
Unanticipated Debugging with Dynamic Layers

Steven Costiou
Lab-STICC UMR CNRS 6285, Université de Bretagne

Occidentale, F-29200 Brest, France
steven.costiou@univ-brest.fr

Mickaël Kerboeuf
Lab-STICC UMR CNRS 6285, Université de Bretagne

Occidentale, F-29200 Brest, France
mickael.kerboeuf@univ-brest.fr

Marcus Denker
RMoD, Inria Lille, UMR CNRS 9189, CRIStAL,

Université de Lille, France
marcus.denker@inria.fr

Alain Plantec
Lab-STICC UMR CNRS 6285, Université de Bretagne

Occidentale, F-29200 Brest, France
alain.plantec@univ-brest.fr

ABSTRACT

To debug running software we need unanticipated adapta-
tion capabilities, especially when systems cannot be stopped,
updated and restarted. Adapting such programs at runtime
is an extreme solution given the delicate live contexts the
debugging activity takes place. We introduce the Dynamic
Layer, a construct in which behavioral variations are gathered
and activated as a whole set of adaptations. Dimensions of
Dynamic Layers activation are reified to allow very fine defi-
nitions of layer scopes and a fine grained selection of adapted
entities. This paper describes and discusses the Dynamic
Layer solution to perform unanticipated runtime debugging.
An experimental implementation with the Pharo language is
evaluated through a runtime adaptation example.

KEYWORDS

Dynamic behavior adaptation, Dynamic Layers, Runtime
debugging

ACM Reference format:
Steven Costiou, Mickaël Kerboeuf, Marcus Denker, and Alain

Plantec. 2017. Unanticipated Debugging with Dynamic Layers. In
Proceedings of Programming ’17, Brussels, Belgium, April 03-06,
2017, 6 pages.

DOI: http://dx.doi.org/10.1145/3079368.3079391

1 INTRODUCTION

Autonomous systems or long running applications face unpre-
dicted situations and they cannot adapt if behaviors were not
anticipated. Thus appears the need for unanticipated adapta-
tion [9]. The most extreme cases of unanticipated adaptation
have been described by Keeney [7] as adaptations for which
definitions of where, when, what and how they will be applied

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Programming ’17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4836-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3079368.3079391

remain completely unknown until a problem occurs. Unan-
ticipated adaptation can be hard to achieve and leads to
complex difficulties [4]. Debugging a running program under
these conditions is an extreme measure. Methodologies and
tools must provide the necessary capabilities to investigate
and adapt a system at runtime.

As a first step towards extreme debugging, we propose
to reuse in a dynamic way the Layer concept from Context
Oriented Programming [5]. These Dynamic Layers group
together behavior adaptations and can be defined and applied
to a running software. We provide means to express when,
where and how a dynamic layer would be active and on which
entities. This paper contributes on the following points:

• A Dynamic Layer construct in which behavior adap-
tations can be dynamically gathered to form a unit
of adaptations

• A reification of layer scoping and means to express
flexible and dynamic activation scopes

• A set of operators for fine grained object selection,
for which layers will provide behavioral variations

The remainder of this paper is organized as follows: section
2 describes our motivation through an illustration example.
Section 3 defines the Dynamic Layers and their reified scoping.
Section 4 describes the early implementation of Dynamic
Layers and section 5 shows an evaluation of the solution.
Related works are discussed in section 6 and we conclude
this paper in section 7.

2 MOTIVATING EXAMPLE

To illustrate the problem we could imagine a drone flying
or moving in some urban environment, for example a postal
delivery drone. It can use two systems to navigate, a GPS
and wifi. If and when the GPS signal is lost, the drone
is programmed to use the wifi instead. If the GPS signal
is recovered, the drone stops using the wifi navigation and
switches back to the GPS.

However, it is possible that the drone flies into an area
where the GPS signal is constantly lost and recovered. That
could happen for example in a city with a lot of high build-
ings and tunnels. If the GPS status changes too often, the
constant switching between the two modes would not let
enough time for the wifi positioning to be started and used.

Programming ’17, April 03-06, 2017, Brussels, Belgium Steven Costiou, Mickaël Kerboeuf, Marcus Denker, and Alain Plantec

This situation can lead to inefficient route plotting or stall
the drone for moments. It could even be lost.

To fix the bug, the system has to be shut offline and
investigated. Even if this happens during flight and mission
tests, thus still under development, it may not be possible to
reproduce the exact conditions under which the bug happened.
Debugging the software dynamically could be an interesting
solution, yet very extreme considering it means modifying a
running software in a flying machine. What we really want
is:

• Means to observe and investigate the system at run-
time to understand what is happening

• Dynamically adapt the software’s behavior to fix the
problem

These are typically debug actions and concerns, but they
cannot be foreseen until a problem happens, and therefore
remain unanticipated. We like to call these kinds of mainte-
nance unanticipated debugging, as the situations when they
occur are completely unanticipated and the live context of
the debug process makes it very delicate. Such extreme de-
bugging raises questions, due to its dynamic and invasive
nature:

• How can we dynamically define meaningful sets of
adaptations to fit a debug context? What are the
dimensions of software in which these adaptations
can be expressed?

• How can we express how a set of adaptations will
scope into these debug dimensions? What are the
entities that can be adapted, and when will they be?

3 UNANTICIPATED DEBUGGING
WITH DYNAMIC LAYERS

In this section we discuss the questions raised by unantici-
pated debugging 1. We define the dimensions in which layers
will live and dynamically evolve to adapt a running software.
We propose a way to express how layers expand into these
dimensions.

3.1 Dynamic Layers

Dynamic Layers are first class objects that can be defined
and modified at runtime. They select a group of objects on
which a common set of adaptations will be applied. Once
created, a layer is unique and can be accessed by its name:

”Creating and activating a new layer”
DynamicLayer define: ’WifiPositioningLayer’.
WifiPositioningLayer activate

When a layer is activated, it triggers a set of behavior
adaptations. Each adaptation is applied to a dynamic selec-
tion of objects, until the layer is deactivated. This period
of time within which the layer is active is its scope: a layer
is never active outside its activation scope. The selection
of adapted entities and the scope of the layer activation are

1All source code examples are developed with Pharo Smalltalk

the two debug dimensions in which the layers will stretch to
provide dynamic debug strategies.

3.2 Debug dimensions

We are interested in particular in two dimensions. The first
one is the activation scope of layers, as identified in Context
Oriented Programming (COP). A layer is active only within
a given scope, and to debug a running system this scope may
be unknown until it is needed. As the scope defines when
and how adaptations are applied at runtime, we believe it is
an important aspect we must provide control for.

The second dimension is the granularity of the behavioral
variations brought by a layer. Object-centric debugging
[12] advocates for ”objects as the key abstraction” in the
debugging process. Following this point of view, we believe
that to be flexible we need a way to express whether a
layer will affect a given object, a selection of objects or all
objects from the same class, and to change this selection
dynamically. Figure 1 illustrates how layers expand into
these two dimensions.

Figure 1: Dynamic Layers Dimensions: we can see
two layers L1 and L2 with their selection of adapted
objects and their composition of activation scopes.

The following sections describe how we propose to express
layers scoping and how they select the entities for which they
provide behavioral variations.

3.3 Reified Activation Scopes

We reify layer scoping to provide fine activation scopes that
can be dynamically updated at runtime. Activation scopes

Unanticipated Debugging with Dynamic Layers Programming ’17, April 03-06, 2017, Brussels, Belgium

can be based on four different scoping possibilities [6] existing
in COP languages: Control-Flow based, Imperative, Event
based or Implicit activation. These four scopes are:

• Control-flow: the layer would be active only during
the execution of an arbitrary block of code. The
scope defines both when a layer activates and when
it deactivates.

• Event-based: the layer (de)activates upon events
reception.

• Implicit: the layer can be activated if the system or
an entity in the system meets a specific constraint
(i.e. it is a conditional activation).
• Imperative: manual activation of the layer, e.g. using

an activate keyword.

These different kinds of activation scopes already bring
some flexibility to a debug process, to choose when and how
to activate a layer. We add a fifth kind of activation, which is
time scoped: we would like to trigger specific behaviors when
debugging the software to specifically bind debug operations
to time constraints. This new activation scope is described
below:

• Temporal scope: the layer is active for a given du-
ration, from a start time to an end time (possibly
”infinite”). It also defines when a layer activates
and when it deactivates. It can be put in a loop to
activate the layer again after an elapsed time.

Reifications of activation scopes are described in figure 2,
in which each scope is expressed and can be held as an object.
We can see the particular case of the control-flow scope, for
which we need to specify a start point and an end point
in the source code. These points are abstract syntax tree
nodes (ast) that we select manually. The developer should
be able to dynamically choose these ast nodes between which
the layer activation would be scoped. This dynamic manual
selection makes it possible to do unanticipated control-flow
scoping in arbitrary parts of the program.

Once instanciated, a scope can be composed and applied
to a layer to define the conditions of its activation. Discussion
of scope composition, although possible in the early imple-
mentation of our proposition, is outside the scope of this
paper.

3.4 Selection and adaptation of objects

Once defined and scoped, a Dynamic Layer will adapt entities
of the running system. It needs an underlying adaptation
mechanism and means to select these entities to adapt. Both
the adaptation mechanism and the objects’ selection (which
is orthogonal to the scopes dimension) are described in the
following subsections.

3.4.1 A Generic Adaptation Mechanism. Layers define sets
of behavioral variations for a given entity (a class, an ob-
ject...). We want to dynamically inject these layers in a
running software to adapt its behavior. Therefore, there

must be an adaptation mechanism underneath with the capa-
bility to adapt the target entities. We chose to use Lub [3], a
pattern for dynamic unanticipated adaptation. It can adapt
objects on a per-instance basis and therefore allows flexible
and dynamic groups of adapted objects. However, the chosen
mechanism may vary, and could be implemented following
different paradigms or solutions as long as it provides the
necessary capabilities for dynamic unanticipated adaptation.
We can specify these specific needs if one wants to design
and implement such a mechanism by other means.

We need to adapt behaviors at a very fine grain in order
to have flexibility when adapting. An adaptation must be
able to target single objects as well as larger groups of ob-
jects (e.g. all instances of a class). It must be able to add
or modify behaviors in an object. Finally, the adaptation
process should leave the possibility to easily revert to the
original behavior.

We chose to express this mechanism as a generic adaptation
regardless of its implementation. In this paper, we use an
entity called an Adaptation. This adaptation targets a class
in which is defined new or altered behaviors. The adaptation
can also select which behaviors from this class will be applied
to an object. Control can be specified to choose whether the
adaptation will execute behavior before, instead or after the
original method. This avoids copying a full method if the
adaptation is designed to insert pre/post processing to the
original behavior. Excerpts of code below illustrates how an
adaptation is created and how it is applied to an object:

| collection |
collection := OrderedCollection new.
adaptation := Adaptation

class: Array
with: #(#add:)
control: #instead.

collection adaptWith: adaptation.
collection add: ’test’

An instance of OrderedCollection is adapted with the add:
method from Array. When sending the add: message to this
collection, an exception is raised because the behavior from
OrderedCollection has been replaced by the one from Array,
which forbids its use. We could also use the #before or the
#after control to execute additional behavior before or after
the original one.

3.4.2 Expressing object’s selection. A layer must now select
for which objects it will provide behavioral variations. The
design we present inverts the responsibility of the behavioral
change decision from traditional context oriented practices.
In most COP languages, layers are defined within classes,
and objects implicitly enter a layer when an activation occurs.
We chose to let the layer, as a first class object, to control
which objects are going to be affected. It allows a fine
customized selection of adapted entities. This is critical in an
unanticipated debug context: we cannot know what are the

Programming ’17, April 03-06, 2017, Brussels, Belgium Steven Costiou, Mickaël Kerboeuf, Marcus Denker, and Alain Plantec

Figure 2: Reified activation scopes

objects that will require adaptation and therefore we need
to keep as much flexibility as possible. We should be able to
select:

• All instances of a given class
• A few instances of a given class
• An arbitrary set of objects, that may be instances

of different classes
• Only one precise object

Furthermore, this selection of objects is dynamic, and there-
fore must be able to grow or to reduce in size, as the debug-
ging activity progresses and requires more or less precision.
The following Pharo code shows examples of selectors we
designed to define these selections. It uses the previously
defined adaptation:

”Selects one or more arbitrary objects to be
adapted with an adaptation”

WifiPositioningLayer
adapt: #(...objects...)
with: adaptation.

”Selects instances of a class that are meeting specific
constraints to be adapted with an adaptation”

WifiPositioningLayer
select:[:object| ...selection operators...]
from: aClass
adaptWith: adaptation.

”Adapts all instances of an arbitrary class with an
adaptation”

WifiPositioningLayer
adaptAllFrom: aClass
with: adaptation.

Selecting objects at runtime requires means to retrieve
pointers to these objects. Examples from this paper are
developed in Pharo Smalltalk, in which we can dynamically
recover all instances from a given class then select the objects

we are interested in. It is unpractical but it fits our proto-
typing purposes. New tools could be developed to provide
such capabilities, like advanced debuggers.

4 IMPLEMENTATION

We developed an experimental implementation in Pharo [2],
a dynamic language based on Smalltalk. It has a rich tooling
environment [1] which allows for example runtime inspection
of objects and runtime debugging. We implemented Dynamic
Layers on top of Lub [3], a dynamic behavior adaptation
mechanism with the capability of modifying behaviors of
single objects at runtime. It allows to design and apply adap-
tations while still reasoning in terms of classes and objects.
We changed the Lub backend to be based on a modified
version of Reflectivity [11] to instrument abstract syntax
trees (ast) nodes on specific objects. This per-object ast
annotations bring more flexibility and control of adaptations
in comparison with the Reflectivity default behavior which
affects all instances of a given class.

The current implementation is partial and does not reflect
all the features described in this paper. It is an early experi-
ment as a first step in the illustration and the validation of
Dynamic Layers.

5 EVALUATION: THE GPS EXAMPLE

This scenario is a toy example running in a Pharo simulation
on a remote Raspberry-pi 2. It models a gps in a drone that
keeps switching online and offline. This constant changes pre-
vent the wifi to take the hand in the navigation system. The
developer uses a Pharo environment in which he can open
a remote debugger from his development machine to debug
the drone. The developer’s computer and the Raspberry-pi
(i.e. the drone) are connected through a dedicated network.
In this example, we will use Dynamic Layers to probe the
system. As the debugging process progresses, we will dynami-
cally refine layers scoping to target specific behaviors we want
to inspect and to adapt the system. The illustration code

2https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Unanticipated Debugging with Dynamic Layers Programming ’17, April 03-06, 2017, Brussels, Belgium

below shows a block of code in the program that recovers
status from five different sensors:

1 gps getSensorStatus
2 ifTrue: [”do gps operations”].
3 wifi getSensorStatus
4 ifTrue: [”do wifi operations”].
5 colorSensor getSensorStatus
6 ifTrue: [”do color sensor operations”].
7 temperatureSensor getSensorStatus
8 ifTrue: [”do temperature sensor operations”].
9 altitudeSensor getSensorStatus

10 ifTrue: [”do altitude sensor operations”]

We would like to visualize the results of the sensor checks.
We propose to add log behavior before all executions of the
getSensorStatus method in each sensor, to remotely print
these status in the developer’s environment (e.g. in a con-
sole). We thus define a layer with an adaptation which brings
logging behavior from another class (i.e. DLSensorLog). The
layer is dynamically applied to all the sensors:

1 DynamicLayer define: ’LogLayer’.
2 adaptation := Adaptation
3 class: DLSensorLog
4 with: #(#getSensorStatus)
5 control: #before.
6 LogLayer adapt: sensors with: adaptation.
7 LogLayer activate

The control: (line 5) keyword allows to select whether the
adaptation is triggered before, after or instead the instru-
mented method, which is inspired from Geppetto [14]. The
layer has an imperative scope by default and can be manually
activated (line 7). Each time the getSensorStatus method
will be called, the added logging behavior will send to the
developer’s environment the sensor’s status, then execute the
original behavior.

At this point the developer can visualize all the sensors sta-
tus, but is only interested in the GPS and the Wifi. Further-
more, if experimenting on a real device (for example during
flight tests), he might not want the logging behavior to be ac-
tive indefinitely. We can dynamically define two new scopes:
a control flow scope to bound the layer activation to the part
of code we are interested in and a temporal scope to allow the
behavioral adaptation for only a few seconds. The control
flow scope is defined to start before a first abstract syntax tree
(ast) node and to stop after a second ast node. These nodes
respectively start and stop at line 1 and line 3 in the code
below, which is an excerpt of the larger code shown above:

1 gps getSensorStatus
2 ifTrue: [”do gps operations”].
3 wifi getSensorStatus
4 ifTrue: [”do wifi operations”]

The temporal scope is defined to activate every 10 sec-
onds and only for 500 milliseconds, within the specified

block of code. These two scopes are dynamically applied to
the layer that automatically compose its activation scope:

1 cflowScope := ControlFlowScope from: firstAst
2 to: secondAst.
3 LogLayer addScope: cflowScope.
4 temporalScope := TemporalScope for: 500 each: 10000.
5 LogLayer addScope: temporalScope

The developer will now visualize only the GPS and Wifi
status during short periods of time. It allows to watch these
specific states and to understand that the problem is the
constant switching between the two sensors. New layers can
then be defined and applied to the sensors to prevent constant
swapping between the GPS and the Wifi and fix the bug.
As a final step, we can deactivate and remove the logging
layer by sending the deactivate message, as the layer has an
imperative scope.

We built a simple view of the running system as a first
debug step, to understand what was going wrong. The
noise produced by all the objects information was prevented
by refining the scope of the adaptation in the control flow.
Effects of the log behavior was also time bounded to avoid
any extended impact on the system. Instead, we could have
restrained the adapted entities to the GPS and the Wifi only.
Both these strategies can be used in combination to provide
very specific behavioral variations within a layer.

6 RELATED WORKS

Several mechanisms in dynamic languages can address dy-
namic unanticipated adaptation, for example based on full
meta-objects reification [13] or on abstract syntax tree nodes
annotations [11, 14]. There are also solutions for dynamic
adaptation at runtime in statically typed languages like Java
[16]. Such solutions for Java require modifications of the
virtual machine, which induces a loss of genericity. These
solutions were designed for debugging purpose in the first
place, but they lack expressiveness in adaptations definitions.
There are no abstraction to describe and group together
adaptations, and no means to configure fine grained scopes
for adaptation (de)activation.

Context Oriented Programming (COP) [5] expresses behav-
ioral variations in layers. COP layers are statically defined in
classes and are activated when the application meets specific
contexts. This activation occurs within a given scope, which
is specific to COP solutions: layer activation is bound to
one scope which is either event-based, imperative, implicit
or control-flow based. COP languages do not feature more
than one kind of scope, and choosing one of these languages
is usually driven by a specific usecase. In recent research,
Kamina et. al [6] generalized layer activation into a unified
mechanism. The four kinds of scopes can be used within
the same language, which provides per-instance and global
activation of layers. They also provide a model for scopes ac-
tivation priorities, which is missing from the Dynamic Layers.
Furthermore, COP languages aim at designing anticipated

Programming ’17, April 03-06, 2017, Brussels, Belgium Steven Costiou, Mickaël Kerboeuf, Marcus Denker, and Alain Plantec

behavioral variations with a strong separation of concerns,
but were not originally made for debug purposes.

Dynamic Layers combine unanticipated adaptation mech-
anisms flexibility and genericity with COP layers expressive-
ness. Layers and layer scoping are dynamic and composable,
and a new kind of scope can be used to bound contexts to
time constraints (temporal scope). The control-flow scope is
purely dynamic and can scope a layer between two arbitrary
lines of code at runtime, without modifying the base program.
Dynamic Layers are not designed to build a COP language,
but as a pattern for runtime debugging methodologies and
practices. However the dynamic nature of scope composition
raises questions about conflicts and how they could be solved.
It is possible to compose irrelevant scopes and to inject layers
that will never (de)activate in a running program, thus not
making sense. How dynamic layers, adaptations and reified
scopes behave regarding threads was also left aside. These
problems were not addressed in the early design of Dynamic
Layers.

Other works provide means to control changes consistency
in running programs, like grouping live program modifications
in layers before applying them [10], or to ensure objects
consistency before applying behavioral changes [15]. These
works could be interesting start points to think about safety
and consistency aspects of Dynamic Layers. Chisel [8] is
a framework for full dynamic unanticipated adaptation of
software. It is policy based: adaptations and their contexts
are specified in a high-level policy language that are injected
and interpreted at runtime. While it is an effective generic
solution, it is not meant as a debugging solution although it
could partially be used as such. Also, its genericity has limits,
as it puts constraints on software design: if the program was
not developed with Chisel, it cannot be enabled at runtime.

7 CONCLUSION AND FUTURE
WORKS

We defined the Dynamic Layers to debug running systems
under critical conditions, which we call Unanticipated De-
bugging. The two dimensions in which layers are scoped,
i.e. objects selection and activation scoping, are reified. We
described these reifications and suggested a way to express
them in a debug context. We illustrated a possible use of
dynamic layers in a simple debug example.

However the solution lacks precision, in the adaptation
mechanism for example, as it is not yet possible to express
an adaptation of a piece of code at an arbitrary place in a
method. The object selection mechanism needs a practical
way to be performed, such as an extended debugger. The
Dynamic Layers were only studied within one single thread,
and not in multiple threaded applications. Further work
will include deeper studies of these problems regarding the
Dynamic Layers and their implementation. We plan to build
more experiments to demonstrate Unanticipated Debugging

on more concrete usecases. Work must also be done about
Dynamic Layers consistency and their validation before being
applied to a running program.

It would also be interesting to provide tools to experiment
usecases of Unanticipated Debugging, for example to solve
bugs at runtime in a small robot. It could be a remote
debugger with a Dynamic Layer extension.

ACKNOWLEDGMENTS

Many thanks to Stéphane Ducasse for all the helpful discus-
sions and to the anonymous reviewers for their reviews of this
paper. This work is sponsored by the European Smalltalk
User Group (www.esug.org).

REFERENCES
[1] A. Bergel, D. Cassou, S. Ducasse, and J. Laval. Deep Into Pharo.

Lulu. com, 2013.
[2] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and

M. Denker. Pharo by Example. Square Bracket Associates, 2009.
ISBN 978-3-9523341-4-0. URL http://pharobyexample.org.

[3] S. Costiou, M. Kerboeuf, G. Cavarlé, and A. Plantec. Lub: a dsl
for dynamic context oriented programming. In Proceedings of
the 11th edition of the International Workshop on Smalltalk
Technologies, page 13. ACM, 2016.

[4] P. Ebraert, T. D’Hondt, Y. Vandewoude, and Y. Berbers. Pitfalls
in unanticipated dynamic software evolution. In RAM-SE, pages
41–50. Citeseer, 2005.

[5] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented
programming. Journal of Object Technology, 7(3), 2008.

[6] T. Kamina, T. Aotani, and H. Masuhara. Generalized layer acti-
vation mechanism for context-oriented programming. In Transac-
tions on Modularity and Composition I, pages 123–166. Springer,
2016.

[7] J. Keeney. Completely unanticipated dynamic adaptation of
software. PhD thesis, University of Dublin, 2004.

[8] J. Keeney and V. Cahill. Chisel: a policy-driven, context-aware,
dynamic adaptation framework. In Policies for Distributed Sys-
tems and Networks, 2003. Proceedings. POLICY 2003. IEEE
4th International Workshop on, pages 3–14, June 2003. doi:
10.1109/POLICY.2003.1206953.

[9] G. Kniesel, J. Noppen, T. Mens, and J. Buckley. Unanticipated
software evolution. In European Conference on Object-Oriented
Programming, pages 92–106. Springer, 2002.

[10] T. Mattis, P. Rein, and R. Hirschfeld. Transaction layers: Con-
trolling granularity of change in live programming environments.
In Proceedings of the 8th International Workshop on Context-
Oriented Programming, COP’16, pages 1–6, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4440-1. doi: 10.1145/2951965.
2951969. URL http://doi.acm.org/10.1145/2951965.2951969.

[11] O. Nierstrasz, M. Denker, and L. Renggli. Model-centric, context-
aware software adaptation. In Software Engineering for Self-
Adaptive Systems, pages 128–145. Springer, 2009.

[12] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric debugging.
In Proceedings of the 34th International Conference on Software
Engineering, pages 485–495. IEEE Press, 2012.

[13] J. Ressia, T. Gı̂rba, O. Nierstrasz, F. Perin, and L. Renggli.
Talents: an environment for dynamically composing units of
reuse. Software: Practice and Experience, 44(4):413–432, 2014.

[14] D. Röthlisberger, M. Denker, and É. Tanter. Unanticipated partial
behavioral reflection. In International Smalltalk Conference,
pages 47–65. Springer, 2006.

[15] N. Taing, M. Wutzler, T. Springer, N. Cardozo, and A. Schill.
Consistent unanticipated adaptation for context-dependent ap-
plications. In Proceedings of the 8th International Work-
shop on Context-Oriented Programming, COP’16, pages 33–
38, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4440-1.
doi: 10.1145/2951965.2951966. URL http://doi.acm.org/10.1145/
2951965.2951966.

[16] T. Würthinger, C. Wimmer, and L. Stadler. Unrestricted and
safe dynamic code evolution for java. Science of Computer
Programming, 78(5):481–498, 2013.

http://pharobyexample.org
http://doi.acm.org/10.1145/2951965.2951969
http://doi.acm.org/10.1145/2951965.2951966
http://doi.acm.org/10.1145/2951965.2951966

	Abstract
	1 Introduction
	2 Motivating Example
	3 Unanticipated Debugging with Dynamic Layers
	3.1 Dynamic Layers
	3.2 Debug dimensions
	3.3 Reified Activation Scopes
	3.4 Selection and adaptation of objects

	4 Implementation
	5 Evaluation: the GPS example
	6 Related Works
	7 Conclusion and future works
	Acknowledgments
	References

