
Reconsidering Classes in Procedural Object-Oriented Code
Accepted to WCRE’2008

Muhammad Usman BHATTI1 Stéphane DUCASSE2 Marianne HUCHARD3

1CRI - Univ. Paris 1 Sorbonne, France
2INRIA - Lille Nord Europe, France

3LIRMM - Univ. Montpellier 2, France
muhammad.bhatti@malix.univ-paris1.fr, stephane.ducasse@inria.fr, marianne.huchard@lirmm.fr

Abstract

Object-oriented software may show signs of procedural
thinking because of lack of design or due to design erosion
over a period of time. We refer to such a software as proce-
dural object-oriented code. Huge classes, scarce class hier-
archies and absence of classes for domain entities are hall-
marks of procedural object-oriented code. Due to huge in-
vestments in such systems, software restructuring becomes
necessary. To support code modularization, it is important
to identify useful domain abstractions. In this paper, we
present a tool-assisted technique to identify useful abstrac-
tions and class hierarchies in procedural object-oriented
code. During this task, principal classes (draft classes) are
identified. Afterwards, composition and association rela-
tionships are inferred for principal classes. Lastly, Formal
Concept Analysis (FCA) is used to analyze hierarchical re-
lationships between methods and attributes within principal
classes. We validated our approach on several case studies
and report our results on an industrial case.

1 Introduction

Software design and software quality are often victims
of constrained budgetary resources. The use of state of
the art languages such as C# and Java cannot replace the
need for an upfront modular design. Moreover, software
design erodes with evolution and shows signs of procedural
thinking [9]. We coined the term procedural object-oriented
code (POC) for the code which shows signs of absence or
erosion of an overall object-oriented design but nonetheless
has been developed using state of the art object-oriented
languages. Procedural object-oriented code consists of half-
baked objects: objects encompassing other objects. The
hallmark of POC is the presence of huge classes and the
absence of class hierarchies. In addition, certain domain
entities are not represented in precise classes but scattered

in other classes. Software reengineering and restructuring is
beneficial for such code because of the domain knowledge
represented by the code and costs of its development.

Formal Concept Analysis (FCA) is a mathematical tech-
nique to discover useful hierarchical groupings of objects
having similar attributes [14]. This technique has been suc-
cessfully applied to obtain useful groupings of functions
and global variables in procedural code to place them in
same object-oriented classes [23, 24]. This technique has
also been applied to analyze and restructure class hierar-
chies [10, 26, 2]. However, the application of FCA for pro-
cedural object-oriented code may need further refinements
because of the following reasons: First, methods attached
to current classes may be misplaced. Second, huge lattices
obtained from procedural object-oriented code may obstruct
the analyzer to find useful abstractions amongst the existing
classes. In case of reduction of context to find meaning-
ful information, it is necessary to find the pertinent meth-
ods within the existing classes that operate upon particular
attributes. Third, this type of code may contain interesting
traces of object-oriented language constructs, which may be
employed to enhance the information to generate class hier-
archy. Hence it is not enough to assign procedures to types
to get classes as in traditional object identification from pro-
cedural code [23, 24, 27].

In this paper, we present a semi-automatic, tool-assisted
approach for restructuring object-oriented software show-
ing signs of absence of object-oriented design. We start our
discussion by the description of some of the design prob-
lems or “code smells” related to POC for quick discovery
of restructuring opportunities. Afterwards, we define our
approach in four steps:

1. To decompose large classes into smaller cohesive
pieces, methods present in the code and user-defined
types they operate upon are grouped in principal
classes following certain rules.

2. An architectural abstraction for principal classes is ob-



tained to understand the interaction and composition
of principal classes amongst themselves.

3. Hierarchical abstractions for the methods and at-
tributes of each of the principal classes are obtained
by analyzing their accesses to the individual elements
of user-defined types.

4. Scattered code related to global enumerated types is
identified and refactored into new methods. These
methods are then added to the user-specified principal
class.

This paper is organized as follows: Section 2 presents
some of the commonly occurring design problems in POC.
Section 3 describes our restructuring approach for POC. In
Section 4, we present an evaluation of our approach on an
industrial software system. Section 5 discusses the results
of our approach and its limitations. Section 6 work presents
the state of the art on the presented work and Section 7
concludes the paper and presents perspectives of the future
work.

2 Procedural Object-Oriented Code Design
Problems

Object-oriented legacy systems often face similar prob-
lem as procedural legacy systems [9]. They contain dupli-
cated code and logic, misplaced logic, and incomplete ab-
stractions. To make a clear distinction between good object-
oriented code and code presenting such defects we coined
the term procedural object-oriented code (POC).

Code smells often indicate the presence of design prob-
lems. Code smells can be used to apply possible remedy
(refactoring) to the problem and help developer ascertain
information related to problematic code [12]. We provide
a list of code smells related to procedural object-oriented
code and revealing object-oriented design absence. Al-
though, some of the code smells that we present are related
to those presented in [12], the code smells presented here
are provided to describe them in the context of lack of de-
sign.

2.1 Half-Baked Objects

Object-oriented design principle advocates the decom-
position of various objects into types and sub-types rela-
tionship. These types are then composed through structural
and behavioral composition to define the business logic. In
POC, however, such principles are not consistently applied
leading to lack of inheritance hierarchies and lack of object-
oriented decomposition.

Absence of Class Hierarchies. A very typical POC
symptom code is the absence or scarcity of class hierar-
chies in the software. This naturally origins from the omis-
sion of analysis process whereby types and their subtypes
for domain entities are identified. Consequently, the classes
represent huge structures encapsulating all types and sub-
types, which are present in a single class. In such scenarios
when no entity abstracts common functionality, duplicate
logic for common tasks appears in methods.

Lack of Decomposition - Missing Abstractions. If the
design decomposition is not refined to a certain level, it
results in the absence of important types from the sys-
tem, resulting in their scattered manifestation in other half-
baked objects. Code associated to these missing abstrac-
tions makes the overall reuse, change and evolution of the
system cumbersome.

2.2 Global Enumerated Types and States

In absence of encapsulation and abstraction provided by
classes in a classical object-oriented system, global enu-
merated types are used to hold the i) states, and ii) types
of objects. These global enumerated types are used in a
large number of methods according to the functional pro-
gram flow, hence leading to their scattering and tangling
throughout the code. This scattering happens mostly in the
form of conditionals to test the states of program entities
represented by the enumerated types, and switch statements
to perform related operations according to the state and type
information. Enumerated types, when used with condition-
als, provide the code smell for applying Transform Condi-
tional to Polymorphism, as mentioned in [12, 9]. Note that
in our context this is more difficult since the code is spread
over multiple classes.

2.3 Non-abstracted Template Behavior

A lack of hierarchical structure may actually lead to a
lack of code reuse, a leverage obtained by abstracting the
common code in superclass of the hierarchy. This leads to
duplication of ”template code”. Template code manifests
itself either in the form of common calls or method dupli-
cation.

Common Calls. Absence of a parent class for similar
types results in the presence of non-abstracted, common
calls in methods that perform common processes. Common
calls pattern is manifested by invocation of similar methods
from their client methods and is depicted in Figure 1. In
this case, methods B, D, F invoke methods A and C. These
cloned calls show the presence of non-abstracted template
behavior that can be refactored into a common superclass.



Method B

Method D

Method F

Method A

Method C

Figure 1. Cloned Calls - Missing Template Be-
havior

Hence, such pattern is identified to create a common su-
perclass for the methods implementing common calls. The
client methods may be present in same classes or different
classes.

Method Duplication. Method duplication refers to differ-
ent methods where each of them implements some common
functionality in addition to their respective specialization.
This form is different from common calls because the com-
mon logic is in the form of a set of common instructions
working on input variables. These methods are commonly
implemented using similar names. This may be overlooked
due to the resemblance to method overloading.

3 Object Identification

In this section, we describe our object identification pro-
cess which supports the discovery of useful abstractions
in procedural object-oriented code. As described earlier,
based on type/class usage we identify principal classes. In
the second phase, we identify composition relationships be-
tween principal classes based on common creation pattern,
i.e., types that are created together. The last phase consists
of finding hierarchy of attributes and methods assigned to
principal class. We also perform an analysis of enumerated
types to associate each of them with their associated prin-
cipal class. The overall approach is presented in Figure 2.
However, before we move further to describe the internals
of our approach, we describe basic definitions of Formal
Concept Analysis (FCA).

FCA Basic Definitions. Concept Analysis provides a way
to identify sensible grouping of objects that have common
attributes [14]. A context is a triple C = (O,A, R), where
O and A are finite sets (the objects and attributes, respec-
tively), and R is a binary relation between O and A. A
concept is a pair of sets: a set of covered objects (the ex-
tent) and a set of shared attributes (the intent) (X, Y ) with

Application

C1 C2

C3 C4

Identification of 
Principal Classes

C2 C3

C1

Principal Class 
Composition 

Refactoring of 
Global Enumerated 
Types

Hierarchies of 
Methods in Principal 
Classes

Figure 2. Overall Approach

X ⊆ O, Y ⊆ A and X = {o ∈ O|∀y ∈ Y, (o, y) ∈ R},
Y = {a ∈ A|∀x ∈ X, (x, a) ∈ R}.

3.1 Identification of Principal Classes

The first step consists of the identification of a cohe-
sive set of methods grouped by type usage. Types are the
user-defined classes defining a set of atomic (primitive) at-
tributes. Read or write access to an atomic attribute of a type
is considered as the read or write access to the type defining
the attribute. We term the group of methods and the type
that these methods access and modify as a principal class.
Note that we only consider end-user types as potential tar-
get for principal classes, primitive types are not considered
[23]. The following rules define method groupings as illus-
trated in Figure 3 using principle of class cohesion [11].

• All methods that exclusively write to a particular vari-
able of a given type are associated to the principal class
for this type. In Figure 3 method m1 is associated with
principal class 1 because it writes to variable e1 of type
T1.

• Similarly all methods that exclusively read from a vari-
able of a given type are associated to the principal class
of that type. Class 5 in Figure 3 reads from the variable
e6 of Type T6.

• In case a method writes to two types, the method is
marked as a candidate for decomposition using slic-
ing [13]. Slicing helps segregate instructions working
on different variables. Method 4 in Figure 3 is a can-
didate for slicing. In this case, the method is decom-
posed into two and each new method is assigned to its
corresponding principal class.

• In case a method reads to two types, it is associated to
the type with most read number.



• When a method m doesn’t read or write a type but
calls another method n in principal class PC1, then the
method m is associated to PC1.

Figure 3. Principal Class Identification

This step identifies groups of cohesive entities and meth-
ods that make up candidates for principal classes.

During this step, we keep track of the dependencies
amongst the identified principal classes. This is achieved
by keeping track of the read information of other principal
classes in all methods of a principal class. For example, if
methods of a principal class PC1 access variable of type t2
and t3, which are associated to PC2 and PC3, this infor-
mation is kept. Such information is later used to identify
degree of associations amongst principal classes.

3.2 Principal Class Compositions

Once principal classes are identified, we identify compo-
sition relationships among principal classes. For this pur-
pose, we identify Create-Create pattern in code.

The pattern searches for all methods belonging to a prin-
cipal class that create a variable of its own type as well as a
variable of another type. For example, a method belonging
to principal class PC1 initializes a variable of its associated
type and calls another method which creates instances of
another type PC2. Thus, a composition link is created such
that PC1 is composed of PC2 as depicted on the left of Fig-
ure 4. This pattern is also searched in methods marked for
slicing because this may provide useful information about
principal class composition.

If two principal classes PC1 and PC3 are found to be
composed of a third principal class PC2, a new parent class
is created which composes itself with PC2. PC1 and PC3
then inherit from the newly created class as demonstrated
in Figure 4. So for finding common compositions, concept
lattices are created for composition relationship. For this
purpose, we define the FCA context as follows:

• O = All Principal classes

New

PC1 PC3

PC2PC1 PC2

PC3 PC2

Figure 4. Principal Class Compositions

• A = All Principal classes

• R = pc1 creates pc2

Figure 5. Common Compositions

Figure 5 depicts an example of lattice displaying common
compositions (attributes are in grey background, PC repre-
sents a principal class). For example, the figure shows that
principal classes 5 and 3 commonly create class 2. More-
over, principal classes 1, 3, 4, 7 are not created by any other
principal class. So, four superclasses are created containing
variables of types of principal classes 2, 8, 6, 5.

3.3 Hierarchical Method-Attribute Rela-
tionship

Now that principal classes and their composition links
are inferred, we identify hierarchical abstractions present
within a principal class. For this purpose, information re-
garding the types and methods associated to each principal
class is studied. For this, access patterns are observed for
methods accessing the attributes of the types in their princi-
pal classes. This offers a possible decomposition of princi-
pal class into subclasses, with common attributes appearing
in the parent class.



We extract using FCA three different views (named fun-
damental, interaction and associations) to support the pos-
sible modularization within principal classes. These views
help us to simplify the structure of the resulting concept lat-
tices for principal classes. The views can be combined (i.e.,
a single lattice is generated) for smaller principal classes but
for larger ones, extraction of useful modularization in one
combined view becomes cumbersome.

Fundamental View. For generating fundamental view
lattices, we consider individual (class) attributes of the user-
defined types and methods accessing these attributes. When
this information is fed into FCA and lattices are generated,
the lattices provide hierarchy of methods using the attributes
in principal classes. For the fundamental view, we define
the FCA context as follows:

• O = All Methods within principal class

• A = Attributes of the user-defined type associated to
principal class

• R = Method m reads or modifies an attribute of its as-
sociated type

This context has generally been used to search for object-
oriented abstractions in procedural code [23, 24, 27]. In
our particular case, it helps finding possible attributes and
methods of subclasses. In our approach, the context is only
the concerning attributes and methods, hence the results are
less complicated.

Figure 6 presents an example of a fundamental view of
a principal class containing five methods and five attributes
(attributes are in grey background denoted by a, methods
are denoted by m). It presents two disjoint sets of classes
to reconstitute methods of the principal class represented
in the view: The right-hand side concepts can be restruc-
tured as hierarchy of classes with a superclass a1:m1 and
a subclass a5:m5), and the left-hand side concepts propose
a hierarchy with a superclass (a2:m2) and two subclasses
(a3:m3,a4:m4).

Common Interactions View. The common interaction
view helps understanding all of the method invocation of the
methods in a principal class. This helps understanding the
interaction of various methods present within the principal
classes for their possible categorization as interface meth-
ods or functionality providers [1]. In addition, this supports
the identification of template behavior regarding common
method calls. That is, methods that call common methods
are clustered together.

For this view, we define the FCA context as follows:

• O = All Methods within principal class

Figure 6. Fundamental View of Principal
Classes

• A = Method invocations

• R = method m calls method n

Figure 7. Common Calls View of Principal
Classes

Figure 7 presents the interaction view for the principal class
presented in Figure 6. The figure demonstrates that method
m5 calls m1 and m6. Moreover, the concept containing
methods m3 and m4 in its extent indicates the existence of
common call pattern. It can also be inferred that methods
m1 and m2 within this principal class do not invoke any
methods inside the principal class.

Associations View. In this view, we use the information
retrieved while assigning methods to principal classes. This



information, which we term as associations, represents ac-
cesses to other principal classes from the methods of the
current principal class. For this view, we define the FCA
context as follows:

• O = All methods within a current principal class

• A = Attributes of the type, and other principal classes
(except those linked by composition)

• R = m accesses an attribute of its type or accesses prin-
cipal class pc

This view shows the degree of usage of a principal class
within methods of the current principal and hence its place
within the hierarchy of the principal class. Principal classes
for which current principal class already has a composition
link are excluded from this view. For example, the current
principal class PC1 has a composition link to PC2, then as-
sociation links to PC2 are excluded from the association
view lattice.

In addition, this view helps to segregate the functionality
implemented by methods of a principal class. For example,
a principal class may have two sets of methods: methods
solely working on its attributes and methods which inter-
act with other principal classes. In some cases, these two
may represent new “candidate” classes. We illustrate this
by an example: Consider the lattice presented in Figure 8.
This lattice augments the fundamental view presented in
Figure 6. It demonstrates the usage pattern of two princi-
pal classes PC1 and PC2 within the methods of the current
principal class. It is interesting to see that PC2 is commonly
used in all the methods of the principal class, while PC1 is
used by another subset. The reengineer can interpret this
usage pattern according to her understanding. A new class
may be created to include PC2 from which the two disjoint
classes created for the current principal class can be inher-
ited.

3.4 The case of Enumerated Types

In some occasions, enumerated types are used in con-
junction with conditional statements to replace object-
oriented abstractions [12, 9]. When such a practice oc-
curs, the reengineer is requested to apply either Transform
conditional to polymorphism [9] or Rewrite type code with
state/strategy [12]. However, these solutions hypothesize
that these enumerated types are encapsulated in methods.
In POC, such enumerated types are used as global variables
in different methods and the logic associated to a particu-
lar enumerated type is scattered in these methods. Hence,
the first step is to decern the location of global enumerated
types and refactor these enumerated types in methods so
that the proposed refactorings can be applied [12, 9]. The
refactored methods are then associated to the principal class

Figure 8. Association View of Principal Class

specified by reengineer. For this purpose, a simple tool is
developed that inspects usage of enumerated types along
with conditional statements for guiding the identification of
such patterns. The idea is to ease location identification of
places where these enumerated types are used and refactor
their code in a new method. This method is then associated
to one of identified principal classes.

Now that we have presented our approach, we evaluate
it on an industrial system. The next section presents the
results of the evaluation of our approach.

4 Application of the Approach: Case Study
Software

We evaluate our approach on an industrial software sys-
tem. The software system drives blood disease analyses.
Typically a machine is loaded with a sample of patient
plasma and reagents (products) for chemical reactions. The
machine performs the analysis and raw results are calcu-
lated and converted to interpreted results for their easier in-
terpretation by doctors and medical staff. For the sake of
precision and clarity, we only describe the software sub-
system that manages the functional entities and processes,
and operates with the database layer to manage the relevant
data. Certain core functionalities, such as blood analysis
data, reagents used by the machines, raw and interpreted re-
sults, patient data, and quality control, are the key features
implemented at this layer.

Table 1 below shows some of the software quality met-
rics for our case study software [15].



4.1 Design Metrics

Table 1. Case Study Metrics
Class Name LOC NOM NOA DIT LCOM

CPatient 11,462 260 9 1 0.85
CTest 2792 81 13 1 0.72

CProduct 2552 77 6 1 0.72
CResults 1652 52 13 1 0.85

CPersistency 1325 67 29 2 0.97
CGlossary 1010 121 5 1 0.80

Table 1 demonstrates some facts about the business en-
tity layer: There is a clear lack of hierarchical structure
and presence of huge service classes lacking cohesion, with
large number of methods. Certain domain entities such as
patient tube do not have associated classes which could have
encapsulated the state and behavior related to these entities
in a single class. Therefore, it offers a good case study to
evaluate our approach since the software is developed in C#
and is a mixture of object-oriented code and procedural one
expressed within the same paradigm.

4.2 Identification of Principal Classes

We proceed with the identification of principal classes
within our case study software system. Following are the
results of the application of the first step of our approach.

Table 2. Identification of Principal Classes
Total Principal Classes 41

Methods Associated Correctly 403
Methods Marked for slicing 21

False positives 7

Table 3. Some Principal Classes

ClassName Method Count ClassName Method Count
PatientRecord 40 TestParams 21
RawResults 57 Calibration 41

InterpretedResults 9 Paramproduit 3
CalibrationData 19 PatientTube 7

QualityTest 14 BloodTest 10
TransParam 3 TransmitData 8

Product 14 Lot 11
DeviceHistory 6 Maintenance 9

Table 2 describes results for the first step. We identified
41 principal classes, one for each user-defined types, and
403 methods were associated to these principal classes. List
of some of the principal classes along with their method
count is presented in Table 3.

Of all the methods observed, 7 methods were determined
to be false positives, that is they were associated to the class
to which they didn’t belong. This happened for two reasons:
Firstly, when methods were reading types, the number of
reads for the actual type were lesser than other types. For
example, the method verifying if the patient information is
being used in a test. Now, this information can be placed in
one principal class or another depending on the proximity of
data and reengineer may be required to manually fix the po-
sition of such a method. The second reason is more compli-
cated as it involved the cases where a method called another
method to perform operations on its type while other prin-
cipal classes are accessed directly. For example, a method
for repeating test on patient data called another method to
recreate test information while result information was di-
rectly created in the method.

4.3 Principal Class Compositions

The creation pattern provided useful information regard-
ing the composition of principal classes. All in all 15 com-
position relationships were found of which three composi-
tion relationships were identified as common to 9 princi-
pal classes. Hence, three superclasses were identified with
such a pattern. Moreover, useful domain information was
also deduced using this pattern such as a patient has a tube,
results have validation thresholds parameters, etc.

4.4 Hierarchies in Principal Classes

Once the task of identification of principal classes and
their composition is achieved, we proceed to identify hi-
erarchical information present within the principal classes.
There are two sets of principal classes identified for our ap-
plication.

Simple Principal Classes. Simple principal classes are
those for which a single concept lattice merging all the
views is generated for understanding the internals of the
class. This helps decerning restructuring information from
a single lattice and the reengineer doesn’t need to produce
lattices for different views. Figure 9 demonstrates concept
lattice for QualityTest class in Table 3, whereby a single
lattice is generated to understand the hierarchies of attribute
accesses as well as method calls and type usage. The result-
ing concept lattice provides a clear decomposition of meth-
ods. The reengineer can further explore lattice information
to create useful classes.

Complex Principal Classes. Complex principal classes
are likely to consist of large number of methods. Concept
lattice for such class showing all the views contains huge
number of concepts and it is near to impossible to infer any



Figure 9. A Simple Principal Class

useful abstractions. Thus, for such classes subsequent views
are generated to understand the hierarchies for their meth-
ods.

We consider class marked Calibration in Table 3. First,
a fundamental view is generated to get the methods and at-
tributes.

Figure 10. Fundamental View of a complex
Class

Figure 10 doesn’t reveal any particular decomposition
apart from a few methods that are disjoint and can be placed
in a separate class (attribute and method names are omitted
for clarity). There are strong connections amongst meth-
ods and attributes. However, the common calls view pre-
sented in Figure 11 does indicate presence of common calls
where methods m14, m15 and m17 invoke 6 common meth-
ods lying outside their principal class (their method num-
bers lay outside the method count of the principal class).
These methods implement complex logic for the process of

creating a calibration test, and the three methods actually
implement the three types of tests. Hence a superclass is
created to contain template behavior and three subclasses
are then created for each process.

Figure 11. Common Interaction View of a
complex Class

5 Discussion

The approach helps identifying objects missing in pro-
cedural object-oriented code. User-defined types and meth-
ods are used to extract class hierarchies from POC. This is
done by analyzing the usage of atomic attributes in a princi-
pal class by the methods of that principal class. Moreover,
method invocations and the degree of principal classes as-
sociation help us detect common interactions and identifica-
tion of association degree of various principal classes. The
presence of user-defined types, groupings of primitive types
for the representation of domain entities, is essential for the
approach to identify principal classes. In addition methods
are assumed to be crisp in their functionality in that they
implement functionality pertaining to a particular task and
they are not huge. In the absence of these two elements, the
restructuring approach would fail because of failure to iden-
tify principal classes and failure to correctly assign methods
to principal classes. If methods are huge providing com-
plex functionality, slicing [13] and refactoring [12] should
be applied first to split chunks of related instructions into
methods.

Various views are generated to understand the internals
of principal classes. We believe that these views do not
automate the task of object identification. They act as a
tool to guide the restructuring activity. Reengineer needs
to interpret different views to combine them in an intelli-
gent manner as the three views are not completely orthogo-
nal. First, she needs to understand the compositions. Once
compositions are inferred, hierarchies of methods and at-
tributes in principal classes are identified with the funda-



mental view. Later, new classes obtained from common in-
teraction view and associations view should be integrated
to the overall class model of the principal class in question.
Common interaction view should also be considered to un-
derstand the collaborations amongst methods of a principal
class. Heuristics and guidelines can be developed for the re-
finement of identified objects, as the one described in [22].
However, such heuristics are application dependent. We
provide general views from which the reengineer can in-
fer class hierarchy information and refine it with domain
knowledge.

6 Related Work

Several research works aim to specify patterns of bad
design in code. A catalog of code smells and steps for their
possible refactoring to improve the software design is pre-
sented in seminal work of Fowler et al. [12]. The code
smells are a consequence of constant maintenance efforts
resulting in small design problems. But the overall hier-
archy doesn’t suffer from the design flaws and absence of
classes for domain objects. Demeyer et al. [9] provide a
catalog of design flaws in their work. Possible flaws along
with the possible detection techniques and solutions are pre-
sented from a reengineering perspective. Anti-patterns de-
scribe solutions that degenerate into negative consequences
when applied to a problem, and higher-level, architectural
Anti-Patterns have been presented in [3]. Globally, the
aforementioned half-baked classes in POC in a respect do
represent an example of the Blob anti-pattern, and the God
class (behavioral form) presented in [21]. The code smells
that we presented in a way describe anti-pattern manifes-
tation in code. An effort to formalize the copious design
defects (code smells, anti patterns, and design pattern de-
fects) presented in the literature has been introduced in [18]
to remove ambiguities in their interpretation. This work ac-
tually takes different design defects as input. This work
bases itself on the existing code smells and tries to formal-
ize them, while our work concretely contributes the code
smells related to procedural object-oriented code to the ex-
isting code smells. An automated approach for suggesting
defect-correcting refactoring using relational concept anal-
ysis is proposed in [19]. The approach aims and suggest to
make classes more cohesive and less coupled by removing
Blob anti-pattern and suggest refactoring in this regard. An
approach to detect design defects by applying heuristics on
design metrics has been presented in [17]. A pattern-like
description of design flaws and a systematic description of
detection metrics is developed for each design flaw.

Several work attempted to transform procedural code to
object-oriented one [4, 6, 7, 16]. Some approaches were
taken to convert procedural code into data flow programs
[20]. Newcomb et al proposed an Hierarchical Object-

Oriented State-Machine Model which is between conven-
tional object-oriented modeling languages, state-based re-
active specification systems, and event-driven programming
models [20]. COBOL records are mapped to classes and
each procedure is mapped to a state machine associated to
a method. Several refactorings and transformations are ap-
plied to abstract and merge the resulting methods. De Lu-
cia et al. [7, 16] describe the Ercole approach for migrating
programs written in RPG, the business application program-
ming language, to object-oriented programs. Among the
different steps of the approach, one is abstracting an object-
oriented model which is centered around the persistent data
stores. Subroutines and groups of call-related subroutines
are then candidate methods.

Concept formation methods have been applied for object
identification in procedural code. Sahraoui et al. in [23]
proposed an approach for identifying objects in procedu-
ral code. The approach combines metrics calculation with
several FCA-based analysis steps in class identification and
further graph-based reasoning to detect method associations
for newly identified classes. Our approach carries forward
their approach in that we generate two more views to re-
fine our class hierarchies. Arie van Deursen proposes to
use FCA and to semi-automatically restructure the legacy
data structures that can be then used as a starting point to
object identification [27]. A comparison of the object iden-
tification with clustering and concept analysis techniques is
also presented by the authors. An approach to transform
a COBOL legacy system to a distributed component sys-
tem is proposed in [5]. The overall purpose is to reduce
the complexity of the lattices through the subgraph identi-
fication by the application of an eclectic approach. How-
ever, the focus remains the decomposition of programs into
meaningful components and no further hierarchical decom-
position is mentioned. All these techniques aim to move
from procedural code to object-oriented code. However, our
goals are bit different than defined in these studies in that
we aim to search for the identification of patterns appear-
ing due to absence of design and exploiting them for iden-
tifying objects in procedural object-oriented code buried in
half-baked classes.

FCA is proposed for class hierarchy reengineering by
Snelting and Tip [25]. The authors proposed a FCA-based
method for adapting a class hierarchy to a specific usage
thereof. It comprises a study of the way class members are
used in the client code of a set of applications. The study en-
ables the identification of anomalies in the design of class
hierarchies, e.g., class members that are redundant or that
can be moved into a derived class. FCA-based understand-
ing of class structures is introduced in [2]. The authors
identify pattern of views based on FCA to understand ac-
cess of class attributes and method usage for existing class
hierarchies. Dekel uses FCA to visualize the structure of



the class in Java and to select an effective order for reading
the methods [8]. Method call graphs is superimposed onto
the concept lattice to obtain an embedded call-graph, which
provides a detailed visualization of the interaction with the
class.

7 Conclusion

Procedural object-oriented code appears due to absence
of software design or due to its erosion over a period of time.
This paper describes some of the design problems occur-
ring in procedural object-oriented code. These include huge
classes, scarce hierarchical links, global enumerated types
and absence of abstractions for domain entities. We pre-
sented our approach for the identification of useful abstrac-
tions in procedural object-oriented code. For this purpose,
principal classes are identified, their composition links are
discovered and the hierarchical relationship of their meth-
ods is identified through the usage of FCA. Various views
are provided with different information to infer hierarchies
of methods and attributes. Concept lattices provide us with
several modularization proposals for methods and attributes
present in principal classes. Our approach bases itself on the
presence of user-defined types in procedural object-oriented
code. In their absence, a manual task is required to identify
them. Our approach also assumes presence of well-focused
methods. Our future work includes definition of algorithm
for moving from concepts lattices to meaningful classes.

References

[1] G. Arévalo, S. Ducasse, and O. Nierstrasz. Understanding
classes using X-Ray views. In International Workshop on
MASPEGHI 2003 (ASE 2003), pages 9–18. CRIM — Uni-
versity of Montreal (Canada), Oct. 2003.

[2] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discover-
ing unanticipated dependency schemas in class hierarchies.
In CSMR’05, pages 62–71. IEEE Computer Society, Mar.
2005.

[3] W. J. Brown, R. C. Malveau, H. W. McCormick, III, and
T. J. Mowbray. AntiPatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. John Wiley Press, 1998.

[4] G. Caldiera and V. R. Basili. Identifying and qualifying
reusable software components. IEEE Computer, 24(2):61–
70, Feb. 1991.

[5] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca.
A Case Study of Applying an Eclectic Approach to Identify
Objects in Code. In IWPC’99, pages 136–143. IEEE Com-
puter Society, May 1999.

[6] G. Canfora, A. Cimitile, and M. Munro. An improved algo-
rithm for identifying objects in code. Softw. Pract. Exper.,
26(1):25–48, 1996.

[7] A. Cimitile, A. D. Lucia, G. A. D. Lucca, and A. R. Fasolino.
Identifying objects in legacy systems using design metrics.
J. Syst. Softw., 44(3):199–211, 1999.

[8] U. Dekel and Y. Gil. Revealing class structure with concept
lattices. In WCRE, pages 353–362. IEEE Press, Nov. 2003.

[9] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[10] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On Au-
tomatic Class Insertion with Overloading. In OOPSLA ’96,
pages 251–267. ACM Press, 1996.

[11] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer
Press, London, UK, second edition, 1996.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[13] K. B. Gallagher and J. R. Lyle. Using Program Slicing in
Software Maintenance. Transactions on Software Engineer-
ing, 17(18):751–761, Aug. 1991.

[14] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer Verlag, 1999.

[15] B. Henderson-Sellers. Object-Oriented Metrics: Measures
of Complexity. Prentice-Hall, 1996.

[16] G. A. D. Lucca, A. R. Fasolino, P. Guerra, and S. Petruzzelli.
Migrating legacy systems towards object-oriented plat-
forms. In ICSM ’97, pages 122–129, Washington, DC, USA,
1997. IEEE Computer Society.

[17] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In ICSM’04, pages 350–359, Los
Alamitos CA, 2004. IEEE Computer Society Press.

[18] N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic gener-
ation of detection algorithms for design defects. In ASE ’06,
pages 297–300, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[19] N. Moha, A. M. R. Hacene, P. Valtchev, and Y.-G.
Guéhéneuc. Refactorings of design defects using relational
concept analysis. In ICFCA, pages 289–304, 2008.

[20] P. Newcomb and G. Kotik. Reengineering procedural into
object-oriented systems. In WCRE’95, pages 237–250.
IEEE CS, 1995.

[21] A. Riel. Object-Oriented Design Heuristics. Addison Wes-
ley, Boston MA, 1996.

[22] H. A. Sahraoui, H. Lounis, W. Melo, and H. Mili. A con-
cept formation based approach to object identification in
procedural code. Automated Software Engineering Journal,
6(4):387–410, 1999.

[23] H. A. Sahraoui, W. Melo, H. Lounis, and F. Dumont. Apply-
ing Concept Formation Methods to Object Identification in
Procedural Code. In ASE ’97, pages 210–218. IEEE, IEEE
Computer Society Press, Nov. 1997.

[24] M. Siff and T. Reps. Identifying modules via concept analy-
sis. Transactions on Software Engineering, 25(6):749–768,
Nov. 1999.

[25] G. Snelting and F. Tip. Reengineering Class Hierarchies us-
ing Concept Analysis. In ACM Trans. Programming Lan-
guages and Systems, 1998.

[26] M. Streckenbach and G. Snelting. Refactoring class hierar-
chies with KABA. In OOPSLA ’04, pages 315–330, New
York, NY, USA, 2004. ACM Press.

[27] A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. In ICSE ’99, pages 246–255.
ACM Press, 1999.


