
HAL Id: hal-02966146
https://hal.inria.fr/hal-02966146

Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysing Microsoft Access Projects: Building a model
in a Partially Observable Domain

Santiago Bragagnolo, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane
Seriai, Mustapha Derras

To cite this version:
Santiago Bragagnolo, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Seriai, Mustapha Derras.
Analysing Microsoft Access Projects: Building a model in a Partially Observable Domain. ICSR 2020,
Dec 2020, Hammamet, Tunisia. �hal-02966146�

https://hal.inria.fr/hal-02966146
https://hal.archives-ouvertes.fr

Analysing Microsoft Access Projects: Building a
model in a Partially Observable Domain

Santiago Bragagnolo1,2[0000−0002−5863−2698], Nicolas
Anquetil1[0000−0003−1486−8399], Stephane Ducasse1[0000−0001−6070−6599], Seriai

Abderrahmane2, and Mustapha Derras2

1 Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL France
{name.lastname}@inria.fr

http://ww.inria.fr
2 Berger-Levrault, France

{name.lastname}@berger-levrault.com

Abstract. Due to the technology evolution, every IT Company migrates
their software systems at least once. Reengineering tools build system
models which are used for running software analysis. These models are
traditionally built from source code analysis and information accessible
by data extractors (that we call such information observable). In this ar-
ticle we present the case of Microsoft Access projects and how this kind
of project is partially observable due to proprietary storing formats. We
propose a novel approach for building models that allows us to over-
come this problem by reverse engineering the development environment
runtime through the usage of Microsoft COM interface. We validate our
approach and implementation by fully replicating 10 projects, 8 of them
industrial, based only on our model information. We measure the repli-
cation performance by measuring the errors during the process and com-
pleteness of the product. We measure the replication error, by tracking
replication operations. We used the scope and completeness measure to
enact this error. Completeness is measured by the instrumentation of a
simple and scoped diff based on a third source of information. We present
extensive results and interpretations. We discuss the threats to validity,
the possibility of other approaches and the technological restrictions of
our solution.

Keywords: model-driven Engineering, Migration, Software Analysis,
Software Reuse, Reverse Engineering, Re engineering

1 Introduction

With the fast evolution of programming languages and frameworks, companies
must evolve their systems. This evolution may imply the full migration of their
applications to new technological environments. Our work takes place in collab-
oration with Berger-Levrault, a major IT company selling information systems
developed in Microsoft Access among others. Microsoft Access is ageing and not

http://ww.inria.fr

2

able to respond to the architectural needs of modern times. This migration is
critical, since Berger-Levrault has more than 90 Microsoft Access applications.

Migration has been a research topic for a long time. The scientific community
has proposed many different ways of tackling down this problem [3,6,8,9,10,11,16,22].
Nevertheless, migration is hard, tightly related with its circumstances and there-
fore, still challenging and not completely solved [20].

Most of the programming language compilers use plain text files as input
for the programs they should compile or for configuration, such as XML, YML,
properties, etc. Therefore, reengineering tools [12] often use the same approach
for producing their internal models [6,8,11,13,16,21,22]. Work has already been
done to mix static and dynamic analysis3 [7,15,18,19]. However, not all the lan-
guages are based on text files. Some of them, such as Microsoft Access (Access
for short), Oracle Forms, Flash, Flex and many other Rapid Application Devel-
opment (RAD), use some kind of binary format. In our particular case, we study
the applications developed in Access. Access uses a proprietary binary format for
storing the programs. Due to this policy and the lack of exporting capabilities,
an Access application lacks full text representation.

Knowing that our migration involves the splitting of code in between front-
end and back-end, the reengineering of the UI from desktop application to web
application and the backend into good quality micro-services.

We propose the next three research questions to lead the research:

#RQ1: Can we obtain an application representation by querying the IDE run-
time?

#RQ2: Are we able to re-engineer the meta-data sources into a model useful
for migration?

#RQ3: Is the obtained model suitable for migration?

Using these questions as general guidelines and getting inspiration from pre-
vious work on a different domain [1,2], we propose a model fully built on binary
sources by applying reverse engineering on the run-time of the Access develop-
ment environment, and re-engineering to transform the available data into an
unified model.

Section 2 details the background of our research and in particular we describe
Access as a partially observable domain and stress its opacity. We overview avail-
able technologies for accessing binary information. We propose an approach and
implementation (Section 4) based on reverse and re-engineering taking into ac-
count the underlying challenges. We validate our approach and implementation
by fully replicating 10 projects, 8 of them industrial, based only on our model
information. We measure the replication performance by measuring the errors
during the process and completeness of the product. We measure the replication
error, by tracking replication operations. We used the scope and completeness
measure to enacte this error. Completeness is measured by the instrumentation
of a simple and scoped diff based on a third source of information. (Section 5).

3 For space reasons, we do not consider tools performing analyses of system runtime.
Such approaches instrument applications and produce various traces [4].

Analysing Microsoft Access Projects 3

2 Microsoft Access: a Partially Observable System

Access is a relational database management system (RDBMS) that besides of-
fering the relational Microsoft Jet Database Engine, also offers a graphical user
interface and software-development tools. We briefly present and stress the key
problems to extract information about Access applications.

2.1 Access

Visual Basic for Applications (VBA) is provided as a programming language.
VBA is an object-based [23] extension of Visual Basic. Access is a fourth-
generation language (4GL), comparable with Oracle forms or Visual Fox-pro.
With the same mission of easing the GUI creation.

Access proposes a hybrid paradigm that aims to tackle down GUI, data
storing and processings in a fully controlled and centralized environment. A
program developed in Access solves problems by the orchestration of its first-
class citizens: forms, modules, class, tables, queries, reports and macros.

To ease the work of GUI development, Access provides a point and click GUI
Builder. As many other GUI builders in the market, such as Android Studio,
Eclipse or Microsoft Visual Studio, Access also has to face the problem of distin-
guishing the generated content from the hand-crafted content. Android Studio
uses the R class 4 for scoping generated code, Visual Studio.Net uses partial
classes 5, and JavaFX uses xml files and annotations.

In the case of Access, Forms and Reports are split into two parts: (1) the VBA
code, produced and modified only by the developer, (2) the component internal
structure, produced and managed by the IDE, accessible to the developer only
through point and click.

As many other 4GL languages, and Microsoft products, Access uses a pro-
prietary binary format. This format organisation is undocumented, implying
that attempting to extract data directly from the file would require a huge re-
verse engineering effort. Furthermore, Access uses entity specific formats for each
first-class-citizen type, and in some cases, such as forms and reports, it has two
formats, to respond to the internal division, required for managing code genera-
tion, explained above. This variety of formats leads to a more complex problem,
threatening the generalization of a solution.

2.2 Limited Exporting

Access provides a visual interface to export some entities by point and click.
This process is time consuming and prone to error. It is not tractable for full
applications and in addition not all the elements can be exported. Leading to
what we call a partially observable domain, since, by the usage of given tooling
we cannot obtain artefact to analyze.

4 https://developer.android.com/reference/android/R
5 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/

classes-and-structs/partial-classes-and-methods

https://developer.android.com/reference/android/R
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods

4

Macro

ModuleForm

Report

Property Controls

BehaviorUnit

ClassModule
Query Table

DataSource

bounded to

Format EventData bounded to

Function/
Procedures

Property
companion

SubModule

1..*

1..*

1

1..*
1..* 1..*

1

1Field

1..*

Fig. 1: Access simplified model

Figure 1 shows a simplified model of Access main elements. In grey we show
the elements that cannot be exported from the GUI, in white those that can.
Most of the structural entities are not available for export such as the table
definitions, the query SQL definition, reports and forms structures not even
the macros. The main GUI exporting features are related to the visual basic
part of the project, including modules, class-modules, and the report or form
companion-modules.The latter happens to be useless since their structure is not
migrated.All analysis proposed over this partial content should be fully based
on heuristics.

2.3 Programmatic Exporting

Access provides an undocumented function for programmatically exporting a
text representation for all the first-class citizens. Using this function requires the
implementation of specific software. This function is leveraged by third-party
vendors that propose enhanced exporting features for control source version
purposes. Solutions such as Oasis6, Ivercy7, MSAccess SVN8, and others. We
compare and extend on this subject in Section 7

2.4 Requirements & Constraints

Our work happens in the context of an industrial research on migration from
Access to different kinds of technologies. We aim to migrate full applications
from one monolith origin to a front-end and a micro service-based back-end
(disregarding the database migration and restructuring since is out of scope).

The main features expected for the migration process are (1) selectiveness
(the developer must be able to choose what he wants to migrate). (2) iterative
(being able to propose short loops of migrations easy to verify and cheap to
reject). (3) interactiveness (to be able to establish a dialog with the developer
to better achieve the selective migration).

Such a migration process must coexist with an original project that is un-
der maintenance and development. These requirements imply the following con-
straints: (1) The CPU and memory usage must be scoped to selective migrations

6 https://dev2dev.de/index.php?lang=en
7 https://ivercy.com/
8 https://archive.codeplex.com/?p=accesssvn

https://dev2dev.de/index.php?lang=en
https://ivercy.com/
https://archive.codeplex.com/?p=accesssvn

Analysing Microsoft Access Projects 5

(the migration solution must be able to run cheaply in the working environment
of the developers without performance penalties). (2) The model must be able
to supply as much data as possible. (3) The model must be able to supply up-
to-date data (all modifications should be reflected immediately in the model).

Following the direction of [16,8] that work over the model of Oracle Forms, we
recognize the importance of having a model based on the first-class-citizens of the
language. Following the abstract idea behind [14], we propose a representation
close to the language, that responds to Figure 1.

3 COM Technological Overview

In this Section we provide a technological overview that will be used to enumerate
the challenges of a solution based on the usage of Access COM API.

3.1 Microsoft COM & Access

Through COM, Access exposes a large and powerful API, that allows high in-
teroperability in between different applications.

Access documentation 9 is heterogeneous. It provides good quality content for
the popular usages, but vague, superfluous or even nonexistent for less popular
usages. We insist on a technological overview that will help us answer our #RQ1,
and shed light on the challenges.

3.2 Data Access

For interacting with Access through COM we must interact with an object
model, composed by the followings.

Remote handle. For interacting with remote Access entities COM provides re-
mote memory addresses. We call these addresses handles.

Application. First instance to access through COM. This application object is
bound to a running instance of Access. It exposes an explorable API, and it
allows access to the project components, directly or indirectly.

DoCmd. (Do Command) is an object that reifies most of the available operations
to apply on the application. It must be used for opening a project, databases
and others. Most of the objects below have this object as a dependency.

References. This collection contains Reference objects describing a project’s
static dependencies.

CurrentProject. Depends on DoCmd. It holds basic metadata for each element
in the project, by pointing to the collections AllForms, AllReports, AllMacros,
AllModules that contains objects describing each form, report, macro and module
correspondingly.

9 https://docs.microsoft.com/en-us/office/vba/api/overview/access

https://docs.microsoft.com/en-us/office/vba/api/overview/access

6

CurrentData. Depends on DoCmd. It holds metadata for each element related
with data structures. In this object the available collections are AllTables, All-
Queries that contains objects describing each table and query correspondingly.

DbEngine. Depends on DoCmd. It is the main access point to the data model.
It provides access to workspaces.

Workspace. Depends on DbEngine. Represent database schemes, and provides
access to the scheme elements by pointing to the collections QueryDefs and
TableDefs.

TableDef and QueryDef. Depends on Workspace. Each of these objects contains
a description. For the TableDefs name and fields. For the QueryDefs name and
SQL.

Forms, Reports and Modules. Depends on DoCmd. Finally, we have three main
collections where we can find the Form, Report and Module objects with their in-
ner composition. This internal definition includes composed controls (textbox, la-
bels, etc.), properties (layout, naming, companion-module, etc) and VBA source
code.

3.3 COM Model Re-engineer Challenges

To re-engineer COM data into an unified model has challenges:

The reading of a property of the COM entity, may give back another COM entity.
In some cases, we are going to read native type or self-contained information.
But in some other cases the value of an attribute may be another handle. For
these cases, we have to map the read value with a model entity type.

One model entity may correspond to more than one COM entity. The COM
model provides two different objects for representing each of the first-class cit-
izens. By example, AllForms contains form’s metadata, Forms contains a form
internal representation.

One COM entity type may be mapped to different model entity types. Most of
the objects in the COM model have properties represented with the same type,
but to be able to structure the analysis (visiting, for example), we need them
belonging to different classes. This implies that some of the entities with the
same type may have to be mapped to different types in our model.

Loadable objects. The first-class citizen objects must be dynamically loaded to
reach their internal information. For loading, they require access to many COM
entry points. This implies that some objects require specific extra steps for ac-
quiring the desired data.

Summary. The overview shows that COM delivers a large access to the binary
model of an Access application. This remote binary representation (from now
on COM model) is also a very low level model that responds to the need
for interaction between applications. We also understand that an approach in
this direction must respond at least to the traditional challenges of reverse and
re-engineering processes.

Analysing Microsoft Access Projects 7

4 Mixing Static and Internal Access information

To answer Are we able to re-engineer the meta-data sources into a model useful
for migration?, (#RQ2), we propose the approach of online model from the
point of view of a migration, followed by an implementation of the proposed
approach and an explanation of how our approach and implementation address
each constraint and challenge stated above.

4.1 Approach

As a general approach we propose to define our model as an online projection
of the COM model. By online we mean that all the data is obtained by the
COM bridge, therefore, any change done in the code impacts immediately our
model. For achieving this we propose to let our model use COM as a back-end.
Our model must conform to the meta model proposed in Figure 1. By delegating
to COM we aim to get all the possible data to be gathered from the analyzed
software on demand. We expect this strategy to give immediate feedback and to
allow quick and agile modifications over the used information, without requiring
to do further extractions reducing the need of planning the data (constraint
stated in Section 2), and allows us to implement quick migration experiments.

4.2 Architecture Implementation

As general architecture we propose to create a model that uses the COM model
as a back-end as shown in the Figure 2 We propose lazy access to the COM model

AbstractEntityWithBackend

LoadableObject

AccessProject

entity backend

Control

COM Handle

Property

1 .. 2 1 .. 1

1 .. 1
loaded entity backend

Form Module… ComboBox TextBox… BackColor Layout…

Project

project backends

Fig. 2: Architecture

back-end, what will guarantee that we access and load only what is needed. This
feature aims to limit the memory usage (constraint stated in Section 2) by con-
struction. The lazy approach will also allow us to map each binary-model-entity
to a model-entity one at a time. We also propose to cache the results, for reducing
the COM calls and therefore CPU time and inter-process communication.

Regarding the mapping between the COM model entity-type and our model,
we propose to use two kinds of mapping: by type and by attribute value. First-
class citizen entities are represented by two COM models, and that is why all

8

of them subclass from a LoadableObject class, which maps two COM models
instead of one.

For mapping the binary-model-entities to model-entity types, we propose to
use factories. The mapping factory by type maps one binary-entity-type to one
model-entity-type. The mapping factory by attribute value maps one binary-
entity to one specific model-entity-type according to one specific binary-entity
value.

4.3 Microsoft Access Model Implementation

Our model extends from the architecture implementation, and inherits the map-
ping to COM remote entities. This model is meant to be visited by a visitor
pattern, in order to perform analysis. In order to define the structural composi-
tion to be visited, it relies on the usage of stateful traits. At the level of stateful
traits we define, by example, the widget - control composition.

4.4 Meeting the Challenges and Constraints

The reading of a property of the COM entity, may give back another COM entity
Each model type must know which readings will give back a COM model entity.

In these reads we use a factory that maps the COM model type with a model
type. After creating a new instance, it sets up the given COM model entity as a
back-end.

One model entity may correspond to more than one COM entity There are two
kind of objects with more than one back-end, the first-class citizens, subclass of
LoadableObject, and AccessProject, that is a convenient class for managing the
generality of COM usage. Since there are only two specific cases they are treated
individually.

One COM entity type may be mapped to different model entity types While
loading properties we use a factory pattern that defines the class to instantiate
according to the name of the property. Since the only COM model entity with
this kind of mapping is the property, we did not generalize this kind of mapping.

Loadable objects For loadable objects, we defined a specific branch in the hi-
erarchy, that before accessing to remote properties related to the loaded object
back-end, it ensures that the back-end has been loaded and bounded. For en-
suring this, the Loadable Object subclass does a typed double dispatch with the
AccessProject, which delegates to DoCmd.

Contain computational resources usage If we want to access all possible data, we
risk having a model that is too big to be managed. For approaching a solution to
this problem, we propose to specialize the access on demand in our implementa-
tion by using lazy loading and cache. Lazy loading scopes the memory usage
to the effectively needed data. Cache scopes the inter-process communication
and CPU time for remote access to one time per object.

Analysing Microsoft Access Projects 9

Accessing all accessible data Our proposal is conceived to get data on demand.
This is why the very nature and particularity of this model is to be connected
to the Access development runtime. If the data is reachable by COM, therefore
it should be accessible.

Accessing up-to-date data The online nature of our approach is the main key for
ensuring up-to-date data, since the data obtained is meant to be obtained from
the developer’s Microsoft Access running instance.

5 Validation

Our validation is aligned with #RQ3: Is the obtained model suitable for migra-
tion? Since our model is meant to be used for migration, we propose to fully
migrate some projects to the same technology. That is to say to replicate or
clone. For doing so, we perform a replication of 10 different access projects. For
this performance we use our model and the COM extensions to produce the
replicated project programmatically.

5.1 Methodology

Build Replica

programatic
export

programatic
export

load model

load model

diff weight

weight errors analysis

Fig. 3: Validation methodology overview

Chosen projects For this validation we used 10 different projects (described in
Table 1). 8 of them are base libraries used by Berger-Levrault in all the Access
projects. One is an open source example found in GitHub 10. The last one is the
Microsoft Northwind Traders (Northwind for short) 11 example project. This
project is used for learning Access and it uses most of the standard techniques
and available graphical features of the language.

Error tracking & weighting All errors happening during the replication process
are tracked down for further analysis and correlation with the original / replica
comparison. The error tracking composition responds to the same composition as
the proposed model. In a nutshell, we count the operations required to replicate
the project. We obtain a proportion of errors by contrasting this counting ac-
cording to the outcome: successful or failure. More details including the formula
are given in the annex Section 10.

10 https://github.com/Access-projects/Access-examples
11 https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/northwind-install

https://github.com/Access-projects/Access-examples
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/northwind-install

10

Project Remote
Table

Table Remote
Query

Query Module Classes Report Forms

Northwind 0 20 0 27 6 2 15 34
CUTLCOMP 0 1 0 0 3 0 0 0
CUTL 7 3 0 1 26 62 0 8
CRIR 5 4 0 16 6 0 2 3
CPDI 0 1 0 0 2 0 0 0
CHABIL 11 2 0 27 8 1 1 10
CDDE 0 1 0 0 2 0 0 0
CAUNIT 0 1 0 0 4 15 0 1
ACCUEIL 25 7 0 13 6 67 5 33
Access Examples 0 10 2 14 11 1 8 13

Table 1: Projects descriptions

Programmatic export for obtaining file definitions For obtaining the file defini-
tion of each component we leverage the COM function named SaveAsText (this
function is explained in Section 7). The output of this function differs by each
type of entity as follow: For Modules and class-modules it offers VBA (.bas) files.
For Queries it offers an SQL output. For tables it uses XML format. For Forms
and Reports, offers an output that hybridizes the structure definition and the
VBA code of the companion-module.

File diff & weighting We instrument a diff in between pairs of files of each
original / replica exported project. The result of this diff is a differential graph
expressing all the required operations for transforming the original project to the
replica project. In a nutshell, we count the comparisons and contrast according
to the outcome: added/removed element, modified value, exact replication. More
details including the formula are given in the annex Section 11.

5.2 Results

Table 2 offers an overview of the process of replication of each of our projects.
Most of the main elements are replicated. The tables and queries not replicated
happen to be remote tables that we cannot access, since we lack access to the
remote server.

Table 2: Export overview

Reference Table Query Module Report Forms Total
#Elements 70 98 100 222 31 102 623
#Replicated 69 50 98 222 31 102 572
#Failures 1 48 2 0 0 0 51

Below compare the different aggregation of completeness with the aggrega-
tion of error tracking per project per type of element. We do not include modules
nor macros because the result is complete in all the projects. Since both com-
pleteness and error series respond mostly to a hyperbolic distribution, we propose
to measure the rate of success and error by using the median.

Analysing Microsoft Access Projects 11

Table 3: Query comparison
Queries

Projects Completeness Failures

Max Min Median SDev Max Min Median SDev
Northwind 100 100 100 0 15 0 0 3.05
CUTLCOMP – – – – – – – –
CUTL 100 100 100 0 0 0 0 0
CRIR 100 88.46 100 2.88 0 0 0 0
CPDI – – – – – – – –
CHABIL 100 93.49 100 1.25 0 0 0 0
CDDE – – – – – – – –
CAUNIT – – – – – – – –
ACCUEIL 100 95.76 100 1.17 0 0 0 0
Access Examples 100 0 100 25.81 100 0 0 34.15

Table 4: Table comparison
Tables

Projects Completeness Failures

Max Min Median SDev Max Min Median SDev
Northwind 100 0 100 23.72 22 0 0 5.14
CUTLCOMP 100 0 100 27.62 0 0 0 0
CUTL 100 0 98 5041 10 0 0 46.43
CRIR 100 0 99 46.04 100 0 0 44.42
CPDI 100 0 100 27.62 0 0 0 0
CHABIL 100 0 0 50.65 100 0 0 50.38
CDDE – – – – – – – –
CAUNIT 100 98 100 0.75 0 0 0 0
ACCUEIL 100 0 0 49.6 100 0 100 50.63
Access Examples 100 0 99.5 32.34 90 0 0 17.65

Table 3 show some very good results. We fully replicate most of the queries.
Table 4 has also very good results, since most of the failures happen on tables that
are remote. CUTL, CRIR, CHABIL, ACCUEIL and Access Examples, all
of them high standard deviations, and all of them have remote tables. There are
some cases where there are no errors during the process, but we don’t meet full
completeness, such as the cases CUTLCOMP, CAUNIT and CPDI. These
cases happen because system tables are not replicated, and the replication targets
a newer Access version.

Table 5: Form comparison
Forms

Projects Completeness Failures

Max Min Median SDev Max Min Median SDev
Northwind 86.24 61.55 69 4.72 8.68 5.32 9 0.73
CUTLCOMP – – – – – – – –
CUTL 86.73 63.46 82 8.45 7.62 1.66 5 1.79
CRIR 74.73 73.06 74 0.96 8.31 8.18 9 0.064
CPDI – – – – – – – –
CHABIL 78.3 65.89 70.5 4.14 8.95 5.44 6 1.134
CDDE 100 98 100 0.83 0 0 0 0
CAUNIT 79.96 79.96 79.96 0 5.27 5.27 5.27 5.27
ACCUEIL 92.71 70.01 78 6.22 15.71 2.49 6 2.7
Access Examples 88.52 61.91 76 8.35 34.05 6.6 9 7.25

Table 6: Report Comparison
Reports

Projects Completeness Failures

Max Min Median SDev Max Min Median SDev
Northwind 71.55 65.97 70 1.5 16.57 11.33 16 1.3
CUTLCOMP – – – – – – – –
CUTL – – – – – – – –
CRIR 73.13 71 73 1.5 20.64 15.64 18.5 3.54
CPDI – – – – – – – –
CHABIL 71.21 71.21 71.21 0 13.87 13.87 13.87 0
CDDE – – – – – – – –
CAUNIT – – – – – – – –
ACCUEIL 74.57 73.34 74 0.53 14.16 13.87 14 0.13
Access Examples 90.14 66.1 72.5 7.48 18.15 13.87 16 1.51

In the particular case of reports and forms (Table 5, Table 6) we see less
interesting outcomes from the point of view of completeness, but we can observe
an inversely proportional relation with the errors. There is also a restriction of
implementation, many values that are stored in byte array structures, even if we
can read them, we cannot write them. This makes impossible the replication of
printing configuration, custom controls based on ActiveX or OCX technologies
and image contents. These properties do not figure in between the errors, because
they are avoided by construction of the process. Finally, Figure 4 provides an idea
of the confidence interval of the measures. Both sides show a correlated existence
of isolated measures. In the case of the Tables the completeness confidence is too
large. We can relate it with the scattered error measures. Forms and Reports
completeness show shorter intervals, that we can correlate with the error intervals
and the distance between the isolated cases. Finally, modules and queries have

12

a really good interval. The centre is placed almost in 0 in the failures plot, even
having some isolated cases themselves.

(a) Completeness (b) Failures

Fig. 4: Confidence

5.3 Human Insight and Opinion

We check each of the replicas and compare manually with the original, and also
with the extracted data. Most of the meaningful parts of the applications were
properly replicated, even when some of the most appealing graphical features
are not maintained because of the impossibility of writing this kind of data.
Nevertheless, we spent time specially on the execution of many functionalities of
the project Northwind and found out that most of the behaviors are maintained,
since all the macros and source code has been correctly replicated and bound to
the proper structures. After migrating all the example data available from the
original to the replica, we can observe that the login works as expected in all
the tests we manually checked. Figure 5a and Figure 5b give material evidence
of the outcome, by exposing the most complex form in the replicated system.
All this insight is highly positive. Our most positive but opinionated insight is
that we achieve to develop the validation faster than we expected, thanks to the
model that we are presenting. We got constant assessment from it getting fast
feedback and understanding of the replication process target.

(a) Original Home screen (b) Replicated Home screen

Analysing Microsoft Access Projects 13

6 Threats to Validity

Empirical study. Our validation is based on the replication of ten projects. This
gives about 534 first-class-citizen components, thousands of controls and table
fields. There may exist many kinds of projects that are not represented by those
that we have.

Multiple versions. We have seen how the non-replication of system tables avail-
able in other versions of access came out as a difference in between the original
and replicate code because of the policy of non-exporting system tables. This
does not happen to be a false positive. And we did not find any false positive
or false negative, but we cannot completely ensure yet with this validation this
cannot happen in other projects.

Undocumented features leveraging. For allowing the file comparison done for our
validation, we had to leverage some undocumented functions (widely explained in
Section 7). This function could change or not be accessible anymore, threatening
the reliability of the process.

7 Discussion

Source version control-oriented solution. As we pointed out in Section 2, there
are third party solutions for source control that could be helpful for solving
this problem. This software produces different text formats able to reproduce
the exact same project. The available tools developed for source control are
based on the usage of SaveAsText undocumented function provided by Access
DoCmd command. This function exports each entity to a text format, producing
XML for the tables, VBA for the source code and an Access specific DSL for
defining forms and reports. Their stability is tested already for many years by
the market, meaning that could be a good starting point for software analysis.

Undocumented features. Even taking into account the fact that these tools have
been in the market for a long time, we do not really know how they have changed
during their lifetime. As we pointed just above, these solutions are based on
the usage of the undocumented functions SaveAsText and LoadFromText. This
presents two risks: (1)Microsoft may change their behavior, or even make them
unavailable in the future,(2) the format of the exported text has no documenta-
tion either, which means that different versions could have singularities.

Context and performance. Besides that, our approach of software migration
is based on augmenting the developer. For this reason, we see it more useful
to be able to see exactly what the developer is actively working on, to have
more context and insight. Finally, we see that delegate the management of the
information to the same access and using the IDE as a database has a high
potential for reducing memory consumption and model complexity, allowing us
to develop tools that can run on a working environment, without requiring extra
infrastructure.

14

What our validation does not validate. The exported files have the minimal
amount of information required to build again the whole application. This is a
lot. But it does not include default values. While in a file, a complex component
may define about ten different properties, when accessed through COM, we
have access to more than 100 properties per control. This means that the text
representation reveals to be incomplete, partially observable. From the point of
view of software analysis and migration, to have systematic access to default
values without having to manually specify them is a great asset.

8 Related Works

OMG in [13] and [21], in the context of Architecture driven modernization, pro-
poses successive transformations over the extracted Abstract Syntax Tree model
(ASTM) [14], which is obtained by parsing source code. [6] Claims an efficient
implementation of model-driven Engineering (MDE) with models obtained by
parsing source code and obtaining an ASTM. [16] proposes to reverse engineer
GUI Layouts from Oracle Forms. They export the Form structure as XML and
use EMF 12 tools for generating models. [11] for the particular case of analyz-
ing flex UI, it proposes the usage of Adobe Wallaby 13 for transforming Flash’s
SWF binary proprietary format files into HTML, and then parsing. [8] proposes
to parse all the files representing an Oracle Forms for obtaining a model the
article does not specify the kind of file they used for analyzing But according
to [16] and to the existence of Oracle exporting tools 14 from Form to XML we
suspect that they follow the same path. [22] proposes the usage of Famix [5].
Famix extraction for Java applications is achieved by using VervaineJ 15. This
library transforms the source code to a Family of Languages representation. One
of the main differences with an AST is that it is a Graph with scoping and it
binds all the static relationships. To reach this deeper knowledge, it analyses the
application by parsing its files in the context of the eclipse java compiler. To the
best of our knowledge, at least within the MDE based approaches: (1) there is no
other model extraction technique but by parsing: either the source code of the
source application or the exportation from a binary format to a text format (for
example XML/HTML). (2) The approaches are based on batch processing in-
stead of online access. Some of these model extracting tools VervaineJ, Proleap
16, SMACC 17, ANTLR 18, and many others. [19] overviews several dynamic
(based on run-time analysis) reverse engineering techniques and their challenges
in the context of the software migration and evolution. [18] Proposes a hybrid
analysis approach for reverse-engineering web applications, obtaining a model

12 http://www.eclipse.org/modeling/emf/.
13 https://en.wikipedia.org/wiki/Adobe Wallaby
14 https://blogs.oracle.com/apex/forms-to-apex-converting-fmbs-to-xml
15 https://github.com/NicolasAnquetil/VerveineJ
16 https://github.com/uwol/proleap-vb6-parser
17 https://refactory.com/smacc/
18 https://www.antlr.org/

http://www.eclipse.org/modeling/emf/.
https://en.wikipedia.org/wiki/Adobe_Wallaby
https://blogs.oracle.com/apex/forms-to-apex-converting-fmbs-to-xml
https://github.com/NicolasAnquetil/VerveineJ
https://github.com/uwol/proleap-vb6-parser
https://refactory.com/smacc/
https://www.antlr.org/

Analysing Microsoft Access Projects 15

by crawling the widgets from the run-time, and augment the results by parsing
the event handlers code and recognize what are the possible navigation options.
[17] Points out the complexity of accurate GUI analysis by code interpretation.
Extracts a technology-agnostic UI model by crawling the application run-time
using AOP, for enabling portability to android.

9 Conclusion & Future Work

Contribution. In this article we explained the problem of opacity in Access.
We enunciate three research questions for our work. We offered a technological
overview for using COM as a bridge for accessing data, aiming to answer #RQ1.
We offered the novel approach and implementation of model to shape a COM
model into an application model, answering #RQ2. We conducted an exhaustive
and detailed validation process guided by and answering #RQ3. We offered a
compendium of the threats to validity that we found during our experiments.
We compared our solution with related work and proposed a discussion on why
to choose the usage of COM over exported files. We position our work with the
state of the art on the part of software migration and how software is analyzed
towards this goal.

Future. From this point we have several paths opening. Adapt parsing tech-
niques over the modules, class-modules and companion-modules, for being able
to build a full AST on demand, and being able to control its creation on demand,
without losing reference information. Find the minimal migration from Access
to Angular/TypeScript based in our online metamodel.

References

[1] Bragagnolo, S., Marra, M., Polito, G., Boix, E.G.: Towards scalable blockchain analysis. In:
2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB). pp. 1–7 (2019)

[2] Bragagnolo, S., Rocha, H., Denker, M., Ducasse, S.: Smartinspect: solidity smart contract in-
spector. In: 2018 International Workshop on Blockchain Oriented Software Engineering (IW-
BOSE). pp. 9–18 (mar 2018). Electronic ISBN: 978-1-5386-5986-1

[3] Brant, J., Roberts, D., Plendl, B., Prince, J.: Extreme maintenance: Transforming Delphi into
C#. In: 2010 IEEE International Conference on Software Maintenance. vol. Software Mainte-
nance (ICSM), 2010 IEEE International Conference on, pp. 1–8 (2010)

[4] De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J.M., Yang, J.: Visualizing
the execution of java programs. In: Revised Lectures on Software Visualization, International
Seminar. pp. 151–162. Springer-Verlag, London, UK (2002)

[5] Ducasse, S., Anquetil, N., Bhatti, U., Cavalcante Hora, A., Laval, J., Girba, T.: MSE and
FAMIX 3.0: an Interexchange Format and Source Code Model Family. Tech. rep., RMod –
INRIA Lille-Nord Europe (2011)

[6] Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jezéquel, J.M.: Model-Driven Engineering for
Software Migration in a Large Industrial Context. In: Engels, G., Opdyke, B., Schmidt, D.C.,
Weil, F. (eds.) Model Driven Engineering Languages and Systems. vol. 4735, pp. 482–497.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

[7] Francesca, A.F., Fabrizio, P., Claudia, R., Stefano, R.: Behavioural design pattern detection
through dynamic analysis. In: Proceedings of 4th PCODA at the 15th Working Conference on
Reverse Engineering (WCRE 2008). pp. 11–16 (2008)

[8] Garcés, K., Casallas, R., Álvarez, C., Sandoval, E., Salamanca, A., Viera, F., Melo, F., Soto,
J.M.: White-box modernization of legacy applications: The oracle forms case study. Computer
Standards & Interfaces pp. 110–122 (Oct 2017)

[9] Govin, B., Anquetil, N., Etien, A., Ducasse, S., Monegier Du Sorbier, A.: Managing an Industrial
Software Rearchitecting Project With Source Code Labelling. In: Complex Systems Design &
Management conference (CSD&M). Paris, France (Dec 2017)

16

[10] Govin, B., Anquetil, N., Etien, A., Monegier Du Sorbier, A., Ducasse, S.: How Can We Help
Software Rearchitecting Efforts ? Study of an Industrial Case. In: Proceedings of the Interna-
tional Conference on Software Maintenance and Evolution, (Industrial Track). Raleigh, USA
(Oct 2016)

[11] Hayakawa, T., Hasegawa, S., Yoshika, S., Hikita, T.: Maintaining web applications by translat-
ing among different RIA technologies. GSTF Journal on Computing p. 7 (2012)

[12] Kienle, H.M., Müller, H.A.: The tools perspective on software reverse engineering: Require-
ments, construction, and evaluation. In: Advanced in Computers, vol. 79, pp. 189–290. Elsevier
(2010)

[13] Newcomb, P.: Architecture-driven modernization (adm). In: 12th Working Conference on Re-
verse Engineering (WCRE’05). pp. 237–237 (2005)

[14] Object Management Group: Abstract syntax tree metamodel (ASTM) version 1.0. Tech. rep.,
Object Management Group (2011)

[15] Richner, T., Ducasse, S.: Recovering high-level views of object-oriented applications from static
and dynamic information. In: Yang, H., White, L. (eds.) Proceedings of 15th IEEE International
Conference on Software Maintenance (ICSM’99). pp. 13–22. IEEE Computer Society Press, Los
Alamitos CA (Sep 1999)

[16] Sánchez Ramán, O., Sánchez Cuadrado, J., Garćıa Molina, J.: Model-driven reverse engineering
of legacy graphical user interfaces. In: Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering. pp. 147–150. ASE ’10, ACM (2010)

[17] Shah, E., Tilevich, E.: Reverse-engineering user interfaces to facilitate porting to and across
mobile devices and platforms. In: Proceedings of the compilation of the co-located workshops
on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, \& VMIL’11. pp. 255–260. ACM
(2011)

[18] Silva, C.E., Campos, J.C.: Combining static and dynamic analysis for the reverse engineer-
ing of web applications. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. p. 107. ACM Press (2013)

[19] Stroulia, E., Systä, T.: Dynamic analysis for reverse engineering and program understanding.
SIGAPP. Applied Computing Review 10(1), 8–17 (2002)

[20] Terekhov, A.A., Verhoef, C.: The realities of language conversions. IEEE Software 17(6), 111–
124 (Nov 2000)

[21] Ulrich, W.M., Newcomb, P.: Information systems transformation: architecture-driven modern-
ization case studies. Morgan Kaufmann (2010)

[22] Verhaeghe, B., Etien, A., Anquetil, N., Seriai, A., Deruelle, L., Ducasse, S., Derras, M.: GUI
migration using MDE from GWT to Angular 6: An industrial case. In: 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER). Hangzhou,
China (2019)

[23] Wegner, P.: Dimensions of object-based language design. In: Proceedings OOPSLA ’87, ACM
SIGPLAN Notices. vol. 22, pp. 168–182 (Dec 1987)

10 Annex 1: Error tracking & weighting

Error tracking COM is not intensively used to create projects programmatically.
Many standard procedures, after running, make Access unstable and easy to fail
in any next attempt of modification. Failures that may imply from non created
widgets to missing properties. During the whole process we track down all the
errors happened during this process, for being able to plot alongside with the
results on the comparisons. This error is tracked down at the level of replication
operation and typified.(1) ChildCreatedSuccessfully (2) FailureToCreateChild
(3) FailureToWriteProperty (4) PropertyWrittenSuccesfully. The tree of error
tracking composition responds to the same composition as the proposed model.

Error weighting We measure the failure of a replication process, by the weighting
and summarization of the tree of operations.

Analysing Microsoft Access Projects 17

Let o be the result of an operation of replication. Let co be the children
creation operation under the scope of the operation o. Let po be the properties
creation operation under the scope of the operation o.

F (o) =

1 o ∈ {Failure}
0 o ∈ {Success} ∧ |co| = 0 ∧ |po| = 0

(0.9

|co|∑
i=1

F (coi)

|co|
+0.1

|po|∑
i=1

F (poi)

|po|
)0.5 o ∈ {Success} ∧ |co| > 0

|po|∑
i=1

F (poi)

|po|
o ∈ {Success} ∧ |co| = 0

(1)

This recursive function calculates the proportion of error in terms of errors
in terms of composed errors. For our work those elements that are composed of
elements (by example, the controls inside a form) are specially represented by
their children. This is why one formula branch uses coefficients: 10% based on
the component properties, and 90% on the children completeness.

11 Annex 2: File x File Diff & weighting

File diff For being able to diff each pair of files we used different techniques
Modules, Macros, and Queries are loaded as nodes with name and plain text
content. Tables are loaded as XML trees including name, indexes and fields
with their name and type. Forms, Reports are loaded with a simple parser that
produces a tree of report/form with their controls and properties.

Each of these entities are loaded from original and replica. For each pair we
calculate the differential tree expressing all the needed operations for transform-
ing the original graph into the replica graph. We define the following operations:
(1) Add (2) Remove (3) Same (4) ModifyChild (5) ModifyProperty.

Diff weighting We measure the completeness of each of the elements on the
differential graph. Let u be the result of comparing an element from the original
project with its equivalent of the replica.

Completeness(u) = (1−M(u)) ∗ 100) (2)

Magnitude M(u) is the weighting of the difference in between two elements. Let
uo and ur being respectively original and replica side of u. Let cu be the set of
children that belong to the u. Let pu be the set of properties that belong to the
u.

M(u) =

1 u ∈ {Add,Remove}
0 u ∈ {Same}

(0.9

|cu|∑
i=1

M(cui)

|cu|
+0.1

|p|∑
i=1

M(pui)

|pu|
)0.5 u ∈ {ChildModif} ∧ |cu| > 0

|pu|∑
i=1

M(pui)

|pu|
u ∈ {ChildModif} ∧ |cu| = 0

ur − uo u ∈ {PropertyModif} ∧ ur, uo ∈ {Native type}

(3)

This recursive function calculates the magnitude of the difference in terms
of the composed differences. The coefficients used in this formula respond to the
same explanation as those used on the error weighting formula explained above.

	Analysing Microsoft Access Projects: Building a model in a Partially Observable Domain

