
1

A Domain-Specific Language For Visualizing
Software Dependencies as a Graph

Alexandre Bergel1, Sergio Maass1, Stéphane Ducasse2, Tudor Girba3
1Pleiad Lab, University of Chile, Chile

2RMoD, INRIA Lille Nord Europe, France
3CompuGroup Medical Schweiz, Switzerland

This paper is illustrated by the video: http://bit.ly/graphBuilder

Abstract—Graphs are commonly used to visually represent soft-
ware dependencies. However, adequately visualizing software
dependencies as a graph is a non-trivial problem due to the
pluridimentional nature of software.

We have designed a domain-specific language for visualizing
software dependencies as graphs that is both expressive and
concise. GRAPH, the implementation of our DSL, features a
seamless mapping between visual dimensions to software metrics,
composition of graph layouts, graph partition, and hierarchical
bundle edges.

I. INTRODUCTION

Graph, composed of nodes and edges, is one of the most
popular visual representations for software dependencies [1],
[3]. Advantages to represent dependencies as a graph are
multiple. First, graphs are structures that are both intuitive
and scalable. Second, graph modeling is well understood with
a strong mathematical background. Numerous algorithms are
available to carry out a wide range of analysis.

The importance of defining and manipulating graphs has
lead to a profusion of languages to describe and specify graphs.
However, it appears that most of these languages are unfit to
cope with the large range of properties software components
have to be visually associated with. Consider Graphviz, a
popular software to visualize graphs1. Graphs are described
in Graphviz using Dot, a domain-specific language that offers
sophisticated constructions to define nodes, their connections
and complex layouts. Consider the following example, an
except from the official manual of Dot to represent a control
flow2:
digraph G {

node [shape=box,style=filled,color=”.5 .5 .5”];
main −> execute;
node [shape=box,style=filled,color=”.2 .2 .2”];
main −> init;
node [shape=box,style=filled,color=”.3 .3 .3”];
main −> cleanup;

}

Each function is represented with a colored box. The shape
of a node may be explicitly defined, as illustrated above,
in case it has to be shaded using a particular color. Dot
suffers from a gap between what is represented and how it

1http://www.graphviz.org
2http://www.graphviz.org/pdf/dotguide.pdf

is represented. The connection between the graph (i.e., the
produced visualization) and the represented code (i.e., the
method main, execute) is not explicit in the Dot program:
the code given above draws lines between colored labeled
nodes whereas a practitioner wishes to visualize dependencies
and metrics between methods. This gap has several serious
consequences, including (i) verbose script containing duplicated
code and (ii) jumping in both directions from the visualization
to the code is costly in terms of manual human actions. Not
properly addressing the gap between the visualization and the
code inevitably leads to long and repetitive program description.

The research question investigated by this paper is the
following: What is the minimal set of domain-specific
linguistic constructs to efficiently visualize dependencies of a
software as a graph?

We propose GRAPH, a domain specific language to visualize
software dependencies as a graph. Produced visualizations aim
to assist software (re)engineers to carry out maintenance or
comprehension analysis.

The key difference between GRAPH and traditional graph-
description languages is the relation between visual elements
and dimensions and the application to visualize. To visualize
a software with Dot, one has to define a box with a label and
numerical values to define its size and color. With GRAPH, one
has to associate colors and size to software metrics and provide
classes and methods as input. As a result, scripts written with
GRAPH are short, concise and efficient.

This paper describes GRAPH and discusses the design
decisions we have made. Our paper is organized as follows:
Section II gives an example of a non-trivial program written in
GRAPH. Section III presents the program structure supported
by GRAPH. Section IV concludes and outlines our future work.

II. EXAMPLES OF GRAPH USAGE

Roassal3 is the visualization engine used by the implemen-
tation of the domain-specific language described above. As a
running example to exhibit the characteristics of Graph, we
use the code of Roassal itself. The visualization identifies
dependencies toward Trachel, a low-level vectorial engine
which is a subcomponent of Roassal. Roassal is composed of

3http://objectprofile.com/Roassal.html

http://bit.ly/graphBuilder
http://www.graphviz.org
http://www.graphviz.org/pdf/dotguide.pdf
http://objectprofile.com/Roassal.html

2

over 200 classes to implement shapes, layout, and many other
things.

Fig. 1. Visualization of a software system

Figure 1 is a visualization of the Roassal application source
code. This visualization shows the dependencies between
classes as mapped on the class hierarchy. This visualization
exhibits two typical requirements. First, it shows how more
than one kind of relationships need to be visualized while still
presenting an understandable structure. Second, it shows how
to distinguish between structural relevant parts based on some
heuristic (in this case, coloring nodes based on a convention).

Each circle is a class. The size of the class indicates
the number of methods defined in the class. Gray lines
indicate inheritance links. Colors indicate main components of
Roassal: purple indicates Trachel, a low-level vectorial engine;
green indicates visual shapes; yellow indicates graph layout
algorithms. Classes that belong to other components are gray.

Blue lines indicate dependencies between Roassal’s classes
toward Trachel. Lines follow the class hierarchy, in which each
control point is a superclass. Following a relevant hierarchical
structure is effective at reducing edge cluttering [2]. Edges have
a transparency ratio of 0.2 to indicate dependency accumulation.

Figure 1 is produced by the following code:
1 b := RTGraphBuilder new.
2 b nodes if: [:c | c inheritsFrom: RTShape]; color: Color green.
3 b nodes if: [:c | c inheritsFrom: RTLayout]; color: Color yellow.
4 b nodes if: [:c | 'TR*' match: c name]; color: Color purple.
5 b nodes color: Color gray.
6

7 b edges
8 connectTo: #subclasses;
9 useInLayout.

10

11 b edges
12 connectTo: #dependentClasses;
13 follow: #superclass;

14 if: [:from :to | ('RT*' match: from name) and: ['TR*' match: to name]];
15 color: (Color blue alpha: 0.2).
16

17 b layout cluster.
18

19 b global normalizeSize: #numberOfMethods min: 5 max: 60.
20

21 b addAll: RTObject withAllSubclasses.
22 b addAll: TRObject withAllSubclasses.
23 b addAll: TREvent withAllSubclasses.
24 b open

The GRAPH language is an internal DSL or a fluent API
built in Pharo. We therefore briefly summarize the Pharo syntax.
Readers unfamiliar with the syntax of Pharo might want to
read the code examples aloud and interpret them as normal
sentences: An invocation to a method named method:with:

, using two arguments looks like: receiver method: arg1

with: arg2. Other syntactic elements of Pharo are: the dot
to separate statements: statement1. statement2, and square
brackets to denote code blocks or anonymous functions: [

statements].
Line 1 creates an instance of the class RTGraphBuilder and

assigns it to the variable b. Line 2 is a node declaration to
fill in the classes in green that inherit from the class RTShape.
Line 3 colors all subclasses of a layout class in yellow. Line
4 colors all Trachel purple. A Trachel class begins with the
two character TR. Line 5 defines the default color for nodes
not previously matched. Lines 7 - 9 define a group of edges
representing the superclass relation between classes. These
edges are used for the layout – specified later on Line 17.
Lines 11 - 15 visualize dependencies starting from Roassal
(i.e., classes with a name beginning with 'RT') and to Trachel.
Edges follow the superclass relation between classes (Line 13).
Line 19 defines a global production rule: each class has a size
representing its number of methods. The class with the lowest
number of methods is 5 pixels wide. The largest class is 60
pixels wide. Lines 21 - 23 feed the program with the classes
to analyze. Line 24 renders the visualization.

III. PROGRAM STRUCTURE

This section describes and illustrates the domain-specific
language (DSL) we have conceived. We illustrate our point by
using GRAPH, the implementation of our DSL made in the
Pharo programming language4. A program P in GRAPH is
composed of 5 distinct parts: P = N E L G I. Where N = node
production rules, E = edges production rules, L = layout rules,
G = global rules, I = input. The interpretation of the program
occurs at each elementary feed using the keyword addAll:.

The input corresponds to a model of a software system
to be visualized. GRAPH is not tied to a particular code
model: this papers uses the Pharo code model and we regularly
use GRAPH with FAMIX models[6]. A code model typically
describes (i) software structural entities, such as packages,
classes, and methods, (ii) software metrics, and (iii) navigation
functions. This papers uses the #numberOfMethods metric and
the #dependentClasses and #superclass navigation func-
tions.

4http://www.pharo.org

http://www.pharo.org

3

Each part of a program may be composed of zero, one
or more production rules. In our example, the node part is
composed of four production rules and the edge part composed
of two production rules. A rule assigns a visual attribute to
a semantically related group of elements. For examples, all
classes inheriting from RTShape are in green. Each rule may
be accompanied with a condition that scopes the effect of the
production rule.

A. Nodes

A node represents a software element that represents a
particular entity of the software system. Most of the time
a node represents a structural element of the analyzed software,
a package, a class, or a method. GRAPH supports alternative
code models, which is key to have a reusable DSL.

Nodes are defined using the keyword nodes. A number of
keywords may be employed to define the visual representation
of a node and interactive actions the user may trigger. Two
shapes are available rectangle and ellipse. Color, size,
height and width may be set. Each node may be labeled.

Visual shape. Shapes for nodes and edges reflect properties
and metric values. A node is typically shaped as a rectangle
or a circle. Edges are typically straight lines, bezier curves
– possibly – arrowed. Instead of providing direct numerical
values to boxes and lines, GRAPH allows metric functions to be
used in place of numerical values. Metrics are then computed
against elements between the software entity represented by
the node or the edge.

Each node is associated with a model element given as
input of the program. Visual parameters of a node may reflect
numerical value or metrics computed on the model element.

Scoping. Being able to carefully select nodes and edges
that matter for a particular software analysis task is crucial.
Scalability of the visualization, especially when dealing with
software dependencies, is a major obstacle. Being able to
precisely define the scope of an analysis is crucial.

The scope of node production rule may be set using the if:

keyword. This keyword takes a block function as argument to
indicate whether or not the model element has to be considered
by the production rule. In the example given in Section II, each
colored node has a particular scope, subclasses of RTShape or
RTLayout, or classes named after TR*.

B. Edges

An edge represents a directed relationship between two
nodes, typically representing a dependency between two
software entities. Dependencies in an object-oriented language
may be diverse. For example, a class B may depend on another
class A by being a subclass, using A’s methods, or simply
having duplicated source code duplication.

The edges production rule links nodes to each other. A
proper visual aspect of an edge is driven by many different
parameters. This section describes the linguistic constructs for
edges.

Connecting. The two edge extremities are specified using the
connectFrom: and connectTo: keywords. For each element,
the starting point of an edge is given by connectFrom: and
the ending point by connectTo:. These two keywords accepts
a function as argument that returns some software entities.

b nodes color: Color gray.
b edges

connectFrom: #superclass;
useInLayout.

b layout tree.
b addAll: (RTShape withAllSubclasses).

In the example above, nodes are classes, subclasses of
RTShape. Each node is connected to its superclass. The
expression [:cls | cls superclass] is applied to each node,
which designates the superclass node. The example shows the
shorthand #superclass. Note that the instruction connectFrom:

#superclass, which connects each class to its superclass, has
the same visual effect as connectTo: #subclasses, which
connects each class to its subclasses.

Directed line. The direction of an edge is typically indicated
with an arrow. Dedicated keywords are available for classical
direction indicator (diamond, arrow, arrowHead). In addition,
our DSL offers the possibility to have curved lines to indicate
edge orientation. The following example indicates dependencies
between shapes of Roassal:

A B

A depends on B,
and B depends on A

B depends on A

A depends on B

Fig. 2. Directed line.

b nodes color: Color gray.
b edges directed; connectTo: #dependentClasses; useInLayout.
b global

normalizeSize: #numberOfMethods min: 5 max: 40 using: #ln.
b layout horizontal.
b addAll: (RTShape withAllSubclasses).

Classes are in gray and horizontally lined up. The size of
each class indicates its number of methods. A line indicates de-
pendencies between classes. The keyword #dependentClasses,
when sent to a class c returns the list of classes ci that depend
on c (e.g., ci may be a subclass of c, at least one of ci’s method
reference to c). The lines indicates that many classes depend
on the right-most class.

Follow. Lines may follow a path of controlling elements to
form a bundle. The follow: keywords specify the path for
both the starting and ending points. Assuming the following:

• es and ee are the starting and ending elements, respectively
• f the function provided to the follow: keyword

4

The control elements are formed up to the common ancestor
element (if any) from the starting and ending point. Consider
the following example:

b nodes if: [:c | '*Line*' match: c name]; color: Color red.
b nodes color: Color gray.

b edges
follow: #superclass;
connectTo: #dependentClasses;
color: (Color blue alpha: 0.2).

b edges connectFrom: #superclass; useInLayout.
b layout tree.
b addAll: TRShape withAllSubclasses, RTShape withAllSubclasses.

Fig. 3. Bezier following a given path.

Figure 3 shows two class hierarchies, Trachel and Roassal. A
superclass is above its subclasses, and inheritance is indicated
with gray lines. A class is colored in red if it contains the
word “Line” in its name. Blue lines indicate dependencies and
follow the class inheritance links.

C. Layout

Nodes have to be properly spatially located to communicate
a particular situation. A large number of layouts exists, for
which some of them are driven by edges.

GRAPH supports a number of well-known layouts5. However,
it often happens that complex visualizations require more than
a “simple” layout to visualize graphs. It has been shown that
implementing a complex layout is a difficult programming
activity [3]. The layout production rule partially addresses
this problem by featuring two properties:

• Partitioning – A particular layout may be applied to a
graph subset. Partitioning is useful when the graph is
too large to be efficiently laid out or when the graph is
composed of semantically distinct clusters.

• Composition – A succession of layouts may be applied
to achieve a particular space distribution.

The following example illustrates the graph partitioning and
layout composition mechanisms:

b nodes
color: Color gray;
if: [:c | c inheritsFrom: RTShape] color: Color blue;
if: [:c | c name endsWith: 'Builder'] color: Color red.

b edges
connectTo: #dependentClasses;
color: (Color gray alpha: 0.1);
if: [:f :t | f inheritsFrom: RTLayout] color: (Color green alpha: 0.2).

b layout

5force, flow, circle, grid, cluster, vertical, horizontal,
tree, sugiyama, translateBy:, pushAway:

Fig. 4. Visualization of a software system

partition: [:c | c inheritsFrom: RTLayout];
partition: [:c | c inheritsFrom: RTShape];
partition: [:c | c inheritsFrom: RTInteraction];
partition: [:c | c inheritsFrom: RTBuilder];
partition: [:c | '*Example*' match: c name];
force.

b layout circle radius: 250.

b global
alphaColor: 0.4;
normalizeSize: [:c | c dependentClasses size] min: 5 max: 30 using:

#sqrt.
b addAll: (RTObject withAllSubclasses).

The script contains two layout rules, indicated in bold. The
first layout rule partitions nodes of the graph into 5 semantically
different sets. Classes not matching any partition: instruction
are all located at the same point, center of the visualization. A
force-based layout is applied on each defined partition. The
second layout rule uses a circle layout to locate the partitions.

Result of the script is given in Figure 4. Each circle is a
class and its size reflects the amount of methods defined in
the class. Shape classes are blue and builder classes are red.
Edges starting from a layout class are in green.

D. Global rules

Global rules may be set to either avoid code duplications
between production rules or to perform color or size normal-
ization.

Global rule. Size and colors of nodes may be globally set:
alphaColor: set transparency of all nodes and expect a value
between 0.0 and 1.0; minSize: and maxSize: set the minimum
and maximum node pixel size, respectively. This is relevant in
the case that elements are extraordinary small or large, as it
often happens with software metrics [4].

5

Fig. 5. Use of normalization and force layout

Algorithms may be globally applied, for example:
colorCycles and colorBranches color nodes that are in cycles
and accessible from a particular branch, respectively. This is
useful to understand the ramification of depending elements.

Normalization. Nodes may be compared to each other by
their shape and color. The global rule provides two composed
keywords:

• normalizeSize: metricBlock min: minValue max:

maxValue using: transformation normalizes the size
of nodes. Each node has a size ranging from minValue

to maxValue. The size is computed using the function
metricBlock on each object model. As it often happens,
values may have to be transformed to be meaningfully
compared, using the function transformation.

• normalizeColor: metricBlock using: colors using:

transformation assign a range of colors to nodes. The
colors value is an array of colors, for which the the
function metricBlock determines which colors have to be
picked for a node. The first color of colors is assigned
to the node with the lowest value of metricBlock. The
last color in colors is assigned to the node with the
highest value.

The argument metricBlock takes as argument a node and
returns a numerical value. It is known that software system
often follow power laws [4]. As a consequence, metric values
often have to be projected to better exhibit differences. The
transformation field is a simple transformation function.
Typically a logarithm or square root. Illustrated. Figure 5 is
the result of:

b edges connectTo: #dependentClasses; useInLayout.
b layout force charge: −80.

b global
minSize: 15;
normalizeSize: [:c | c dependentClasses size]

min: 5 max: 25 using: #log;
normalizeColor: [:c | c dependentClasses size]

using: { Color green . Color red } using: #log;
alphaColor: 0.4.

b addAll: RTObject withAllSubclasses, TRObject withAllSubclasses.

The size and color of a class indicates its amount of
dependent classes. The class with the smallest number of
dependencies is green and 5-pixels wide. The class with the
most dependencies is red and 25-pixels wide. Other classes
have their metric value projected with the logarithm function.

IV. CONCLUSION & FUTURE WORK

GRAPH is a specialized language to render graphs. This paper
summarizes and illustrates the main features of the language.
Non trivial examples have also been given. One of the key
aspects of GRAPH is to provide a small and consistent language
to seamlessly map software code into a partitioned graph. Such
features is non-trivial to obtain when considering other domain-
specific languages, such as Dot and Mondrian [5]. Produced
visualization may be seen either in the Pharo window or in a
web browser.

GRAPH is part of Roassal, it self a component of the
Moose data and software analysis platform6. GRAPH has been
used in a number of software analysis projects. We have
realized that some key aspects are still missing to adequately
carry out analyses using a sophisticated visualization. For
example, visualization have often to be composed with, for
example, a charting library. This means that a program written
in GRAPH has to be embedded within another language.
Interaction is here a key aspect to consider: elements between
different visualizations have to be related and events adequately
propagated. Currently no support is offered for such scenarios.
Our future effort will focus on this.

GRAPH is developed in Pharo, and is available under the
MIT License.

Acknowledgment. We are grateful to Renato Cerro for his feedback
on an early draft.

REFERENCES

[1] R. Falke, R. Klein, R. Koschke, and J. Quante. The dominance tree in
visualizing software dependencies. Proceedings of VISSOFT 2005.

[2] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. Visualization and Computer Graphics, IEEE
Transactions on, 12(5):741–748, September 2006.

[3] Rainer Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software
Maintenance and Evolution: Research and Practice, 15(2):87–109, 2003.

[4] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power
laws in software. ACM Trans. Softw. Eng. Methodol., 18(1):2:1–2:26,
October 2008.

[5] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile
visualization framework. Proceedings of SoftVis 2006)

[6] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz.
A meta-model for language-independent refactoring. In Proceedings of
International Symposium on Principles of Software Evolution (ISPSE ’00)

6http://moosetechnology.org

http://moosetechnology.org

	Introduction
	Examples of Graph usage
	Program structure
	Nodes
	Edges
	Layout
	Global rules

	Conclusion & Future Work
	References

