
SQUALE – Software QUALity Enhancement

Alexandre Bergel1 , Simon Denier1, Stéphane Ducasse1, Jannik Laval1,
Fabrice Bellingard2, Philippe Vaillergues2, Françoise Balmas3,

Karine Mordal-Manet3
1 RMoD Team, INRIA, Lille, France

2 Qualixo, Paris, France
3 Labo IA, University of Paris 8, France

http://www.squale.org

The Squale project was born from industrial effort to
control software quality. Its goals are to refine and en-
hance Qualixo Model, a software-metric based quality
model already used by large companies in France (Air
France-KLM, PSA Peugeot-Citroën) and to support the
estimation of return on investment produced by software
quality. Qualixo Model is a software quality model based
on the aggregation of software metrics into higher level
indicators called practices, criterias and factors. The co-
ordination of Squale is carried out by Qualixo1.

1 Funding and Global Effort

Squale stands for Software QUALity Enhancement. It
is a national project, supported and labeled by the "Sys-
tematic - PARIS Region" competitive Cluster, and par-
tially funded by Paris region and the DGE (“Direction
Générale des Entreprises”) in the context of the French
Inter-ministerial R&D project 2006 - 2008 (“Projet R&D
du Fonds Unique Interministériel”). The total cost of the
project is 3.1 million Euros for a two year duration. The
project started administratively in June 2008, and con-
cretely in September 2008. The total effort on the project
is about 25 person-years.

1http://www.qualixo.com

2 Project Goals
Over the last decade, the need for quality in software
has increased. Several quality models have been pro-
posed [1, 7, 8, 4, 5, 3]. These models emphasize the need
to have quality checks while developing a software pro-
gram. As far as we are aware of, no model to assess qual-
ity of existing software programs have reached a signif-
icant acceptance. The project stems from the experience
gained by the SME Qualixo with the assessment of soft-
ware quality for PSA, Air France-KLM and other large
companies. The main goals of Squale are to evaluate and
enhance the existing software quality approach in the fol-
lowing areas:

• evaluate and enhance the current software-metric
quality model, including current practices and cur-
rent metrics,

• define dashboards related to software quality,

• enabe assessment evolution of software quality,

• provide economical indicators to assess added value
(ROI) of software quality measurements, and

• disseminate acquired knowledge through an open-
source platform supporting the model and a commu-
nity of users.

Finally the Squale project aims at building an anony-
mous centralized database where audit results will be
stored in order to:



• offer the possibility - for Squale users - to compare
their audits to other anonymous results,

• provide scientific partners and Qualixo with a large
amount of data that can be used to evaluate their
work on quality models.

3 Detailed Description
Software quality measurement is the key to software qual-
ity improvement. New trends in software development –
outsourcing, merge of information systems, maintenance
of “new” legacy systems in Java/C++ as well as a general
awareness of the high costs of maintenance– have rein-
forced the need for software quality measurement. How-
ever, quality measurement is still not applied in a system-
atic way because of the following factors: it lacks stan-
dardization, it is difficult to represent into business terms
and added values, and lacks proof of its profitability.

Most analysis tools provide low-level software met-
rics, which are difficult to understand for non-technical
people. Software metrics target methods, classes, or
packages of a software. Such metrics are syntax-driven
(style checking), structural (cyclomatic complexity, etc.),
object-oriented (depth of inheritance, etc.), architectural
(layered model), model-based (coupling, etc.), test-driven
(code coverage, etc.), or generic (performance, security,
etc.).

In the Qualixo model, metrics are combined to com-
pute marks for practice between 0 and 3. Practices are
then combined to quantify - for the whole or parts of soft-
ware, quality criterias and in turn quality factors such as
maintainability, evolutivity, or reusability. Squale aims at
reporting quality on specific dashboards and views, each
tailored for a specific user: programmer, project manager,
maintenance manager, sale manager, team leader, quality
specialist. Software quality has to be monitored through-
out the software life-cycle, in order to measure and follow
progression or deterioration of quality.

The technical-economical aspect of the project targets
the assessment of refactoring costs as well as the benefits
of a quality-driven approach. First a technical-economical
model should provide a cost for creation and modifica-
tion of components based on software metrics. Then the
cost of refactoring can be predicted following a quality

diagnosis. Second the Squale project aims at computing
the profits of a quality-driven approach, i.e., the costs of
non-quality. The goal is to assess the benefits of quality
measurement and also to find its limits.

The main deliverables of the Squale project will be:

• an improved quality model (based on 4 levels: raw
metrics, practices, criterias and factors),

• a technical-economical model (aiming at computing
an estimated return of investment for quality efforts),

• a software (Squale application) that implements
those models and provides a high featured UI,

• a centralized database gathering anonymous audit re-
sults from voluntary users,

• all of this widely spread under an OSI/FSF approved
license, and supported by an active community.

One of the innovations of Squale lays in assessing eco-
nomical factors (including the ROI) based on software
quality. This is a perspective that differs from what is pro-
moted by COCOMO, a model for estimating effort, cost,
and schedule for software projects. COCOMO consists
of a hierarchy of three increasingly detailed and accurate
form. Assessment made by COCOMO depends on the
number of lines of code and the estimated complexity of
the system to build. Squale will rather use the intrinsic
software quality to build its prediction.

In its early stage, Squale will target applications writ-
ten in the Java and C++ programming languages. How-
ever, the model and the tool will be adaptable to other lan-
guages (e.g. Cobol, ABAP, etc.) through the development
of connectors to specific tools and the parameterization of
the practice-metric model. The goal is to provide homo-
geneous dashboards for any software pool.

We identified two crucial points that may constitute a
risk from making Squale a success:

• Expressing the notion of quality without relying on
discrete measurements (a typical example is cutting
a long and complex function into three shorter but
complex sub-functions should not increase the over-
all quality).



Figure 1: Structure of the Squale Project

• The huge amount of data that will have to be ana-
lyzed will probably raise some scalability issues, not
only from the hardware, but also on the high level
view being extracted.

4 Project Participants
The project is structured around three kinds of partners:
two scientific partners (INRIA and LIASD), two SMEs
experts in software analysis and development, two large
companies (PSA and Air France-KLM). Figure 1 de-
scribes the interactions between the participants which are
detailed below.

Here is the list of the participants and the main actors.

• RMoD Team of INRIA Lille Nord-Europe: Alexan-
dre Bergel, Simon Denier, Stéphane Ducasse, Jannik
Laval.

• LIASD University Paris 8: Françoise Balmas,
Karine Mordal-Manet, Harald Wertz.

• Air France-KLM DSI: Arnaud Poivre and Laurent
Bouhier. Air France-KLM was a co-developer of the
Qualixo quality model during the last two years.

• PSA Peugeot Citroën: Thierry Bey. PSA is one of
the early adopters of the Qualixo model.

• Qualixo: Fabrice Bellingard, Philippe Vaillergues
and Florent Zara. Qualixo is the lead of the Squale
project.

• Paqtigo: Amin Popote and Hervé Crespel.

Squale is coordinated by Qualixo. The research activ-
ity is essentially led by the academic partners (LIASD
and RMoD), whereas the realization and evaluation of
the produced approaches will mainly be conducted by
Air France-KLM DSI, PSA Peugeot Citroën, Qualixo and
Paqtigo.

5 Achievements and Work in
Progress

According to Marinescu and Ratiu [7], the Qualixo model
may be classified as a Factor-Criteria-Metrics quality
model. Such a model is structured in a tree-like man-
ner. The upper branches hold important high-level quality
factors of software products. Each quality factor is com-
posed of lower-level criteria, such as modularity and data
commonality. The criteria are easier to understand and
measure than the factors; thus, actual measures (metrics)
are proposed for the criteria.

This model is being applied in large companies such as
Air France-KLM and PSA. It uses measurements to assess
software quality. These measurements cover a number
of different aspects of a software, including specification
accuracy, programming rules, and test coverage.

While the project is still young, several promising
works are on progress.

• Squale - the platform implementing the Qualixo
Model - will be released officially as open-source
software early 2009. A major effort to document and
clean it is taking place.

• The Qualixo model has been originally implemented
on top of the Java platform. An implementation of
this model, named MoQam (Moose Quality Assess-
ment Model), is under development in the Moose
open-source and free reengineering environment.
The objective is to make the Qualixo model benefit
from the various tools available on Moose (includ-
ing the visualization engine). A first experiment has



been conducted [6]. Exporters from Moose to the
Squale software are under development.

• We are assessing the metrics and practices used orig-
inally in the Qualixo model. We are also compiling a
number of metrics for cohesion and coupling assess-
ment. We want to assess for each of these metrics
their relevance in a software quality setting.

• Dependency Structure Matrix (DSM), developed in
the context of process optimization, is a visual ap-
proach which has been successfully applied to iden-
tify software dependencies among packages and sub-
systems. A number of algorithms help organizing
the matrix in a form that reflects the architecture and
highlights patterns and problematic dependencies
between subsystems. We aim at using this matrix
visualization to assess the complexity of a system
and to select subsystems for quality improvment.
We distinguish independent cycles and stress cycles
using coloring information.This work has been im-
plemented on top of the Moose open-source reengi-
neering environment and the Mondrian visualization
framework. It has been applied to non-trivial case
studies such as the Morphic UI framework available
in open-source Smalltalk Squeak and Pharo. Results
have been implemented in the Pharo programming
environment. A first experiment has already been
conducted [2].

Qualixo is playing an important role in Software Qual-
ity and they are active in organizing regular workshops on
this theme. Building a community around software qual-
ity is one of the major goal of Squale.

References
[1] Jagdish Bansiya and Carl Davis. A hierarchical model

for object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 28(1):4–17,
January 2002.

[2] Alexandre Bergel, Stéphane Ducasse, Jannik Laval,
and Romain Peirs. Enhanced dependency structure
matrix for Moose. In FAMOOSr, 2nd Workshop on
FAMIX and Moose in Reengineering, 2008.

[3] Tom Gilb. Competitive Engineering: A Handbook
For Systems Engineering, Requirements Engineer-
ing, and Software Engineering Using Planguage.
Butterworth-Heinemann, Newton, MA, USA, 2005.

[4] Robert L. Glass. Building Quality Software. Prentice-
Hall, 1997.

[5] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin
Chung. Measuring software product quality: A sur-
vey of ISO/IEC 9126. IEEE Softw., 21(5):88–92,
2004.

[6] Jannik Laval, Alexandre Bergel, and Stéphane
Ducasse. Assessing the quality of your software with
MoQam. In FAMOOSr, 2nd Workshop on FAMIX and
Moose in Reengineering, 2008.

[7] Radu Marinescu and Daniel Raţiu. Quantifying the
quality of object-oriented design: the factor-strategy
model. In Proceedings 11th Working Conference
on Reverse Engineering (WCRE’04), pages 192–201,
Los Alamitos CA, 2004. IEEE Computer Society
Press.

[8] Diomidis Spinellis. Code Reading The Open Source
Perspective. Addison-Wesley, 2003.


