; ’POLYTEGH" e\
LILLE

Université
g/ Lillel

ences et Technologies

Final Project Report

Département Génie Informatique et Statistiques
Polytech Lille, Villeneuve d’Ascq

Language Transformation

RMod .

Supported by :
Vincent Blondeau

Tutor :
Anne Etien

Company name :
Equipe Rmod - INRIA

Year : 2013/2014

Vincent Blondeau

Final Project Report 2013/2014

Contents
1__Introductionl
2 Why and how transforming code?|
2.1 Why transtorming code?|
2.2 Code Modelingl
[2.3 Transformation Existing tools|
2.3.1 Transformation Framework|.
[2.3.2 Transtormation Languagel
2.4 The project|
[3__What 1s a transformation tool?l
[3.1 Model navigation
[3.2 Model filtering|.
3.3 Iransformation rulesf

[3.4 An other tool: The Model Displayer|

[4 Tasks and time scheduling|

4.2 Agile method|
43 Realized tasks

5 Conclusion|

Vincent Blondeau Final Project Report 2013/2014

1 Introduction

In Polytech Lille, the final study project enables the students to work during almost three
months on an innovative project. This project is composed of two parts: one of analysis and
specification definition and the other based on conception, implementation and testing of the
solution.

I had the opportunity to make this project in the Rmod research team. Set up at the Inria,
it is specialized in code analysis and maintenance. The main used tool is a code analysis engine,
called Moose. It allows to easily build a model representing the code from a source code.

The goal of this project is to add to Moose an API allowing to transform easily any Moose
model into another one.

The second section explains why and how we can tranform code. In section 3, I will describe
what is a code transformation tool and in section 4, I will present the different tasks I made in
this project and the schedule.

If you want to try an to improve the tool, you can gofer it with:

Gofer it smalltalkhubUser: ’VincentBlondeau’ project: 'FAST-Refactoring’; configuration;
loadDevelopment.

on a fresh FAST-On-Moose image that you can download here :
https://ci.inria.fr/moose/job/FAST-On-Moose/lastSuccessful Build /artifact /FAST-On-Moose.zip.

Vincent Blondeau Final Project Report 2013/2014

2 Why and how transforming code?

In order to understand the context of this project, we are going to explain what is the goal of
code transformation, how we can operate a such transformation and what are the main existing
tools to do this.

2.1 Why transforming code?

We would transform code for many reasons. The first of these is to simplify the code. For
example, your code uses a method that you want to rename, because the name doesn’t match
the behaviour, or you want to delete all the calls to an old method. Theses changes are code
transformations.

Secondly, you can support the framework evolution. If your code is based on a library or
external code that is evolving, you would like to follow the changes and consequently adapt
you code.

Finally, you would translate your code from a language to another. For instance, you want to
convert a Java program into a C++ or a Smalltalk one, it can be done by code transformation.

In the first two cases (simplify the code or support framework evolution), the transformations
are refactorings. The code behaviour stays the same but the implementation differs. Moreover
before and after the transformation, the model contains the same elements.

The langage translation is not a refactor but a heterogeneous transformation. It means
that the source and target meta-models of the transformation (a meta-model is a model that
describes an another model) are not the same. If we transform Java in Smalltalk, the Java
language has not the same concepts that the Smalltalk one. So we have translated all the
concepts included in one to the other.

For this report, we will take a short and simple transformation, the inline of the ifTrue:
message send. It is the example I use to test the transformation tool I made.
Let take the following method named returni:

returnl
true ifTrue: [1T 1 |
It is a Smalltalk method containing an ifTrue: message send (ifTrue: [...]). The receiver

of this statement is true so the block in the first argument will always be executed. Thus the
method will always return the integer 1. So we want to transform it into:

returni

+1

The if True: message send is removed and the content of the block in first argument is moved
in the body of the method because it is useless in the code. The transformation application is
simplified if the code is not considered pure text but is abstracted by a model.

2.2 Code Modeling

The code under its initial form is only a string. It is difficult to easily and rapidly perform
transformations on it because:

e

Vincent Blondeau Final Project Report 2013/2014

1. The string data structure is ambiguous: if a character is added or modified, you can’t
suppose easily that the changed code is always working.

2. The adding of new expressions is not easy. For this, the grammar has to be extended,
and must stay coherent. Adding tokens and expressions in a grammar is difficult.

So in front of all these problems, we decided to transform the text into a model.

1. It is an efficient and powerful data structure: there are no ambiguity. Each element has
properties and is linked to the others by links. While the data structure respects the
meta-model of the language, which is very easy to check, the model will stay a code
model.

2. Adding new expressions is easy. You just have to add a new type of element in the
meta-model and the links to make it works.

3. The model can be created from the text, using a parser, and code results from printing
the model.

So the model has great advantages on the text.

This model is called Abstract Syntax Tree (AST). It is a tree because in a programming
language, all the instructions are included recursively in another until the root (which is not
included).

This model is implemented in Moose by FAST (FAMIX AST). FAMIX is the Moose meta-
model. FAST contains all the tools and the model elements to create AST from Java or
Smalltalk and to print them.

Once created, we can use it to apply transformations.
The figure (1| shows the different steps between original and transformed source code.

a FASTPharoMethodEntity #returnl Transformation returnl
returnl Al
. . A
true ifTrue: [1] atementst
aFASTExpressionStatement #' expression statement’ /\
) expression a FASTPharoMethodEntity #returnl Printing
ParSIng |aFASTPharoMessageSend #ifTrue:
N statementsl
selector argumentsl concreteReceiver
aFASTPharoSelector #ifTrue: ||a FASTPharoBlockExpression #'block literal' || a FASTBooleanLiteral #'true true' aFASTReturnStatement #'return statement’

block

expression

a FASTPharoBlockDefinition #block

aFASTPharoNumberLiteral #'11'

statementsl

a FASTReturnStatement #'return statement’

expression

a FASTPharoNumberLiteral #'11'

Figure 1: Code transformation steps

The first step is to parse the code to create a code model. The step is already implemented
in Moose. The current parser supports both Java and Smalltalk languages.

IE

Vincent Blondeau Final Project Report 2013/2014

Coming back to the example function, which is in Smalltalk, each element of the original
function has a FAST model equivalent. returni is a method element.

true ifTrue: |[...] is a message send element. Its selector is an ifTrue: selector receiver is is
a boolean node with a value equals to true. It has an argument containing a block (Composed
of two kind of nodes : block expression and block definition. This block contains a return
statmement which is the model equivalent of the 11;

The return statement is linked to an expression which is integer 1 equivalent to 1. In this
way we have a tree describing the Smalltalk example code.

The second step is to transform the model. This part is not yet available on Moose and this
is the purpose of the project.

In the third step, the transformed model is printed. This operation already exists in Moose.
It consists to serialize the model into source code.

To summarize, the only thing missing is a tool transforming a model to another one. But
before creating one from scratch, we will see what are the existing tools.

2.3 Transformation Existing tools

We studied two different tools. One coming from the Pharo platform, and the other from the
Eclipse one.

2.3.1 Transformation Framework

In the Pharo platform, the Refactoring Browser (RB) is a framework enabling refactoring
of applications. It allows to make some small code modifications that doesn’t change the
behaviour of the code. Renaming methods or variables, and adding some getters or setters are
some examples. Theses modifications are very useful and common. Moreover the representation
used by the Refactoring Browser is very similar to the FAST one. But this is not the same
meta-model.

The central problem is the language dependency. The refactoring browser is adapted to the
Pharo language model. The difficulty to adapt it to another language would be high.

Indeed, this framework uses specific patterns to express transformations. Theses patterns
are written for Smalltalk and can’t be translated to other languages.

For instance, with RB, we can use the pattern ‘object size. This is a pattern for searching
all the elements in code whose the message size is sent. The search is an step in transformation
that we will explain in refModel filtering.In the pattern, ‘object is a meta-variable representing
anything in the code. This notion of meta-variable and message passing is specific to the
Smalltalk language. It is not applicable to others langage models. Indeed in Smalltalk, all the
operations are message sending. In Java, C++,... there are operations like the if statement or
the while statement which are not message passings. Moreover as this tool is optimized for real
time operations, the patterns are compressed. They use apostrophes to express the patterns
like in the example.

Moreover RB relies on a string representation of the code and uses the position of the char to
identify an element into the code model. To make a refactoring, RB build an AST on demand
of the method, make the transformation based on text related information (char positionin the
method), and print the code. RB even remembers the spaces and indents before the refactoring
to restore them after.

To summarize the code is difficult to understand, to read and strongly linked to the text.

Ik

Vincent Blondeau Final Project Report 2013/2014

The Refactoring Browser can’t be modified to express other language transformations. Be-
cause the Smalltalk is one of the more simple languages. Using another language will add other
concepts that can’t be understood by the Refactoring Browser because they are not presents
in this tool. These concepts will compromise the optimized system on which it is built.

2.3.2 Transformation Language

The Object Management Group (OMG) standard for transformation is called QVTo (Query
View Transformation operational). A tool using this standard has been implemented in the
Eclipse platform.

It has the advantage to be a standard in the transformation community and it can express
easily some complex transformations whatever the model to transform. Indeed, in this language,
each transformation is divided in rules. Each rule describe on which kind of node and on which
conditions the rule can be applied. A rule contains the operations to transform a part of the
model and have the possibility to call other rules.

The main drawback of this language is the non interoperability between Moose and Eclipse
platforms.

For transforming a model representing code, tools already exist. If we can’t use them for
our software, we can get from them some strategies and ideas.

The QVTo language brings some basics elements and concepts to make transformations. So
we have to understand and translate them for a use in Moose.

2.4 The project

In the project, we have to implement and define a transformation tool with the following
specifications:

e The tool can operate on every language separately (Java, Smalltalk,...)
e We should be able to express easily every transformation
e [t is inspired by the QVTo standard.

The tool I propose allows to define specific transformations to each model element and to
call other rules. Indeed, each transformation is defined by a set of rules, because one rule is not
enough to describe a whole transformation.

Now that the project is defined, let’s see how a transformation tool works and can be
implemented.

Vincent Blondeau Final Project Report 2013/2014

3 What is a transformation tool?

Formally transformation is composed of 3 parts:

e navigation in the model

e model filtering

e model creation or modification by rules application

During this project, I made a Domain Specific Language (DSL) allowing to filter and to
apply rules on a model. I also made an engine using the DSL to execute the transformation.

3.1 Model navigation

The model navigation enables to access model elements from others. As all the elements of
a model are objects, we can access, thanks to the language reflection, all the properties of an
object and its references to others objects.

Let’s take our running example of the method returni. The figure [2| shows the method
model. In the box with broken lines is the ifTrue: message send element.

a FASTPharoMethodEntity #returml

statementsl

..
Ja FASTExpressionStatement #expression statement’ 3 Parent Node
..
expression
a FASTPharoMessageSend #ifTrue: Current Node
selector argumentsl concreteReceiver Children Nodes

1aFASTPharaSelector #ifTue !a FASTPharoBlockExpression #'block literal' ||a FASTBooleanLiteral # 'true true' X

block

a FASTPharoB lockDefinition #block

statements1

a FASTReturnStatement #'return staternent’

EXPression

a FASTPharoNumberLiteral #'11'

Figure 2: Model Navigation

We assume this element is the current one. From this element, the parent element (dotted)
can be accessed. It is the element containing all the method statements (in this case there is
only one: the current element).

Similarly the children elements (in dots and traits) can be reached. They correspond to the
if True: receiver (true) and the block statement (|1 1]).

Recursively, by this two means, we can traverse a model to reach any element.

Vincent Blondeau Final Project Report 2013/2014

Concerning the navigation, I have unified the methods to access parents and children in
the model. Thus based on polymorphism, any element of the model can be reached using the
same methods whatever their type. This unity is needed to have a common behaviour on all
the elements.

The DSL specified the function parentNode and childrenNodes to respectively access the
parent and the children of a node.

3.2 Model filtering

Filtering enables to restrict a model to a collection according to a given criterion, i.e., talking
in terms of tree, to select a subtree satisfying a given collection.

In the example, we want to collect only the ifTrue: message send whose receiver is true. i.e.
the ifTrue: message linked by the receiver accessor to a boolean (whose value is true).
The figure [3] shows how the filtering works.

Root Node a FASTPharoMethodEntity #returnl

¢ staternentsl

a FASTExpressionStatemant #expression statement'

l expression

a FASTPharoMessageSend #ifTrue:

Pattern

i Hin,
mu““‘““ "lm,mm
apaanatt ity

11} U .
““N“mmunl selector argumentsl cuan@!ﬁeﬁﬁﬁL

a FASTPharoBlack Expression #'block literal' EaFASTBooleanLiteral #'true true' ;

black

a FASTPharoB lockDefinition #block

statementsl

a FASTReturnStatement #'return statement’

expression

a FASTPharoNumberLiteral #'11"

Figure 3: Model Filtering

The search starts from the root of the model (the method element) and cross all the elements
by accessing their children until the pattern (dotted on the figure) is found. At this time, the
ifTrue: message send is collected and the search continues in the sub-elements (the block
elements i.e. the block definition statements).

Obviously, the model can be extended to a whole program containing a huge amount of
methods. The root of the search will be not only a method but a collection of them. The result
will contains all the matched elements.

I have implemented such a model filtering in my tool.
With the DSL, you can use:

Vincent Blondeau Final Project Report 2013/2014

find: <aTypeOfElement> in: <aNodeRoot> |[where: <aBlock >|

This method enables you to filter any element of type aTypeOfElement in a model defined by
his root (aNodeRoot), and where aBlock is verified. aBlock takes one argument which is one of
the element of type aTypeOfElement in the model. The where argument is not mandatory.

For example, you can write:

self find: FASTPharoMessageSend in: returnl
where: |[:messageSend |
messageSend selector name — #ifTrue: and: |
a receiver value = true | |

This piece of code filters the FASTPharoMessageSend (FAST equivalent for a message send)
in the method return1 where the messageSend selector is ifTrue: and its receiver value is true.
The search is only applied to the elements whose the kind is set in the find:.

3.3 Transformation rules

The third step consists in modifing the piece of model resulting from the filtering or to create
new elements depending on the filtering.

On the running example, the figure [4] shows the two versions between before and after the
transformation. The elements dotted are the ifTrue: message send previously searched on
which we will apply the transformation rule. The transformation consists in moving the block
statements to the method body and to delete the whole ifTrue: message send: the expression
containing the message, the message, and the block given in the message argument. In broken
lines, we can see that the argument block content is moved but not impacted by the move.

a FASTPharoMethodEntity #returnl

statementsl

a FASTExp ressionStaterment #'expression statement'

expresgion
a FASTPharoMethodEntity #returnl

a FASTPharoMessageSend #ifTrue: ;

ummul..n“““ 4 5' ’“ﬂmmmrm."” TR
el 35 iy,
mumlnmuulll selector 5 argumentsl égHE’l’mRﬁ;ﬁm statements1
B FASTPharoSelector #ifTrue: a FASTPharoBlockExpre ssion #'block literal |Ea FASTBooleanLiteral &'t rue trye! Fm—————— a FASTReturnStatement #' return state ment' |
Lok J expression
Emsrphammnckuerminm #hlack _
a FASTPharaNumberLiteral #'1 1"

Sstatementsl

a FASTReturnStatement #'return staterment’ I

r 4
J expression

aFASTPharoNumberLiteral #'1 1'

Figure 4: Transformation

10/[18

Vincent Blondeau Final Project Report 2013/2014

The tool I propose defines a DSL divided in two parts: the rule application elements and
the model elements modifiers.
On the side of the rule application, there are:

1. A meta-description of the transformation rules:

The transformation rules are meta-described. The meta-description allows to specify on
which kind of element the rule must be applied. It must be present to define a rule.

This meta-description is translated in the Smalltalk language under Pragmas. This
pragma:

<transformOn: <aTypeOfElement>
[where: <aBooleanReturningSelector >| >

applied to a method, says that the rule will be executed only on elements of type
aTypeOfElement and for which the method aBooleanReturningSelector: will return true.
The where argument is not mandatory and the associated method should take as argu-
ment the model element. It also allows to differentiate the transformation rules behaviour
and we can define several rules for the same kind of element.

On our example, we want to apply the transformation only if the receiver value is true.
So the transformation can be meta-described by :

<transformOn: #FASTPharoMessageSend where: #isAnIfTrueStatement>

The transform engine will execute the rule only if the kind of element is an FAST-
PharoMessageSend and if the FASTPharoMessageSend checks the condition defined in
the method #isConditionTrue. This method checks only if the element is a boolean.

2. A method to call the others rules:

Once the rules are defined, the user has to choose the application order and on which
element it must be applied. So at any moment, only one rule is applicable. The default
usage of this method is :

self apply: <aTransformationRule> on: <anElementOfTheModel>

This method tries to call the rule aTransformationRule: taking in parameter a subtree
model whose root is anElement0fTheModel and matching the rule pragmas described above.
Indeed, the engine tries to recursively apply this rule to each children of the model given
until there is no more child left.

So coming back to the example, we can do :

self apply: removelfTrueStatement on: returnl

to remove the if statement and to move its body of the if. Here we apply the transform
rule named removeIfTrueStatement on the code model whose the root is returni.

In any transformation, you can use the filtering described in the previous subsection by two
means:

11/18

Vincent Blondeau Final Project Report 2013/2014

e As the entry point of the transformation: you can use it in the entryPoint method. This
method is the first rule executed by the transformation engine. In this method, you must
call the first rule to be applied by using the apply:on: method. The on: argument can be
the result of a filtering made in this method.

e Asa query in a rule: in a rule, you can do a filtering on the node in argument of the rule.

The elements modifiers are some methods to modify easily the elements of the model. There
are:

e add: <anElement> after: <anOtherElement> in: <aSelectorReturningACollection>: al-
lowing to add anElement after anOtherElement in the collection returned by the selector
aSelectorReturningACollection.

® add: <anElement>> instead0Of: <anOtherElement> in: <aSelectorReturningACollection<>
>: has the same behaviour than the previous one but replace the element instead of adding
it.

e addlLast: <anElement> in: <aSelectorReturningACollection>: Similar to the others but
add at the end of the returned collection.

e remove: <anElement> from: <aSelectorReturningACollection>: Remove the element from
the collection returned by the selector.

e is: <aTypeOfElement>: return true if and only if the element is a kind of aTypeOfElement.

To come back to the running example, we will show how the transformation rules can be
written. If you want to try it, it is the FASTERTransformTrueIfTrueBlock class of the tool. This
class contains all the rules to do the transformation.

The ifTrue: inlinement can be defined in two rules.

The first is a rule that is triggered when a message send (a FASTPharoMessageSend in the
FAST model), is an ifTrue: statement. Indeed, this rule whose code is given below is executed
only if the method isAnIfTrueStatement applied on a FASTPharoMessageSend returns true, as
the meta description of the rule indicates.

The rule returns the block corresponding to the message send argument and apply the main
rule (explained later) on the block.

getTrueIlfTrueFrom: aNode
<transformOn: #FASTPharoMessageSend where: #isAnIfTrueStatement>
| block |
block < aNode arguments first block.
self apply: #transformTrueIfTrueFrom on: block.
1T block

This method isAnIfTrueStatement is used by the rule before to check if the node is an
if True: message send.

isAnIfTrueStatement: aNode
17 aNode selector name = #ifTrue:
and: | (aNode receiver is: FASTBooleanlLiteral) and: | aNode ¢«
receiver value = true | |

1218

Vincent Blondeau Final Project Report 2013/2014

The second rule (transformTrueIfTrueFrom) is the main rule. It is applied on the block level
or method (in FAST, it is the FASTBehaviouralEntity element). In the behaviouralEntities
variable, we get a collection containing the element returned by the first rule i.e. a block. In
our example, there is only one if True: message send. However in some cases, we can get several
elements because of the the children crossing. That is why the apply:on: method always returns
a collection.

On each block in behaviouralEntities, we get the localVariables and the statements (the
contents of the block) and we add them to the current FASTBehaviouralEntity. By this way,
we raise the block contents by one level.

transformTruelfTrueFrom: aNode
<transformOn: #FASTBehaviouralEntity>
aNode statements copy
do: | :statementNode |
| behaviouralEntities statements localVariables |
"Get the data from a deaper entity"
behaviouralEntities ¢ self
apply: #getTruelfTrueFrom on: statementNode.
behaviouralEntities do: | :aBehaviouralEntity |
localVariables < aBehaviouralEntity localVariables.
statements < aBehaviouralEntity statements.

"Affect the statements of the block to the upper <+
BehaviouralEntity"

aNode
add: statements
insteadO0f: statementNode
in: #statements.

"Move the variables of the block to the upper <«
BehaviouralEntity"

aNode addLast: localVariables in: #localVariables |.

1 aNode

Recursively, by applying this both rules, we manage to inline all the true ifTrue: message
send.

Once your rules are implemented, you have to run the engine to apply them on a model.
On an instance of the transformation class, you must use the scope: selector to set the model
on which you want to apply the rule. Once the model is set, you can send the message run to
your instance to run the transformation rules on your model.

By this way you can apply any set of transformation rules on any model.

3.4 An other tool: The Model Displayer

In this project, I needed to visualize the model on which we are doing the transformations.
Indeed with only an object inspector, it is hard to materialize a model.

Thanks to the childrenNodes and parentNodes accessors, I created a model displayer using
the Mondrian Framework of Roassal, a Moose tool to create visualisations. All the figures
representing code model in this report are created by this displayer.

To display a model or a collection of models, the only thing to do is to send the method
display on it. It will open a window in which we can see and navigate the model. You can

13/]18

Vincent Blondeau Final Project Report 2013/2014

inspect an element or browse the class of the element by right clicking on this element.

During this project I designed and implemented a model transformation tool containing the

three elements described before. In the next section, we will see how the work has been divided
and scheduled.

14/18

Vincent Blondeau Final Project Report 2013/2014

4 Tasks and time scheduling

This project was divided into two parts. The first part during which I wrote the specifications,
the second theoretically reserved for implementation, tests and documentation.

After I described the estimated schedule, I will expose the Agile methodology we used to
perform tasks.

4.1 Estimated schedule

Initially, I planned to do the following tasks:

e Define the transformation description language.

e Realize the transform engine.

Theses two tasks are linked together. Because the language needs the engine to be executed
and the engine can’t do nothing if the language is not defined. So firstly, we have planned to
specify the transformation language and as soon it is done to write the transformation engine.

4.2 Agile method

With the RMod team, we decided to use the Agile software development method. It is based
on iterative and incremental development. The development is divided in cycles in which I
developed a working application and I presented it to the team.

The figure [5| shows how the cycle is decomposed.

Tests writing

User Specifications 2 weeks / cycle Implementation

Validation

Figure 5: Agile Cycle

A cycle is composed of 4 steps:
1. User specifications:

This step aims is to talk to the final users of the tool and convert their wishes to reality.
We have to understand the wanted features and tell them if it’s realizable or not. If not,
we have to suggest them something else that can be easily understood.

For the project, I have done few transformation examples, so we can discuss on it and
improve it until find a good solution.

15/]18

Vincent Blondeau Final Project Report 2013/2014

2. Tests writing:

As soon as the specifications made, I started to write the tests defining the external
behaviour of the engine. I invented some small examples like the Java example described
in section 2 and 3 to have a more realistic tool.

3. Implementation:

Once the tests are written, the transformation engine can be implemented. The only
thing to do is to write the methods invloved in the tests in order to pass them all. During
this process, it is possible we see that some features can not be implemented or hard to
implement.

4. Validation and checking:

In this step, we should assert that the piece of software made works fine. Thanks to tests
written before, we can easily check the good behaviour of the program and represent the
result expected by the user. If the tests are well done and pass, the application has some
chances to work perfectly. Moreover the users have to find all the features they wanted.
If all is good, the project is finished.

But it is never like that. There are always a new feature to implement, one not correctly
implemented, or impossible to implement. In theses cases, we must discuss with the
final users to see what are the possibilities, and try to find a way to a good solution. In
the project, some wished features were not implementable "as is" so I proposed others
solutions to the users. We realize also that the transformation language was not easily
understandable. So in theses cases, we do another iteration.

Each cycle had a duration of almost two weeks. That seems short but thanks of that, we
are sure that the project is on the rails and follow a good direction. Inside the cycle I used to
ask the RMod users their feelings of the use of the tool.

For this project, I did several iterations:

1. Create the tool:

The first cycle of the project was dedicated to the language creation from the specifications
and analysis made in the first part of the project. I did a tool transforming any model
corresponding to the specifications. I also modified the original code model. Indeed, it
was not ready to support the transformation. So I added some methods to modify easily
elements and links between them.

2. Add cohesion between filtering and transformation parts:

In the first version of the tool, filtering and creation parts were divided and almost sepa-
rated. This step purpose was to agglomerate these essentials parts of the transformation.
Indeed the transformation must be based on the result of the search.

3. Simplify the expression of the transformations for the user:

Once all the parts of the transformation was melted, the transformation expression was
hard to understand for the user.

During the implementation part, some concepts has been modified or deleted and the
name of the methods composing the language wasn’t obvious when reading. For instance,
to apply a transformation we used to use the ——> selector followed by the container name
(a class) of all the transformations rules (which are methods). But the meaning of the
arrow (interesting at the first cycle) was not very readable and the understanding was not

16//18

Vincent Blondeau Final Project Report 2013/2014

ensured. So we change this method to apply:on: described in section 3 which was more
obvious.

4. Improve the meta-desciption of the rules :

In the first rules, the meta-description was limited to the kind of element the rule should
apply. But it was blocking for some transformations whose the transformation of the If
Statement. So we added, like in QVTo, a where: argument to the meta-description to
reduce the scope of the rule. Therefore we can write more specified rules.

However, it was a research project in Agile method. The method preconizes to do the step
little by little, and not to develop the whole software in one block. In this case either we have
all, or we have nothing.

4.3 Realized tasks

The goal of this project was to made a proof of concept on the implementation of a transfor-
mation tool in the Moose platform.

The tool I realized contains the three essential parts to any transformation language:
e Navigation between the model elements
e Filtering of the model. Actually the possibility to select any part of the model.

e Definition of the transformations rules and their applications.

It works on some basic examples like the deletion of the if True Statement or the translation
of a Java if(true)... Statement to a Smalltalk ifTrue:[..] Statement. But the possibilities of
adding new rules are infinite. The filtering of patterns in the model works and should be
enhanced to support multiple requests. With this kind of filtering, we will be able to have the
elements contained in the If Statement as result of the search. The transformations will be
easier to write.

However, as some unpredicted and unanticiped event are appeared, because I thought that
the code model was a more developped project, I didn’t write all the rules to transform Java
source code to Smalltalk one. And there are no complex example of search or transformation.
But it should be done in the next project.

17/]18

Vincent Blondeau Final Project Report 2013/2014

5 Conclusion

Thanks of this project, I had the opportunity to work on a real research project. This project
is the continuation of FAST which is the code model I use and with which we can parse, print
and navigate the code model.

I worked with autonomy and improved my practice in Agile software development. 1 am
now familiar with the practices of Moose, Pharo, Smalltalk and test driven development.

I also deepened my knowledge in Abstract Syntax Tree concept, a standard data structure
to modeling code, and in code transformation which is an interesting project.

This project is the first stone of the model transformations with Moose. For now, Moose
is only used for calculating metrics around the code model. But with this project, in a close
future, Moose will be able to generate transformed and optimized code.

For that, we may add more complex transformation rules of model modification (for im-
provement) or creation (for translation).

18/]18

	Introduction
	Why and how transforming code?
	Why transforming code?
	Code Modeling
	Transformation Existing tools
	Transformation Framework
	Transformation Language

	The project

	What is a transformation tool?
	Model navigation
	Model filtering
	Transformation rules
	An other tool: The Model Displayer

	Tasks and time scheduling
	Estimated schedule
	Agile method
	Realized tasks

	Conclusion

