertation. University of Dublin.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming.
ECOOP’97—Object-oriented programming (1997), 220–242.

[8] Stefan Lehmann, Tim Felgentreff, Jens Lincke, Patrick Rein, and Robert Hirschfeld.
2016. Reactive Object Queries. In Constrained and Reactive Objects Workshop
(CROW).

[9] Matteo Marra, Elisa Gonzalez Boix, Steven Costiou, Mickaël Kerboeuf, Alain
Plantec, Guillermo Polito, and Stéphane Ducasse. 2017. Debugging Cyber-
Physical Systems with Pharo. In International Workshop on Smalltalk Technology
IWST’17.

[10] Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2017. Edit Transactions: Dynam-
ically Scoped Change Sets for Controlled Updates in Live Programming. CoRR
abs/1703.10862 (2017). arXiv:1703.10862 http://arxiv.org/abs/1703.10862

[11] Nevena Milojković, Mohammad Ghafari, and Oscar Nierstrasz. 2017. It’s duck
(typing) season!. In Proceedings of the 25th International Conference on Program
Comprehension. IEEE Press, 312–315.

[12] Oscar Nierstrasz, Marcus Denker, and Lukas Renggli. 2009. Model-centric,
context-aware software adaptation. In Software Engineering for Self-Adaptive
Systems. Springer, 128–145.

[13] Patrick Rein, Stefan Ramson, Jens Lincke, Tim Felgentreff, and Robert Hirschfeld.
2017. Group-Based Behavior AdaptationMechanisms in Object-Oriented Systems.
IEEE Software 34, 6 (2017), 78–82.

[14] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-centric debug-
ging. In Proceedings of the 34th International Conference on Software Engineering.
IEEE Press, 485–495.

[15] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. 2013. Unrestricted
and safe dynamic code evolution for Java. Science of Computer Programming 78,
5 (2013), 481–498.

https://doi.org/10.1016/j.scico.2017.09.006
http://arxiv.org/abs/1703.10862
http://arxiv.org/abs/1703.10862

	Abstract
	1 Introduction
	2 The problem
	2.1 The IOT application example
	2.2 The problem
	2.3 Why it is not trivial

	3 Collectors
	3.1 Collectors model
	3.2 Collectors API
	3.3 Collectors Tools
	3.4 Implementation

	4 Example on an IOT application
	4.1 The Sensor Monitoring Application usecase
	4.2 The unanticipated logging operation
	4.3 Collecting and adapting objects

	5 Discussion
	6 Related work
	7 Conclusion
	Acknowledgments
	References

