
Run-Time Information Visualization for Understanding Object-Oriented
Systems

Roland Bertuli
I3S Laboratory

Sophia-Antipolis, France
bertuli@essi.fr

St́ephane Ducasse
Software Composition Group

University of Bern, Switzerland
ducasse@iam.unibe.ch

Michele Lanza
Software Composition Group

University of Bern, Switzerland
lanza@iam.unibe.ch

Abstract

Understanding object-oriented legacy systems is a com-
plex task exacerbated by the presence of late binding and
polymorphism. Moreover, the metaphor of message send-
ing and the anthropomorphism promoted by object-oriented
languages makes it difficult to statically identify the precise
role the objects play at run-time. We propose a lightweight
visualization approach enriched with run-time information
which allows us to identify precise aspects of the objects
lifetime such as the role played in the creation of other ob-
jects and the communication architecture they support. Our
approach not only supports the run-time understanding of
an application but also allows one to evaluate test under-
standing and test coverage.

Keywords: software visualization, reverse engi-
neering, reengineering, dynamic information, object-
oriented programming, program understanding

1. Introduction

Corbi [4] reported that during maintenance profession-
als spend at least half of their time analyzing software to
understand it. Moreover, Sommerville [28] and Davis [5]
estimate that the cost of software maintenance accounts for
50% to 75% of the overall cost of a software system. These
facts show that understanding applications is one of the
hardest tasks in the maintenance of software systems.

Nowadays theselegacy systemsare not only limited to
procedural languages but are also written in object-oriented
languages [7]. This situation has exacerbated the prob-
lems of understanding since in object-oriented systems the
domain model of the application is distributed across the
whole system and the behavior is distributed across inheri-
tance hierarchies with late-binding [30] [2] [7].

Many approaches to help the understanding of object-
oriented systems make use of static information. The in-

formation gathered this way is very valuable to understand
the structure and the design of a system, but reveals noth-
ing about the behavior of the system at run-time. In order
to do so, people instrument the source code using various
techniques (method wrapping, logging, etc.), and then run
the system. The instrumented source code can be used to
generate atrace, which contains information about the run-
time behavior of the system. Such a trace typically con-
tains information about which method is calling which other
method, which objects are created at which time, etc.

The problem is that the low-level nature of the informa-
tion contained in such a trace makes it hard for a software
engineer to infer higher-level information about a software
system. For example he may want to know which other ob-
jects a certain object is sending messages to, but he does
not want to have to analyze and verify every single method
invocation. Indeed, many approaches based on run-time in-
formation have as primary goal to reduce the complexity
of the trace and to reveal certain aspects like collaboration
between classes [27].

Our solution is based on lightweight visualizations en-
riched with measurements that we collect during the gen-
eration of run-time information [6] [22]. We collect the
measurements by analyzing the run-time information and
enriching a model of a software application with these mea-
surements. We then use these measurements to enrich our
visualizations in order to obtain a better understanding of
the application’s run-time behaviour.

2. Problems

Wilde and Huitt assessed that understanding an object-
oriented application is difficult because of several reasons,
such as:

• Polymorphism and late-binding make traditional tool
analyzers like program slicers inadequate. Data-flow
analyzers are more complex to build especially in pres-
ence of dynamically typed languages.

1



• The use of inheritance and incremental class defini-
tions, together with the dynamic semantics ofself and
this, make applications more difficult to understand.

• The domain model of the applications is spread over
classes residing in different hierarchies and/or subsys-
tems and it is difficult to pinpoint the location of a cer-
tain functionality.

• Contrary to procedural systems, where a top-down re-
verse engineering approach can work because of the
structured decomposition of an application, in the case
of object-oriented systems the first question a reverse
engineer has to answer is where to start the reverse en-
gineering process.

Moreover, in an run-time context, De Pauw states that
“Numerous classes, complex inheritance and containment
hierarchies, and diverse patterns of dynamic interaction all
contribute to difficulties in understanding, reusing, debug-
ging, and tuning large object-oriented systems”[24].

Indeed, understanding an application written in an
object-oriented language is a difficult task. Using dynamic
information is one way to support the understanding pro-
cess. In such a context the essential questions that have to
be answered are the following ones:

• What are the most instantiated classes?

• What are the classes having tenured objects? From an
architectural point of view having a singleton is also
an important information.

• What are the classes that create objects? Detecting fac-
tories is important information.

• How do classes communicate with each other?

• Which percentage of the methods defined in a class are
actually used?

2.1 Challenges and Constraints

The run-time analysis of object-oriented systems is chal-
lenging because of constraints such as:

• Amount and density of information. The execution
traces generated for run-time analysis are packed with
extremely large amounts of low-level information.
Therefore they must be analyzed using techniques
which reduce their complexity,e.g., filtering, cluster-
ing, concept analysis, or visualization.

• Granularity of information.Execution traces contain
large amounts of low-level information,e.g., which
methods invoke which methods, which methods ac-
cess which attributes, which objects are created at what

time, etc. It is difficult, using such pieces of informa-
tion, to gain an understanding at a higher level. Our
lightweight approach tries to use the minimal amount
of information needed to support the understanding of
the run-time behavior of an application.

• Online vs. post-mortem analysis.Several approaches
analyze the generated execution traces after the appli-
cation has been shut down again. In that sense we use
the definition ofpost-mortemanalysis. However, it is
also thinkable to generate an analyzeon-the-flywith-
out having to shut down the application,i.e., the infor-
mation would be constantly generated.

3. Our Approach

In our approach we synthesize information from a soft-
ware execution without necessarily keeping the complete
execution trace. We focus our analysis upon a few pieces of
relevant run-time information to have a global visualization
of an execution.

3.1 The Principle of a Polymetric View

The baseline of our work is based upon the lightweight
approach implemented in CodeCrawler [21] [6]. For un-
derstanding software systems with static analysis, we used
polymetric views, lightweight software visualizations en-
riched with software metrics. In Figure 1 we see that, given
two-dimensional nodes representing entities (e.g., software
artifacts) and edges representing relationships, we can en-
rich this simple visualizations with up to 5 metrics on the
nodes:

Figure 1. The principle of a polymetric view.

• Node Size.The width and height of a node can render
two measurements. We follow the convention that the

2



wider and the higher the node, the bigger the measure-
ments its size is reflecting.

• Node Color. The color interval between white and
black can display a measurement. Here the conven-
tion is that the higher the measurement the darker the
node is. Thus light gray represents a smaller metric
measurement than dark gray.

• Node Position. The X and Y coordinates of the po-
sition of a node can reflect two other measurements.
This requires the presence of an absolute origin within
a fixed coordinate system, therefore not all layouts can
exploit this dimension, particularly the tree layout.

In the previous work [21] [6] we only made use of static
information and software metrics which could be gathered
from a static analysis of a software system. In this article
we also make use of the thickness of the edges to render
measurements. This gives us information about theweight
of an edge between two entities,e.g., a thick invocation edge
between two classes signifies there are many invocations
between the two classes.

Note that as run-time information tends to be not linear
and with extremely huge difference in scale, some of the
views use a logarithmic scale to display the measurements.
For example, a class may be invoked 50,000 times while
another one 10.

Figure 2. Enhanced Inheritance Tree.

Example. Figure 2 shows an example of an inheritance
tree enhanced with run-time information. The nodes rep-
resent the classes of the analyzed application, the edges il-
lustrate the inheritance relationships. In this example, the
width of the nodes reflects the number of created instances,
while the height represents the number of used methods dur-
ing the execution. The color tone represents the number of
method calls.

3.2 Run-Time Information Collection

Run-time information collection is a rich domain that
goes from the wrapping of methods [1], the control of ob-
jects [3] [10] to the instrumentation of VM execution. A

great body of work represents the run-time information in
terms of a trace of events [14] [15] [26]. This trace rep-
resentation is valuable information, however it consumes a
lot of space (several megabytes per second of tracing, de-
pending on the granularity level of the trace,i.e., how much
information is extracted) and requires a lot of abstractions
and manipulation to extract information.

Our approach focuses on collecting some minimal infor-
mation, i.e., measurements, during the execution (number
of invocations, number of object creations, number of used
classes/method, etc.). We constrain ourselves to apply only
relatively simple information. For example, we collect the
number of method calls on a class during the execution.

The measurements we extract from an execution trace
are listed in Table 1.

Name Description

Class Run-Time Information
NCM Number of called methods
RCM Rate of called methods
NMI Number of method invocations on a class
NIMI Number of internal method invocations on a class
NEMI Number of external method invocations on a class
NCCM Number of called class (static) methods
NCMI Number of class (static) method calls on a class
NCI Number of created instances
NCO Number of created objects by the class instances

Method Run-Time Information

TI Total number of calls
ITI Number of calls by Owner
ETI Number of calls by Foreign

Table 1. A list of the measurements we extract
from an execution trace.

At first sight the difference between NCM, NMI, and
RCM can be delicate to grasp. NCM represents the num-
ber of calledmethods, NMI represents the number ofinvo-
cationson the methods of the class, while RCM represents
the rate of called methods of the class. For example, if a
class has 5 methods and during the execution 3 different
methods have been invoked 500 times, then NCM equals to
3 while NMI equals to 500, and RCM equals to 0.6.

To remove the ambiguity between NCI and NCO, we
have to well understand that NCI represents the number of
created instances of a class, while NCO represents the num-
ber of created objects by class instances.

ITI represents the number of method invocation where
the caller is the receiver of the invocation, while ETI repre-
sents the number of method invocations where the caller is
different than the receiver.

3



4 Run-time Polymetric Views

In this section, we apply a series of views enriched with
run-time information resulting of a software execution. Us-
ing these examples we see the contribution that our ap-
proach might give. The case study used for our examples
is described below.

4.1 Case Study in a Nutshell

The particular software system used in our experi-
ment is the Moose reengineering environment developed
in Smalltalk [11] [12]. Moose serves as a foundation for
other reverse engineering tools [20] [17]. It provides a
language independent representation and manipulation of
source code written in C++, Java, Cobol, and Smalltalk.
To achieve this language independence it is based on the
FAMIX meta-model [9], which describes how elementary
source code elements such as attributes, methods, classes,
and namespaces are represented [8]. Moreover, Moose de-
scribes meta-models as instances of its own meta-meta-
model. This explicit description of meta-models supports
the creation of generic model reader and writers.

To parse the source code of applications written in Java
or C++, Moose interprets CDIF or XMI compliant files,
while for extracting Smalltalk applications, Moose uses its
own parser and analyzes the resulting abstract syntax trees
to generate Moose models. Moose is a small case study as
it consists of 137 classes and 2093 methods of Smalltalk
code.

We run the Moose system during the analysis of a
Smalltalk application: therefore a meta-model is created,
a Smalltalk-specific source code model of the application
is created, then the application is analyzed extracting some
metrics and other source code analysis, finally the model
was saved on file and reloaded using various external repre-
sentation format.

4.2 The Instance Usage Overview

Instance Usage Overview Description

Layout Inheritance tree, without sort
Nodes Classes
Edges Inheritance
Scope Full system
Metric Scale Logarithmic

Node Width NCI (Number of created instances)
Node Height NCM (Number of called methods)
Node Color NMI (Number of method invocations on a class)

View Intention. The Instance Usage Overviewview
shows which classes are instantiated and used during the
system’s execution. As shown by the view description
above the node width represents the number of created in-
stances, the height of a node represents the number of meth-
ods that have been used, and the color the total number of
method invocations during the program execution.

Revealing Symptoms. Note that this view only considers
instance method invocations and does not take into account
class or static method invocations. While this view provides
an overview of a complete application it also offers detailed
information. Here is the list of graphical signs that this view
may contain:

• Small, white, and square nodes represent classes that
have not been instantiated, therefore not used.

• Narrow, lightly colored nodes represent classes whose
methods have been invoked but having no or few in-
stances. This can be the case of singletons or abstract
classes which are not instantiated but their methods are
used by means of inheritance.

• Flat, lightly colored nodes represent classes that are
heavily instantiated but not often used as their number
of invocation is low (denoted by the light color).

• Flat, dark nodes represent classes that are heavily in-
stantiated with few used, but heavily invoked, meth-
ods.

• Large, dark nodes represent classes that have been
heavily instantiated and used.

Case Study. Figure 3 shows a part of the Instance Usage
Overview applied on our case study.

The dark, large node A is a CDIF scanner, which parses
files written in the CDIF format, an industrial exchange for-
mat. An instance of the scanner is created each time a model
is loaded into memory. It is heavily invoked since the scan-
ning is a dense process putting in movement many small
and specific methods.

The dark, large node B represents the Moose meta-meta-
modelAttributeDescriptionclass which has been instanti-
ated a high number of times. This meta-meta-model is in-
stantiated to represent the current Moose meta-model. As
Moose is a dynamic environment and meta-model can be
extended, the current meta-model representation is created
each time a model is loaded. This explains why there are a
lot of created instances. However, the developers of Moose
were really puzzled by the fact that those classes are heavily
instantiated and used (350,000 calls and 3,500 instances).

The FAMIX meta-model classes (represented in the in-
heritance hierarchy C) which model the source code entities

4



Figure 3. The Instance Usage Overview view.

are flat, lightly colored nodes. Indeed the models loaded
into Moose during the tests are simple models containing
only a couple of classes. Hence these classes are not the
most instantiated as would be case with the loading of large
models. This inheritance hierarchy contains the three fol-
lowing shapes:

1. The flat nodes are the information extracted from
Smalltalk code (Classes, Methods, Attributes, Inheri-
tances, ...), and they occur always as leaves of the tree.
The white classes (D) that model instance and local
variables are less instantiated and used compared to
variable access and method invocation (E, F).

2. The small, square leaf nodes (G) represent classes that
are defined in the language independent meta-model
but that are not relevant in Smalltalk (Includes, Source-
File, Function). Therefore these classes have not been
instantiated.

3. The narrow nodes in the middle of the hierarchy (H)
represent abstract classes as they are not instantiated
but their methods is invoked by subclass instances.

The small hierarchy (I) represents the visitor [13] parse
tree that extracts the FAMIX meta model from the Smalltalk
source code. The classVWParseTreeEnumerator1 (J) is in-
voked each time a model is created from Smalltalk source
code while the other two Visitors, which areVWParsetree-
MetricCalculator(K) andVWParseAnnotator(L), are ded-
icated to analysis that is only performed on demand.

Finally the small hierarchy (M) is not covered at all by
our execution. In fact, these classes represent a part the

1VW stands for VisualWorks, a Smalltalk distribution.

graphical user interfaceof Moose that have not been used
during the execution.

Discussion. The Instance Usage Overviewview is one
of the first that should be applied to a system. It gives an
overview of the run-time behavior of a whole application.
It gives clues on the classes used in the system in the con-
text of superclass code reuse. This view has the double ad-
vantage of combining static (inheritance shape of the sys-
tem, number of classes) and run-time information for each
class (number of created instances, number of method calls,
number of invoked methods). The class assessment iden-
tifies large instanced classes, not instantiated classes, very
used classes, andnot used classes

4.3 The Communication Interaction View

Communication Interaction Description

Layout Embedded Spring Layout
Nodes Classes
Edges Invocations
Scope Full system
Metric Scale Linear

Node Width NCM (Number of called methods)
Node Height NCM (Number of called methods)
Node Color NMI (Number of method invocations on a class)
Edge Width Number of Invocations Between two Classes

View Intention. The Communication Interactionview
shows the communication between classes of the system
during its execution. As described above the size of a node

5



Figure 4. The Communication Interaction view.

represents the number of methods used and the color the
number of methods invocations. TheCommunication Inter-
action view takes advantage of the embedded spring layout:
it weighs the springs so that classes heavily communicating
with each other will aggregate themselves. In addition, the
width of the edges represents the class-to-class communica-
tion.

Revealing Symptoms. This view only considers instance
level method invocations and not direct class references or
instance creations between classes. This view may contain:

• Unconnected, tiny, square nodes representing classes
whose methods do not invoke other methods or get in-
voked by other methods.

• Connected, tiny, square nodes represent classes whose
methods are rarely invoked. Note that such classes
can still have methods heavily invoking other methods
when the node is dark.

• Large, white, square nodes represent classes having
a considerable number of method used but which are
rarely invoked during the execution.

• Dark, square nodes represent heavily used classes.
Small, dark, square nodes in addition represent classes
whose few methods are heavily used.

• Groups of nodes loosely connected to the view core
represent classes communicating via a funnel [20] [22]
to the rest of the system.

Case Study. Figure 4 shows the application ofCommu-
nication Interaction view on our case study. However, we
manually modified the box positions to help the interpreta-
tion of this view.

A group of classes is clearly disconnected from the rest
of the core of the view, meanwhile it joins the biggest part
of the view through a class (A). This group of classes imple-
ments the XMI file production based on a MOF compliant
interface. This group of classes is not connected because
the XMI/MOF producer is an independent package that is
simply used by Moose to produce XMI model files. The
big class (B) is the XMI producer which uses MOF inter-
face objects that communicate via a bridge class (A) with
the FAMIX-compliant meta-model. The XMI producer is
rarely used because Moose favors the CDIF exchange for-
mat. This explains why the class is not colored.

The big class (C) is the central repository storing all
the analyzed models. Moreover it acts as a main entry for
querying the models. That is why this class is connected
to all the classes modelling the Smalltalk source code. The
medium sized dark class node (D) is the CDIF scanner that
is mainly invoked by the importer class (E) which loads
models into memory. The importer has the responsibility
to populate a model and as such to transform textual rep-

6



resentations (from a CDIF text file) into objects. Note that
the Moose developers learned that this class was also in-
voked by another one as shown in Figure 4. The big class
(F) represents the classMSEClassthat models classes in
Moose. The class (G) is the class representing the meta-
meta-model of Moose which is then instantiated to repre-
sent the FAMIX meta-model. This class is used by all the
FAMIX classes as they describe themselves automatically
and by the input/output tools as they provide meta-model
independent functionality.

Discussion. TheCommunication Interactionview identi-
fies heavily invoked classes, however it is less scalable than
Instance Usage Overviewas when the classes communi-
cates heavily a naive spring layout has difficulties to create
well identified groups of classes. Note also that in our ap-
proach we took into account has invocations self send be-
tween classes and subclasses which make the underlying
view much denser. Another way to reduce such a high cou-
pling would be to group all the classes within a common
hierarchy.

4.4 The Creation Interaction View

Creation Interaction Description

Layout Embedded Spring Layout
Nodes Classes
Edges Instantiation
Scope Full system
Metric Scale Logarithmic

Node Width NCO (Number of created objects by the class)
Node Height NCI (Number of created instances)
Node Color NCI (Number of created instances)
Edge Width Number of Creation Between two Classes

View Intention. The Creation Interaction view shows
the instance creations between classes of the system dur-
ing the execution. As described above the width and the
color of a class node represents the number of instances
created by the class and the height represents the number of
instances of the represented class. TheCreation Interaction
view takes also advantage of the embedded spring layout
as it weighs the springs so that classes heavily instantiat-
ing other classes will aggregate themselves. In addition, the
width of the edges represents the amount of class-to-class
instantiation.

Revealing Symptoms. This view only considers instance
level object creations, and may contain:

• Unconnected, tiny, square nodes represent classes that
have not been instantiated, are therefore not used dur-
ing the system’s execution.

• Connected, tiny, white square nodes represent classes
with few instances. Note that such classes can still in-
stantiate other classes.

• Flat, lightly colored nodes represent classes that heav-
ily create instances, but are not often instantiated them-
selves. A few objects of these classes create a lot of
other objects. Note that we can have an abstract class
that still creates a lot of objects simply due to the fact
that its methods are used by instance subclasses.

• Narrow, dark nodes represent classes that have been
instantiated many times. But their instances create few
other instances.

• Wide, dark nodes represent classes that have been
heavily instantiated and used as the number of meth-
ods used and the number of invocations are high.

Case Study. Figure 5 shows the application of theCre-
ation Interaction view on a execution of Moose. Four big
groups of classes are identified:

1. The group on the top of the view, which is composed
of a narrow dark node (A) and flat nodes (B), has an in-
teresting shape. The narrow class node represents the
classAttributeDescription, a meta-meta-model entity
which has been instantiated during the initialization
of the system by all the FAMIX meta-model entities.
The small flat nodes represent the FAMIX meta-model
classes that are not Smalltalk specific but that still have
been creating instances of the classAttributeDescrip-
tion to represent themselves during the creation of the
FAMIX meta-model.

2. Extracting a source code model is done in two different
phases by two different entities: (1) theVWImporter
(C) which uses the reflective API of Smalltalk to query
simple structural information such as classes, methods,
attributes, and (2)VWParseTreeEnumerator(D) which
is a Visitor extracting from the AST more detailed in-
formation.

3. The group on the top left of the view represents the first
extraction phase where we identify the fact that the big
class (C) creates a lot of entities of the surrounding
classes (E). The opposite group in the view describes
the second phase where theVWParseTreeEnumerator
(D) creates a lot of instances of theAccessandInvoca-
tion classes (F) which are the most numerous entities
in our meta-model.

7



Figure 5. The Creation Interaction view.

4. Finally the group on the bottom left reveals an interest-
ing aspect of the system. The big dark node (G) rep-
resents the classMeasurement. Measurements which
represents source code metrics are the most numerous
entities created during a model analysis. As such they
are not represented in memory, but they are stored on
file. Instances ofMeasurementare then created during
the loading of a file like the other entities but a sec-
ond phase removes them from memory by means of
garbage collection. What the picture shows is the fact
that during the loading/saving of a source code model,
instances ofMeasurementare created. The classes sur-
rounding it are the various classes responsible for the
loading and saving (H).

Discussion. The view Creation Interaction is clearly
more scalable than theCommunication Interactionview.
This is normal as a class has a higher probability to invoke
more other classes than to create instances of other classes.

4.5 The Method Call Origin View

View Intention. The Method Call Origin view displays
how the methods are called,e.g., by an internal way of the
owner class or by another instance. This view can be ap-
plied on a whole system or smaller parts to understand the
usage of methods during an execution. The methods are laid

Method Call Origin Description

Layout Scatterplot
Nodes Methods
Edges -
Scope Full system, subsystem, or single class
Scale Logarithmic

X Coordinate ETI (Number of calls by Foreign)
Y Coordinate ITI (Number of calls by Owner)
Node Color TI (Number of calls)

out using a scatterplot with a logarithmic scale where the X
coordinate represents the number of internal calls and the
Y coordinate represents the number of external calls for the
owner class. The color shade represents of the total number
of calls.

Revealing Symptoms. Below is the list of graphical signs
that this view may contain:

• Nodes close to the top left of the graph represent meth-
ods that were not used during the execution.

• Nodes close to the horizontal axis represent often
called methods by foreign objects. They play the role
of interface in its class.

• Nodes close to the vertical axis represent often called
methods by its owner. They play the role of internal
behavior of its class.

8



Figure 6. The Method Call Origin view.

• Nodes in the middle of the view represent hybrid meth-
ods, called either by their owner or by foreigners.

• Dark nodes and therefore far from the view’s origin
represent very often used methods.

Case Study. The view (see Figure 6) shows that even in
a system written in Smalltalk where methods are all public,
a large number of methods are mainly used internally. In
the case study the methods in the middle cloud are mainly
accessors methods that were used internally and externally
following a coding convention.

Discussion. A scatterplot layout is good to get a feeling
of the distribution of system elements according to two met-
rics. Indeed, in this way two entity characteristics are well
illustrated, even with a huge number of entities. To grasp
the kind of method calls origin of a method, we use this
view to visualize three metrics. The chosen position met-
rics areNumber of Calls by Ownerfor the X coordinate and
Number of Calls by Foreignfor the Y coordinate. The color
reflects theTotal Number of Callsto emphasize this aspect.

5. Discussion

The approach while based on a minimal amount of run-
time information has proven to be successful to provide

insights about application run-time. The presented views
are rich as they have multiple facets revealing different
information about the run-time of an application. More-
over the approach by its reduction of dynamic information
is then applicable to systems that should not be disturbed
and for which generating a trace would lead to extremely
huge amount to data. The approach is also incremental in
the sense that the collected information can be cumulated
which supports the previous point. Finally the views pro-
vide overviews as well as in some cases finer information.

The drawbacks of the approach are its advantages. It
does not support fine-grained run-time information at the
sequence of interaction level such as offered by Jinsight-
like tools [26]. Moreover, the spring layout shows some
limits when applied on densely communicating systems.

6. Related Work

In the past, a great body of research has been conducted
to support the understanding of object-oriented applications
[16] [19] [23]. Among the various approaches to support
understanding of software behavior that have been proposed
in the literature, graphical representations of software exe-
cution have long been accepted as comprehension aids. Var-
ious tools provide quite different software execution visual-
izations.

Murphyet al. have developed, in AVID, an approach that
allows software engineers to specify a high-level model of
a system [29]. The software execution can be visualized
using these models. Their visualization is oriented towards
the liveness of objects and their number. Their work is di-
rected more towards static, architectural models, while our
work is more focused on the visualization of different kinds
of interactions between classes of a software system during
its execution.

Langeet al. with their Program Explorer are focused on
views of classes and objects [19] [18]. The authors have de-
veloped a system for tracking function invocation, object in-
stantiation, and attribute access. The views show class and
instance relationships (usually focused on a particular in-
stance or class), and short method-invocation histories. It is
not intended as a global understanding tool. The users must
know what they are interested in before they start, whereas
our approach is made for covering a whole system.

Jerdinget al. have created their own interaction dia-
grams to visualize the entire software execution [14] [15].
The purpose of their tool ISVis is to be able to visualize all
the method calls between the classes. They can extract and
recognize execution patterns, but its drawback is its lack of
flexibility in the analysis. It has a good scalability for large
numbers of messages, but not for a huge number of classes.
In the latter case the visualization becomes less useful.

De Pauwet al. gave two different approaches. In their

9



tool Jinsight, they are focused on interaction diagrams [26].
This way, all messages between objects can be visualized.
The extraction of execution patterns is also one of its main
purposes. However, with an large execution trace it be-
comes difficult to understand class roles during execution.
Earlier on, De Pauw, with itsclass call clustersandclass
call matrix [24] [25], was closer to our approach. These
visualizations are simple, they have a good scalability, but
they only present a small facet of an object-oriented appli-
cation.

Except the last approach, all of them have in common
that they visualize program executions by applying sophis-
ticated diagrams to keep the whole execution trace. In con-
trast, we extract from the execution trace information which
we then condense in a few metrics to enrich our visualiza-
tions.

7. Conclusion and Future Work

In this paper we presented a new way of presenting run-
time information that is not based on a trace of a system,
but on a minimal and compact information extracted from
its execution. The approach is based on polymetric views,
simple layout algorithms enriched with measurements [22].

The views proposed while been based on simple prin-
ciples and a minimal run-time information still provide rich
insight and multiple facets of the run-time behavior of a sys-
tem.

The advantages of our approach is the fact that it can be
applied to systems for which a trace generation would be
difficult to extract or too big to efficiently analyze such as
webservers or other applications running 24 hours a day.

Our approach can also be plugged dynamically while a
system is running. It is linked to the wrapping technology
we use [1] that allows one to dynamically and safely control
any method but also to the minimal run-time information it
requires.

In the future we plan to extend our current approach in
the following ways:

• Attribute dynamics. Understanding how attributes are
used during the life time of an objects or a class, its use
frequency is an axis we want to explore.

• Object life-time. Objects do not have the same life
time over an execution and it would be interesting to
identify the different kind of objects.

• Test coverage. Understanding and assessing tests
is a problem that with the emergence of test-driven
methodologies is getting more and more crucial. We
plan to apply our approach to understand and estimate
tests and their quality.

References

[1] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[2] E. Casais. Re-engineering object-oriented legacy sys-
tems. Journal of Object-Oriented Programming, 10(8):45–
52, January 1998.

[3] S. Chiba and T. Masuda. Designing an extensible distributed
language with a meta-level architecture. In O. Nierstrasz, ed-
itor, Proceedings ECOOP’93, volume 707 ofLNCS, pages
483–502, Kaiserslautern, Germany, July 1993. Springer-
Verlag.

[4] T. Corbi. Program understanding: Challenge for the 1990s.
IBM Systems Journal, 28(2):294–306, 1989.

[5] A. M. Davis. 201 Principles of Software Development.
McGraw-Hill, 1995.

[6] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program visu-
alization. In F. Balmas, M. Blaha, and S. Rugaber, editors,
Proceedings WCRE’99 (6th Working Conference on Reverse
Engineering). IEEE, Oct. 1999.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[8] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is
not universal. UML shortcomings for coping with round-
trip engineering. In B. Rumpe, editor,Proceedings UML’99
(The Second International Conference on The Unified Mod-
eling Language), volume 1723 ofLNCS, Kaiserslautern,
Germany, Oct. 1999. Springer-Verlag.

[9] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 – the
FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[10] S. Ducasse. Evaluating message passing control techniques
in smalltalk. Journal of Object-Oriented Programming
(JOOP), 12(6):39–44, June 1999.

[11] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an exten-
sible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[12] S. Ducasse, M. Lanza, and S. Tichelaar. The moose reengi-
neering environment.Smalltalk Chronicles, Aug. 2001.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[14] D. Jerding and S. Rugaber. Using Visualization for Archi-
tectural Localization and Extraction. InProceedings WCRE,
pages 56 – 65. IEEE, 1997.

[15] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing Message
Patterns in Object-Oriented Program Executions. Technical
Report GIT-GVU-96-15, Georgia Institute of Technology,
may 1996.

[16] M. F. Kleyn and P. C. Gingrich. Graphtrace – understanding
object-oriented systems using concurrently animated views.
In Proceedings OOPSLA ’88, pages 191–205, Nov. 1988.
Published as Proceedings OOPSLA ’88, ACM SIGPLAN
Notices, volume 23, number 11.

10



[17] G. G. Koni-N’sapu. A scenario based approach for refac-
toring duplicated code in object oriented systems. Diploma
thesis, University of Bern, June 2001.

[18] D. Lange and Y. Nakamura. Program explorer: A program
visualizer for C++. InProceedings of Usenix Conference on
Object-Oriented Technologies, pages 39–54, 1995.

[19] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of OOPSLA’95, pages 342–357. ACM Press,
1995.

[20] M. Lanza. Codecrawler - lessons learned in building a soft-
ware visualization tool. InProceedings of CSMR 2003, page
to be published. IEEE Press, 2003.

[21] M. Lanza. Object-Oriented Reverse Engineering - Coarse-
grained, Fine-grained, and Evolutionary Software Visual-
ization. PhD thesis, University of Bern, 2003.

[22] M. Lanza and S. Ducasse. Polymetric views - a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, page to be published, 2003.

[23] A. Mendelzon and J. Sametinger. Reverse engineering by
visualizing and querying.Software - Concepts and Tools,
16:170–182, 1995.

[24] W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visu-
alizing the behavior of object-oriented systems. InProceed-
ings OOPSLA ’93, pages 326–337, Oct. 1993.

[25] W. D. Pauw, D. Kimelman, and J. Vlissides. Model-
ing object-oriented program execution. In M. Tokoro and
R. Pareschi, editors,Proceedings ECOOP’94, LNCS 821,
pages 163–182, Bologna, Italy, July 1994. Springer-Verlag.

[26] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. InProceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’98), pages 219–234. USENIX, 1998.

[27] T. Richner and S. Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. InPro-
ceedings of ICSM’2002 (International Conference on Soft-
ware Maintenance), Oct. 2002.

[28] I. Sommerville. Software Engineering. Addison Wesley,
sixth edition, 2000.

[29] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. InProceedings
OOPSLA ’98, ACM SIGPLAN, pages 271–283. ACM, Oct.
1998.

[30] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

11


