A Catalog of Patterns for Concept Lattice
Interpretation in Software Reengineering

Muhammad U.Bhatti*, Nicolas Anquetil*, Marianne Huchard!, and Stéphane Ducasse*
*RMoD Project-Team INRIA - Lille Nord Europe USTL - CNRS UMR 8022, Lille, France
Email: {firstname.lastname} @inria.fr
TLIRMM, CNRS and Université de Montpellier-2, Montpellier, cedex 5, France
huchard @lirmm.fr

Abstract—Formal Concept Analysis (FCA) provides an im-
portant approach in software reengineering for software under-
standing, design anomalies detection and correction. However,
FCA-based approaches have two problems: (i) they produce
lattices that must be interpreted by the user according to his/her
understanding of the technique and different elements of the
graph; and, (ii) the lattice can rapidly become so big that one
is overwhelmed by the mass of information and possibilities.
In this paper, we present a catalogue of important patterns in
concept lattices, which can allow automating the task of lattice
interpretation. The approach helps the reengineer to concen-
trate on the task of reengineering rather than understanding
a complex lattice. We provide interpretation of these patterns
in a generalized manner and illustrate them on various contexts
constructed from program information of different open-source
systems. We also present a tool that allows automated extraction
of the patterns from concept lattices.

I. INTRODUCTION

Formal Concept Analysis (FCA) is a mathematical tech-
nique to discover significant groupings of objects having
similar attributes [14]. FCA can be applied to program entities,
which helps in generating high-level views of a program for
program understanding and identifying and correcting some
anomalies in software systems. For example, FCA is used to
identify objects in procedural code by looking at functions
accessing global variables [26], [9]. Equally, it is applied
to object-oriented systems by analyzing software components
(e.g.,, classes, attributes or methods) and their relationships
(e.g.,, belongs-to, uses or defines). Some studies aim at
understanding object-oriented systems [3], [8], [23], others
use program information for reengineering classes [28], [29],
[5]. The extracted program information is used to construct
concept lattices that are presented to the reengineers for
analysis. The reengineer then explores a lattice to uncover
important information.

The problem with the FCA techniques is that they produce
concept lattices that are not readily comprehensible for devel-
opers who need to spend a good amount of effort to interpret
these lattices. A possible solution is to break the information
being fed into FCA into small chunks [5]. However, the
approach is not scalable as the chunks need to be individually
analyzed, which requires generating several lattices. Another
issue is that concept lattices extract many more concepts than
the number of objects they are given as input [1], thus adding
complexity over the semantic complexity of the lattice.

The objective of the paper is to reduce concept lattices to
a few interesting node and subgraph patterns such that the
user does not have to interpret each node and its relationships
nor to analyze the entire lattice in detail. We don’t pretend
that all useful findings are captured by these patterns, but
they simplify the task of lattice analysis by proposing some
accepted semantics. We look for the lattice patterns in an
automated way, which could open the path for semi-automated
reengineering actions.

In this paper, we define the patterns that proved to be useful
in many cases of FCA applied to software engineering domain.
We provide an interpretation in a generalized way, explaining
their interest. Later, we exemplify them using different infor-
mation from various open-source systems. These patterns are
implemented in a prototype and we give some figures on the
reduction in information to process for a concrete example.

This paper is organized as follows: Section II presents
existing work that uses FCA in software reengineering and
motivates our approach. Section III presents nodes and sub-
graphs patterns. Section IV proposes a validation on open-
source systems and Section V describes the prototype for
pattern identification. Section VI concludes the paper.

II. MOTIVATING A GENERIC INTERPRETATION TOOL FOR
CONCEPT LATTICES

In this section, we present different studies that have been
performed to understand and restructure software systems
through FCA. Then we provide motivation for our proposed
approach.

A. Existing work

a) Module and Object Identification with FCA: Sahraoui
et al. [26] present a method that extracts objects from pro-
cedural code using FCA. Important concepts are looked for
in the resultant lattices using heuristics. Another approach
compares the object identification capability of clustering and
FCA techniques [9]. A few heuristics are described to interpret
the concepts of the lattice. An approach to transform a COBOL
legacy system to a distributed component system is proposed
by Canfora et al. [6]. Siff and Reps explore the relationship
between program variables and procedures through FCA for
restructuring of C programs [27].

b) Object-Oriented Reengineering and FCA: Godin et
al. [15] proposed in 1993 to analyze classes by their member
methods to evaluate and refactor OO class hierarchies using
FCA. Dicky et al. [10] define an incremental algorithm and
study the method specialization in the FCA framework. Falleri
et al. [13] compare several FCA configurations [7]. Leblanc et
al. [17] apply FCA to extract Java interface hierarchies from
Java classes.

Snelting and Tip [28] present a framework for detecting and
remediating design problems in a class hierarchys; it is used in
[29] for refactoring Java class hierarchies. Arévalo, Ducasse
and Nierstrasz [3] use FCA to understand how methods and
classes in an object-oriented inheritance hierarchy are coupled
by means of the inheritance and interfaces relationships. Lien-
hard, Ducasse and Arévalo [21] use FCA to identify traits in
inheritance hierarchies. Dekel and Gil [8] use FCA to visualize
the structure of Java classes and to select an effective order
for reading the methods. In [5] a tool-assisted technique is
presented to identify useful abstractions and class hierarchies
in procedural object-oriented code.

FCA is used to detect the presence of bad smells and design
patterns [2], and to suggest appropriate refactorings to correct
certain design defects [24]. FCA is also used to understand
a system’s source code for relevant concepts of interest [23]
and to cluster words for feature location [25].

FCA is also used to examine information generated from
program execution to reconstruct control flow graphs [4] and
feature location [12]. FCA is used in aspect mining [20],
detection of design-level class attributes from code [30], and
searching for code patterns and their violations [22].

c) FCA Filtering: Some studies, applying FCA to soft-
ware reengineering, have suggested concept filtering tech-
niques to resolve the problem of lattice complexity. The notion
of concept partitions is used to filter the concepts that are
not interesting for creating modules [27]. Mens et al. filter
concepts according to some properties' of the concepts in
the lattices constructed by their approach [23]. Arévalo et al.
describe a few heuristics to reduce the search for concepts that
describe important class hierarchy schemas [2]. Joshi and Joshi
[19] provide a few patterns that may emerge when context is
based upon methods and attributes of a class.

There is a plethora of FCA-based techniques that aim to
analyze software systems for reengineering purposes. The
diversity of these approaches shows the interest in FCA as
a tool to certain kinds of software analysis. Some approaches
apply context-specific heuristics for filtering non-interesting
concepts. However, these heuristics remain tied to a specific
context and cannot be generalized. Therefore, there is a need
to define a unifying framework for lattice interpretation. This
paper goes in that direction by describing a few patterns of
nodes and subgraphs in concept lattices.

B. Synthetic view of FCA in Software Reengineering

One of the strengths of FCA for program comprehension
and software reengineering is the wide range of contexts that

Isize of the concept’s “intent” and “extent”.

can be used. For each different context, the method provides
different insights into reengineering opportunities.

OO systems consist of different entities such as packages,
classes, methods, attributes, or variables. In Table I we sum-
marized the main entities and relationships that could be used
as context (other ones could be invented). In the table, rows
are formal objects, and columns formal attributes. In each
cell of the upper half, a blank means there is no possible
relationship (we found no interesting relationship to link a
method formal object to packages formal attributes), U stands
for use (a method uses another method by calling it, or a
class uses another class through inheritance), and C stands for
contains (or declare, a class contains an identifier, a method
contains a variable). The relationships in boldface (upper half)
denote contexts that we found already studied in the literature.
In that case, a representative reference is given in the lower
half of the table. The “x”s in the lower half denote possible
contexts that we identified and for which we know of no prior
published research. They represent unexplored areas of FCA
and software reengineering research.

TABLE I
MAIN POSSIBLE CONTEXTS FOR FCA; FORMAL OBJECTS ARE IN ROWS,
FORMAL ATTRIBUTES ARE IN COLUMNS, RELATIONSHIPS ARE USE AND
CONTAIN; IN LOWER HALF, REFERENCES INDICATE THE CONTEXTS THAT
WERE ALREADY STUDIED (ALSO IN BOLD FACE IN UPPER HALF) AND
“X”S MARK POSSIBLE CONTEXTS THAT HAVE NOT BEEN EXPLORED YET

Formal attributes

pckg class meth. att. var.
pckg C,U C,U C,U C,U C,U
class 18] CcC,U CU CU C,U
meth. U U U C,U
£ att U
& var U U U U
° peckg X X X X X
<
Eocas x s PP o x
= meth. x 3151 [BLI81 x
[22] [30]
att. X
var. X [28] [28] X

Table I considers only the main formal objects and for-
mal attributes in software reengineering for OO systems. A
comprehensive survey of the contexts studied in software
engineering is provided by Tilley ef al. [31].

C. Concept lattice interpretation

FCA is a flexible technique that may be used on a wide
range of contexts. The number of unexplored contexts, even
for the simple enumeration of possibilities proposed in the
Section II-B, gives an idea of its potential. However before it
gains larger use, we believe two problems need to be solved.

First most of the existing approaches, leave the analysis
work to the user. Concept lattices are complex abstract con-
structs that may prove difficult to interpret. Sahraoui et al. [26]
recognized this problem and proposed a tool to help analyzing
the lattices.

Another issue with FCA is the size of the lattices they
produce [1]. This again points toward the need to provide an

assisted solution for lattice analysis. Some filtering techniques
exist in the literature to remove unwanted concepts from
lattices. However, these techniques are dependent upon their
contexts because these are geared towards unrevealing specific
code patterns. The solution of decomposing a context into
smaller chunks requires a lot of effort to generate lattices
representing each chunk. A natural solution lies in automating
the interpretation of lattices. This automation will be more
useful if it can be applied indifferently to lattices built on any
formal context. The user would not be required to analyze each
node in the lattice; he will search for patterns in the lattices
and useful nodes will be identified without spending too much
time on the lattice. Moreover, an automated technique can
extract these patterns without requiring the user to understand
the complexities of FCA. We hope to define a dictionary of
such patterns that along with a definition of the meaning of a
concept for each possible context, could propose to users an
interpretation for any lattice built from a known context.

In the next section, we present a catalogue of patterns
that represent interesting constructs in concept lattices from
the software engineer point of view. These patterns help the
user in two ways. First, they help to reduce the work of
understanding a complex lattice for interpreting a few node and
graph patterns. Hence, the work is reduced to look for these
patterns and understand their interpretation. Second, because
we consider generic subgraph patterns, a tool can be built
to extract these patterns from the lattices, which will greatly
simplify the work of analyzing these lattices.

III. PATTERNS IN CONCEPT LATTICES

In this section, we present concept lattice patterns intended
to help software engineers analyze the result of FCA. These
patterns are sufficiently generic to be applied to a large set of
possible contexts.

A. Nodes in Concept Lattices

The patterns we will present depend on typical arrangements
of nodes and vertices, but also on the specific nodes that
concept lattices may/should contain. Therefore, before going
to the patterns, we will take a look at the four types of nodes
that a concept lattice may contain. In the following, we borrow
from the Conexp tool the way these nodes are displayed. The
tool displays each node as a circle. A black lower semi-circle
in the node indicates the presence of formal objects introduced
by the node (i.e., that no sub-concept has). A grey upper semi-
circle in the node indicates the presence of formal attributes
introduced by the node (i.e., that no super-concept has). Four
types of nodes are possible :

o Full (black and grey): The node introduces formal
attributes that its super-concepts don’t have and has
formal objects that its sub-concepts don’t have.

e Grey: The node introduces formal attributes that its
super-concepts don’t have, but all its formal objects (if it
has any) appear in a sub-concept. Such node must have
more than one direct sub-concept.

o Black: The node has formal objects of its own (that no
sub-concept has), but “inherits” all its formal attributes
(if it has any) from its super-concepts. Such node must
have more than one direct super-concept.

o Empty: The node has no formal attribute or object of
its own. It must have more than one direct super-concept
and more than one direct sub-concept.

B. A Catalogue of Patterns

We now describe some subgraph patterns that we identified
as useful to help analyze a concept lattice. The criteria that
we used to choose these patterns are:

o They have a clear meaning that can be interpreted for any
formal context; Hence, the patterns are generic enough
to extract meaningful information;

o They represent important groups of formal objects and
formal attributes, useful for the user;

e They produce very few false positives: If the patterns
identify too many false-positives in the results, the user is
required to look at the lattice to filter the false-positives.
Hence, the effectiveness of the patterns would be lost.
One can rely on the patterns and not analyze the lattice.
We prefer limiting the false positives at the expense of
having many false negatives.

The patterns are defined as specific topology of nodes and
edges, sometimes accompanied by a specific type of node for
one or more of the members of the pattern. Some of these
patterns are illustrated in Figure 1 to help the reader visualize

them.
() (b) (©

Fig. 1. Some of the patterns in concept lattices

1) Top node (T): We identified two cases of interest for
the top node:

Top-black The pattern reveals the fact that the formal objects
attached to the top node don’t have relationship to any of the
formal attributes present in the context. It indicates formal
objects that are not relevant to the context being studied.

Top-grey or Top-full The existence of a grey or full node
at the top of a lattice marks a set of formal attributes (the
grey part) that are in relationship to all the formal objects
contained in the context. The pattern represents an important
set of formal attributes that form the very basis of the context.

2) Bottom node (1): We may identify two cases:

Bottom-grey The pattern reveals the fact that the formal
attributes attached to the node are not in relationship with
any of the formal objects present in the context. Likewise, the

pattern is important as it depicts attributes that are not relevant
to the context being studied.

Bottom-black or Bottom-full The existence of the black or
full node at the bottom of a lattice illustrates a set of formal
objects that are related to all the formal attributes present in
the formal context.

3) Horizontal Decomposition: Horizontal decomposition
(see Figure 1(a)) is a pattern that appears when one can
identify disjoint subgraphs when removing the top and bottom
of the lattice. In the illustrating figure, there are three disjoint
subgraphs. Horizontal decomposition points to the presence
of disjoint sets of relationships between formal objects and
formal attributes. This is somehow similar to having sev-
eral disjoint contexts. The different subgraphs may actually
have formal attributes or formal objects in common in the
case of Top-grey/Top-full and Bottom-black/Bottom-full, but
assuming we ignore these (see discussion above), then each
subgraph may be considered independently from all the others.
Snelting and Tip mention horizontal decomposition in [28].
A less constrained pattern would be to find a horizontal
decomposition, with non trivial subgraphs, between two nodes
that are not the top or the bottom of the lattice. This is
also related to the Module pattern that will be discussed
immediately.

4) Module: In partially ordered set theory, a module rep-
resents a group of nodes that are connected to the rest of
the graph through a unique top node and a unique bottom
node [16]. The supremum and infimum of the module are part
of it. Figure 1(b) illustrates a simple example of module in
a concept lattice. A module represents an important pattern
because it can be considered as a sublattice inside a concept
lattice. One could imagine collapsing the entire module into
one “composite node” without changing the semantics of
the lattice (just make it a bit more abstract). Also, all the
patterns applicable to the concept lattice can also be applied
to the module. The module in itself can be seen as a smaller
individual lattice that can be analyzed independently of the
rest.

5) Irreducible specialization: Specializations are the basis
of a lattice and one finds them everywhere: Every arc in a
concept lattice marks a specialization relationship. Yet the
pattern is interesting when the specialization occurs between a
black (or full) super-concept and a grey (or full) sub-concept
(illustrated in Figure 1(c)). Irreducible specialization patterns
depicts two nodes that should not be merged. The upper node
(in Figure 1(c)) needs to exist because it has its own formal
object(s) and the lower node needs to exist because it has its
own formal attribute(s). That is to the say specialization pattern
represents two entities in a system that are relevant in the
system they belong to. When the super-concept (sub-concept)
in the specialization pattern is the top node (resp. bottom
node), we further require that it is a full node, to ensure that it
represents a complete concept with formal objects and formal
attributes. When we are not dealing with the top or bottom
nodes in the lattice, we don’t need this restriction because
the nodes in the pattern can inherit formal attributes (formal

objects) from their super-concepts (resp. sub concepts).

IV. CONCRETE EXAMPLES

In this section, we present a validation of these patterns to
evaluate that the patterns do appear in the concept lattices,
and these reveal important information about the underlying
program. For the examples, we experiment with various for-
mal contexts from different program entities of open-source
systems. These contexts are similar to existing contexts of
the literature. The contexts will be presented as triplet: O-
R-A that is to say: formal Object, Relation, and formal
Attribute. Program information for the lattices is extracted
through FCAParser?.

A. Member use

This formal context is based on the following information:

o O = All methods within a class except getters and setters

o A = Attributes of the class

e R = The method accesses an attribute directly or through
a getter method

The concepts resulting from this context represent different
features that a class may implement, assuming that each
feature will be composed of methods accessing a particular
set of attributes. The example used will be the class Main
of JMemorize®. Figure 2 shows the lattice resulting from this
example. We may identify the following patterns in the concept
lattice:

« Top black: The two methods in the top-black node do
not access any attribute of the class. Code analysis shows
that copyFile is a utility method whereas onProgramEnd is
an empty method in the class.

o Horizontal Decomposition: Removing the top and bot-
tom nodes of the lattice, we are left with 6 independent
subgraphs: (i) a set of three disjoint subgraphs on the far
right having methods main, run, and startStats, (ii) the bulk
of the nodes in the centre, (iii) one node with methods
exit, rmPrgObs and addPrgsObs on the lower left, and (iv)
two nodes with methods clrThrw, logThrw. The subgraphs
identify independent concerns of the class (convertible
to traits). For example, the log (on the far left) or the
handling of observers when the program ends (lower left).

« Irreducible specialization: There is one instance of this
pattern on the left of the lattice. As explained, it indicates
that we have here two features that could not be easily
merged.

e Module: The same two nodes on the far left illustrate
a case of the simplest possible module. The two nodes
could be grouped in one to simplify the lattice. This
is not incompatible with them being an irreducible spe-
cialization, as this merging into one composite node is
only a proposition to simplify the lattice itself, and not
something that should impact the underlying source code.

Zhttp://fcaparser.googlecode.com/
3http://jmemorize.sourceforge.net/

The complete lattice of the class shows that the class
implements several concerns: observers, logging, and appli-
cation startup. The application startup concern is illustrated
by the presence of main, run, and startStats methods. In the
code, main calls run to start the application, which in turn
calls startStats to collect program statistics during program
execution. The bulk of the nodes in the center shows that
these nodes implement some coherent functionality, which is
revealed by their interconnections. The disjoint branches of
the lattice propose to decompose the class to encapsulate each
concern into a separate class.

On a single class with few members, the FCA technique and
the patterns we propose may seem like an overkill, but one
must understand that, in practice, such tools would be used for
all the classes (thousands) of a system and a user would not
have the possibility to analyze each one independently. The
patterns would be a help to point out the classes that offer the
best opportunities for design improvement.

B. Class Coupling

Class coupling explores the relationship amongst different
classes, by the way each one uses the members of the
other classes. Similarly to attribute uses (Section IV-A) for
classes, concepts resulting from this context represent high
level features in packages by identifying common access to
other class members.

e O = Classes;
e« A = Class members (attributes and methods);
¢ R = The class Uses a member of another class.

The example will use the classes of package
org.jhotdraw.geom of JHotDraw. The resulting lattice is
presented in Figure 3. We may find the following patterns:

BezierPath.curveTo()
BezierPath.quadTo()
BezierPath.moveTo()
BezierPath.setClosed()

Shapes
Se. QuadTree

*~{ Polygon2D
isers2D
Geom
Dimension2DDouble
ConvexHull
BezierPathiterator
BezierPath

BezierPath.isEmpty()
BezierPath.add(

BezierPath.clear()
BezierPath.get()
BezierPath.size()
BezierPath.y
BezierPath.x

Growstroke

BezierPath.remove()
BezierPath.isClosed(), |

DoubleStroke

Fig. 3.
JHotDraw

Class Coupling lattice for org. jhotdraw.geom package in

o Top black: The pattern in this context shows the exis-
tence of nine classes in the package that do not access
members of any of the classes in the package. In this
specific case, the lack of communication is due to the fact
that this package is an intermediary layer between java
2D graphics (java.awt.geom) and the rest of the JHotDraw
framework.

« Irreducible specialization: There is a case of irreducible
specialization that is similar to the one observed in
Section IV-A.

e Module: There are two simple modules in this lattice.
The first one consists of the lattice itself minus its top
node. It gives us all the classes that interact together. The
second one, two nodes on the left, for which we can draw
the same conclusions that in example Section IV-A. Of
course in such a small case, the simplifications that node
aggregation would bring are not really needed.

o Horizontal decomposition: If we focus on the largest
non-trivial module (whole lattice without the top black
node), we can detect the presence of a horizontal de-
composition pattern with two independent branches. They
suggest two features: one that works with BezierPath s
as containers (isEmpty(), add()) and the other one that
sees them as graphical elements (moveTo(), isClosed(),
...). This shows that the class BezierPath implements
two different concerns and requires refactoring different
concerns in separate classes.

V. PROTOTYPE FOR PATTERN IDENTIFICATION

We have provided concrete examples that show that the
catalogue of patterns does reveal some important spots in
concept lattices. We developed a tool in Moose [11] to
automate the task of pattern identification in concept lattices.
The tool supports the identification of all the patterns. We used
the tool to extract the patterns from the lattice constructed from
all classes in OpenBravo* using the following formal context:

¢ O =All classes;

¢ A = Method names;

e R = The class locally defines the method name

Table II provides a summary of the results produced by the
tool. The resultant concept lattice is composed of 1053 nodes
and 2260 connections. Of those nodes and connections, the
user needs to study 154 nodes and 150 connections, if (s)he
wants to explore all the patterns. This represents a reduction
of 85% in the number of nodes to analyze and 93% in the
number of connections.

TABLE II
PATTERNS IN OPENBRAVO

of formal objects 756
of formal attributes 6658
of nodes 1053
of node connections 2260
Top Top Black (1 node, 0 connections)
Bottom -

Irreducible specializations
Horizontal decomposition
Modules
Total Nodes and connections in Patterns

45 (90 nodes, 45 connections)

28 (28 nodes, 56 connections)

14 (49 nodes, 49 connections)
154 nodes, 150 connections

The patterns in the lattice reveal: classes without methods
or empty classes (Top black); hierarchies of classes having
similar methods (Irreducible specialization); classes that do
not have common methods with other classes (Horizontal
decomposition). Modules in the lattice represent different
methods that are common (duplicated) amongst the classes of

“http://www.openbravo.com/

m_learnSessionObservers

removelearnSessionObserver

copyFile
onProgramEnd

m_recentFiles
USER_PREFS

m_lessonObservers

fireLessonModified
fireLessonClosed

.4 fireLessonLoaded
removelessonObserver

addLearnSessionObserver

m_lastLoggedThrowable

) s
[issessionRunning

onCategoryEvent
onCardEvent
createNewLesson

[clearLastThrowable |

logger

[startLearnSession |

[m_programEndObservers |

‘ logThrowable R
exit

removeProgramEndObserver
addProgramEndObserver

sessionEnded

=
loadLesson

addLessonObserver

m_learnSettings
m_frame

m_instance
PROPERTIES_PATH

| m_globalLearnHistory
PROPERTIES

STATS_FILE

A
startStats

Fig. 2. Lattice for Main in JMemorize

the system. Hence, the modules nodes can be used to refactor
these classes toward a better design.

VI. CONCLUSION

An inconvenience of using FCA is that lattices are complex
and one needs to be knowledgeable about FCA to extract
useful information. The paper presents patterns in concept
lattices that can ease the task of lattice interpretation. We
demonstrate that: The patterns reveal important information
for the underlying context; The patterns identify pertinent
results regardless of the context used for creating the formal
concept; All mined patterns in the examples are pertinent, thus
false-positive results are absent. A prototype is presented that
searches for the patterns in lattices. In software reengineering,
such a tool could support automated identification of problem
areas. For our future work, we are interested in expanding
the catalogue of patterns and mix our approach with filtering
techniques.

REFERENCES

[1]
[2]

N. Anquetil. A comparison of graphs of concept for reverse engineering.
IWPC, 2000.

G. Arévalo, S. Ducasse, S. Gordillo, and O. Nierstrasz. Generating
a catalog of unanticipated schemas in class hierarchies using formal
concept analysis. Inf. Softw. Technol., 52:1167-1187, November 2010.
G. Arévalo, S. Ducasse, and O. Nierstrasz. Understanding classes using
X-Ray views. In MASPEGHI 2003 (ASE 2003), pages 9-18, Oct. 2003.
T. Ball. The concept of dynamic analysis. In ESEC/FSC’99, number
1687 in LNCS, pages 216-234, Heidelberg, sep 1999. Springer Verlag.
M. U. Bhatti, S. Ducasse, and M. Huchard. Reconsidering classes in
procedural object-oriented code. In WCRE, 2008.

G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca. A Case
Study of Applying an Eclectic Approach to Identify Objects in Code.
In Proceedings of IWPC ’99, pages 136-143. IEEE, May 1999.

M. Dao, M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev. Im-
proving generalization level in uml models iterative cross generalization
in practice. In K. E. Wolff, H. D. Pfeiffer, and H. S. Delugach, editors,
ICCS, volume 3127 of Lecture Notes in Computer Science, pages 346—
360. Springer, 2004.

U. Dekel and Y. Gil. Revealing class structure with concept lattices. In
WCRE, pages 353-362. IEEE Press, Nov. 2003.

A. Deursen and T. Kuipers. Identifying objects using cluster and concept
analysis. In Proceedings of ICSE ’99, pages 246-255. ACM Press, 1999.
H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class
insertion with overloading. In OOPSLA, pages 251-267, 1996.

[11]

[12]
[13]
[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]
[22]
(23]

[24]

(25]

[26]

(27]
[28]
[29]
[30]

(31]

(32]

S. Ducasse, T. Girba, and O. Nierstrasz. Moose: an agile reengineering
environment. In Proceedings of ESEC/FSE 2005, pages 99-102, Sept.
2005. Tool demo.

T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Computer, 29(3):210-224, Mar. 2003.

J.-R. Falleri, M. Huchard, and C. Nebut. A generic approach for class
model normalization. In ASE, pages 431-434. IEEE, 2008.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer Verlag, 1999.

R. Godin and H. Mili. Building and Maintaining Analysis-Level
Class Hierarchies using Galois Lattices. In Proceedings OOPSLA 93,
volume 28, pages 394-410, Oct. 1993.

M. Habib, M. Huchard, and J. Spinrad. A linear algorithm to decompose
inheritance graphs into modules. Algorithmica, 13(6):573-591, 1995.
M. Huchard and H. Leblanc. Computing Interfaces in JAVA. In
Proceedings of ASE 2000, pages 317-320, 2000.

M. Huchard and H. Leblanc. Computing interfaces in java. In ASE,
pages 317-320, 2000.

P. Joshi and R. K. Joshi. Concept analysis for class cohesion.
Proceedings CSMR 2009, pages 237-240.

A. Kellens, K. Mens, and P. Tonella. A survey of automated code-level
aspect mining techniques. Transactions on Aspect-Oriented Software
Development, 4(4640):143-162, 2007.

A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal
concept analysis. In ASE’05, pages 66—75, Nov. 2005.

C. Lindig. Mining patterns and violations using concept analysis.
Technical report, Saarland University, Germany, 2007.

K. Mens and T. Tourwé. Delving source code with formal concept
analysis. Comput. Lang. Syst. Struct., 31:183-197, October 2005.

N. Moha, A. M. R. Hacene, P. Valtchev, and Y.-G. Guéhéneuc. Refac-
torings of design defects using relational concept analysis. ICFCA’08,
pages 289-304. Springer-Verlag, 2008.

D. Poshyvanyk and A. Marcus. Combining formal concept analysis with
information retrieval for concept location in source code. In ICPC ’07,
pages 37-48, Washington, DC, USA, 2007. IEEE Computer Society.
H. A. Sahraoui, H. Lounis, W. Melo, and H. Mili. A concept formation
based approach to object identification in procedural code. Automated
Software Engineering Journal, 6(4):387-410, 1999.

M. Siff and T. Reps. Identifying modules via concept analysis.
Transactions on Software Engineering, 25(6):749-768, Nov. 1999.

G. Snelting and F. Tip. Understanding Class Hierarchies Using Concept
Analysis. ACM TOPLAS, pages 540-582, May 2000.

M. Streckenbach and G. Snelting. Refactoring class hierarchies with
KABA. In OOPSLA ’04, pages 315-330, New York, NY, USA, 2004.
A. Sutton and J. Maletic. Recovering uml class models from c++: A
detailed explanation. Inf. Softw. Technol., pages 212-229, March 2007.
T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of formal concept
analysis support for software engineering activities. In G. Stumme,
editor, Proceedings of ICFCA ’03. Springer-Verlag, Feb. 2003.

P. Tonella and G. Antoniol. Object oriented design pattern inference.
In Proceedings of ICSM 99, pages 230-238. IEEE Computer Society
Press, Oct. 1999.

In

