
Creating Sophisticated Development Tools

with OmniBrowser ?

Alexandre Bergel a Stéphane Ducasse b Colin Putney c

Roel Wuyts d

aLERO & DSG, Trinity College Dublin, Ireland
bLISTIC – University of Savoie, France & University of Bern, Switzerland

cWiresong
dIMEC, Belgium & professor at Université Libre de Bruxelles, Belgium

Abstract

Smalltalk is not only an object-oriented programming language; it is also known
for its extensive integrated development environment supporting interactive and
dynamic programming. While the default tools are adequate for browsing the code
and developing applications, it is often cumbersome to extend the environment to
support new language constructs or to build additional tools supporting new ways of
navigating and presenting source code. In this paper, we present the OmniBrowser,
a browser framework that supports the definition of browsers based on an explicit
metamodel. With OmniBrowser a domain model is described in a graph and the
navigation in this graph is specified in its associated metagraph. We present how new
browsers are built from predefined parts and how new tools are easily described. The
browser framework is implemented in the Squeak Smalltalk environment. This paper
shows several concrete instantiations of the framework: a remake of the ubiquitous
Smalltalk System Browser, a coverage browser, the Duo Browser and the Dynamic
Protocols browser.

? We gratefully acknowledge the financial support of the french ANR project “Cook:
Réarchitecturisation des applications industrielles objets” (JC05 42872) and of Sci-
ence Foundation Ireland and Lero — the Irish Software Engineering Research Cen-
tre.

Email addresses: Alexandre.Bergel@cs.tcd.ie (Alexandre Bergel),
stephane.ducasse@univ-savoie.fr (Stéphane Ducasse), cputney@wiresong.ca
(Colin Putney), Roel.Wuyts@imec.be (Roel Wuyts).

Preprint submitted to Elsevier Science 14 December 2006

1 Introduction

Smalltalk is an object-oriented language featuring a complete development
environment supporting interactive and dynamic programming [GR83,Gol84].
While the default environment already supports advanced ways of navigating
source code and fluid development since the eighties, new browsers have been
developed over the years, such as the Refactoring Browser [FBB+99,RBJO96]
[RBJ97] which was the first system browser supporting refactoring, the Clas-
sification Browser [Hon98] and the StarBrowser [WD04] that support smart
grouping of objects, a browser for incremental development supporting visual
feedback of undefined methods [SB04] or the Whiskers browser that shows
multiple methods at the same time maximizing the screen space. StrongTalk
[BG93], a more exotic Smalltalk version featuring optional typing, offers a
glyph based browsing environment.

The problem when building all of these browsers is that they are always re-
built from scratch because there hardly exists any domain models or frame-
works for building such development tools. In fact, the current browsers in
most Smalltalk environments are hard to extend for two reasons: (a) they are
monolythic applications that are not really meant to be embedded elsewhere,
and (b) the navigation and interaction of the end-user with the browsers is typ-
ically hardcoded in the browser UI elements, and is therefore hard to change
or extend.

Note that some Smalltalk environments allow one to embed applications within
each-other. VisualWorks for example has a notion of subcanvases which can
be used to that end. This helps to reduce the problem (a) in the previous
paragraph, but not problem (b) of the hardcoding of the the navigation and
interaction in the browser UI elements. Other browsers (Eclipse, for exam-
ple) are designed with a certain amount of customizability in mind, and are
therefore easier to extend, but even those lack explicit descriptions of the
navigation.

As was already reported by Steyaert et al. [SLMD96], we conclude that current
visual application builders and application frameworks do not live up to their
expectations of rapid application development or non-programming-expert ap-
plication development. They fall short when compared to component-oriented
development environments in which applications are built with components
that have a strong affinity with the problem domain (i.e., being domain-
specific).

In this paper we present OmniBrowser, a framework to define and compose
new browsers : graphical list-oriented tools to navigate and edit elements from
an arbitrary domain. In the OmniBrowser framework, a browser is described

2

by a domain model that specifies the domain elements that can be navigated
and edited, and a metagraph that specifies the navigation between these do-
main elements. Nodes in the metagraph describe states the browser is in, while
edges express navigation possibilities between those states. The OmniBrowser
framework then dynamically composes widgets such as list menus and text
panes to build an interactive browser that follows the navigation described in
the metagraph.

The contributions of this article are: (i) the description of a meta-driven frame-
work to build browsers, (ii) the application of the framework to build three
browsers and (iii) using navigation history to deduce dynamic information.
The article is an extension of [BDPW06], refining the description of the Om-
niBrowser framework to be clearer and presenting more examples of browsers
that use the OmniBrowser framework.

In Section 2 we describe difficulties and challenges to define states and flow
between those states for a graphical user interface. In Section 3 we present
the key entities of the OmniBrowser framework. In Section 4 we present the
OmniBrowser-based system browser and in Section 5 we give a first illustration
with the coverage code browser. Section 6 shows how multiple views on a
same domain can be modeled with the Duo Browser, Section 7 illustrates
rendering of dynamic informations. In Section 8 we discuss about properties
of the OmniBrowser framework. In Section 9 we provide an overview of related
work. In Section 10 we conclude by summarizing the presented work.

2 Defining and Maintaining the State of a Graphical User Interface

In this section we enumerate some of the problems encountered when building
complex tools such as an advanced code editor.

The graphical user interface (GUI) of an application is constructed from in-
dividual widgets, such as lists, text panes or buttons. Users interact with the
widgets (such as selecting list elements or by pressing buttons) to navigate, in-
spect or edit domain elements. When the GUI application is in a certain state
(for example, showing a list of employees, with one employee selected), the
user can do several things, such as deselecting the person, selecting anoother
person, editing the name of address of the person shown, add a new person,
remove a person, etc. As a result of this interaction the browser will be in a
new state, and the user can continue interacting.

Note that depending on the state of the browser the user is able to do a
certain number of things, while other ones will not be possible. For example,
a list element can only be deselected when there is a selection in the first

3

place. Given the potential high number of different states of a GUI, validating
what actions are allowed in what state is a challenging task. Let’s illustrate
this problem with the Smalltalk system browser, a graphical tool to edit and
navigate into Smalltalk source code.

A B C D

E

F

Fig. 1. The traditional Smalltalk System Browser roughly depicted.

Figure 1 depicts the different widgets of a traditional Smalltalk class system
browser (see Figure 7 for a real picture). Without entering into details, A, B, C
and D are lists that show class categories (groups of classes), classes, method
protocols (groups of methods) and methods. E is a radio button composed of
three choices and F is a text pane.

Pane A lists the categories in the system. Selecting a category in this list,
makes the classes in that category appear in pane B. Selecting a class results
in the protocols for that class being shown in pane C, and selecting a protocol
lists the method names in pane D. Switch E controls whether the class or the
metaclass is being edited, and therefore whether the protocols and methods
shown are instance level or class level methods. Pane F is a text pane that gives
feedback on whatever is selected in the top panes, always displaying the most
specific information possible. For example, when a user has selected a method
in a protocol in a class in a certain category, pane F shows the definition of
that method (and not the definition of the class of that method).

The description of how the browser works shows a number of navigation in-
variants that need to be kept when implementing the browser. For example,
the selections goes from left to right: it is not possible to have methods listed
in pane E with pane D being empty.

Invariants such as the one given above need to be implemented and checked
when building a browser. So we are dealing with writing an application that
deals with a potentially very big number of states in which only certain transi-
tions between states are allowed (the ones that correspond to navigations the
user of the browser is allowed to do). Whenever a user clicks on widgets that
make up the GUI of the browser, the state of one or more widgets is changed,
and possibly new navigation possibilities are opened up (being able to select
a method name, for example) while other ones will no longer be possible (not
being able to select a method name when no protocol is selected). To deal
with the fact that a widget can be in an inconsistent state, developers often
rely on guards: the method performing an action in reaction of a user action

4

always has to check whether the state is actually correct or not nil.

In addition the state management is often spread over UI elements. This leads
to code with complex logic (and often bugs). It makes tool elements difficult
to extend and reuse in different contexts.

The problem when building a browser is in representing the mapping from the
intended navigation model to the domain model and widgets. Even though
graphical framework like MVC [Ree79,Ree] and Coral [SM88] offer ways to
modularize the model and the graphical user interface, they do not provide
means (i) to preserve consistency of the interface by restricting unexpected
state transition to happen and (ii) to keep the widgets synchronized with each
other [KP88].

In the next section, we describe a new framework to design browsers where
the domain model is distinct from the navigation space. This latter being
described by a metagraph. The state of a browser is defined by a path in this
metagraph.

3 Defining a Browser: a Graph and a Metagraph

The domain of the OmniBrowser framework is browsers, applications with a
graphical user interface that are used to navigate a graph of domain elements.
When instantiating the OmniBrowser framework to create a browser for a
particular domain, the domain elements need to be specified, as well as the
desired navigation paths between them.

The OmniBrowser framework is structured around (i) an explicit domain
model and (ii) a metagraph, a state machine, that specifies the navigation
in and interaction with the domain model. The user interface is constructed
by the framework, and uses a layout similar to the Smalltalk System Browser,
with two horizontal parts. The top part is a column-based section where the
navigation is done. The bottom half is a text pane.

Section 3.1 explains the major classes that make up the OmniBrowser frame-
work. Section 3.2 shows a concrete instantiation to build a file browser. Sec-
tion 3.3 goes in some more detail and describes the core behavior of the frame-
work. Section 3.4 explains how the widgets are glued together.

5

3.1 Overview of the OmniBrowser framework

The major classes that make up the OmniBrowser framework are presented
in Figure 2, and explained briefly in the rest of this section.

actionsForNode:
actionsForParent:

Actor

name
text
definition

Node

dispatcher
panels

Browser

childAt:put:
addActor:
displaySelector:

displaySelector
edges

MetaNode

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Filter

defaultMetaNode
defaultRootNode
open
title

Browser class

defaultMetaNode

defaultRootNode

 metaNodeactors

filterClass

Omnibrowser core framework

ModalFilter

accept:notifying:
text
text:

Definition

instance of

*

Fig. 2. Core of the OmniBrowser framework.

Browser. A browser is a graphical tool to navigate and edit a domain space.
This domain has to be described in terms of a directed cyclic graph (DCG).
It is cyclic because for example file systems or structural meta models of
programming language (i.e., packages, classes, methods...) contain cycles, and
we need to be able to model those. The domain graph has to have an entry
point, its root. The path from this root to a particular node corresponds to
a state of the browser is defined by a particular combination of user actions
(such as menu selections or button presses). The navigation of this domain
graph is specified in a metagraph, a state machine describing the states and
their possible transitions.

Node. A node is a wrapper for a domain object, and has two responsibilities:
rendering the domain object in the browser, and returning domain nodes. Note
that how the domain graph can be navigated is implemented in the metagraph.

Metagraph. A browser’s metagraph defines the way in which the user may
traverse the graph of domain objects. A metagraph is composed of metanodes
and metaedges. A metanode references a filter (described below) and a set
of actors. The metanode does not have the knowledge of the domain nodes,
however each node is associated to a metanode. Transitions between meta-
nodes are defined by metaedges. When a metaedge is traversed (i.e., result of
pressing a button or selecting an entry list), siblings nodes are created from a
given node by invoking a method that has the name of the metaedge.

Actor. An actor is a basic unit of domain-related functionality. Actors are

6

attached to metanodes, and supply the actions used to interact with objects
wrapped by nodes. For instance, actors are used to build context menus and
buttons in the browser.

Action. An Action represents a Command [ABW98] for manipulating, inter-
acting and navigating with the graph domain. Actions can be made available
through menus or buttons in the browser. They carry information on how they
should be presented to the user and are responsible for handling exceptions
that can occur when they are triggered. Actions are created by actors.

Filter. When a metanode has several metaedges (modeling the fact that a
user can navigate to several other nodes from the current node), the user
somehow needs to choose just one of the possible navigation paths. Therefore
the OmniBrowser framework renders all end nodes of the transitions that can
be followed from the current node in the next column. When a user selects an
element in this column, selecting in fact the transition to use, that transition
actually happens, the pane definition is updated (and perhaps other panes
such as button bars) and the next round of possible transitions is gathered.

Definition. While navigating in the domain space, information about the
selected node is displayed in a dedicated text pane. If the selected node can
be edited by the user, then a definition is necessary that can handle editing
(i.e., an accept in the Smalltalk terminology). A definition is produced by a
node.

3.2 A Simple Example: A File Browser

To illustrate how the OmniBrowser framework is instantiated, we describe the
implementation of a simple file browser supporting the navigation in directo-
ries and files [Hal05].

Figure 3 shows the file browser in action. A browser is opened by evaluating
FileBrowser open in a workspace. The navigation columns in the case of a file
browser are used to navigate through directories, where every column lists the
contents of the directory selected in its left column, similar to the Column
View of the Finder in the Mac OS-X operating system. Note that we can have
an infinite numbers of pane navigating through the file system. The horizontal
scrollbar lets the user browse the directory structure. A text pane below the
columns displays additional properties of the currently selected directory or
file and provides means to manipulate these properties.

Node definitions. Nodes wrap objects of the browsed domain. First the class
FileNode a subclass of Node is created which represents a file. A file node is
identified by a full path name, stored in a variable. The name of the node is

7

Fig. 3. A minimal file browser based on OmniBrowser.

simply the name of the file selected:

FileNode�name
ˆ (FileDirectory directoryEntryFor: path) name.

A text containing information about the selected file is returned by the method
text:

FileNode�text
ˆ ’First 1000 characters: ’, String cr,
((FileStream readOnlyFileNamed: path) converter: Latin1TextConverter new;

next: 1000) asString

A directory node is a kind of file that contains directories and files. The meth-
ods files and directories are defined on the class DirectoryNode.

DirectoryNode�directories
| dir |
dir := FileDirectory on: path.
ˆ dir directoryNames collect: [:each |

DirectoryNode new path: (dir fullNameFor: each)]

DirectoryNode�files
| dir |
dir := FileDirectory on: path.
ˆ dir fileNames collect: [:each |

FileNode new path: (dir fullNameFor: each)]

8

The implementation shows the two responsibilities of a node: rendering itself
(implemented in the text method), and calculating the nodes reachable from
a node (in the directories and files methods).

Action Definitions. The user can perform some actions on selected files.
Those are implemented in the class FileActor which inherits from Actor. Action
are commands with user-interface information such as icon.

FileActor�actionsForNode: aNode
ˆ {OBAction

label: ’remove’
receiver: self
selector: #removeFile:
arguments: {aNode}
keystroke: $x
icon: MenuIcons smallCancelIcon.

OBAction
label: ’rename’
receiver: self
selector: #renameFile:
arguments: {aNode}}

FileActor�removeFile: aNode
”Remove the file designed by aNode”
...

FileActor�renameFile: aNode
”Rename the file designed by aNode”
...

File

Directory

#files

N metanode

is an ancestor of

#directories

N object node
/

/temp pic1.jpg

pic2.jpg pic3.jpg

transition

(a) Instantiated domain (b) Metagraph

N root metanode

Fig. 4. A filesystem (as a graph) (a) and its corresponding metagraph (b).

Metagraph Definition. Figure 4 shows a metagraph describing a filesystem.
Two metanodes, Directory and File, compose this metagraph. The navigation

9

between these nodes is defined by two transitions, files and directories. The
starting point in a metagraph is designated by a root metanode.

The metagraph is implemented in the class FileBrowser. The methods default-
MetaNode and defaultRootNode are defined on the class side of FileBrowser.
These methods define the metagraph and gives the root node, respectively:

FileBrowser class�defaultMetaNode
”returns the directory metanode that acts as the root metanode”

| directory file |
directory := OBMetaNode named: ’Directory’.

file := OBMetaNode named: ’File’.
file addActor: FileActor new.

directory
childAt: #directories put: directory;
childAt: #files put: file;
addActor: FileActor new.

ˆ directory

FileBrowser class�defaultRootNode
ˆ DirectoryNode new path: ’/’

When one of the two #directories and #files metaedges is traversed, the name
of this metaedge is used as a message name sent to the metanode’s node.

The complete source code of the file browser is freely downloadable 1 .

3.3 Core Behavior of the Framework

The core of the OmniBrowser framework is composed of 8 classes. Figure 5
shows the framework and how it is used to define the file browser. We denote
the Smalltalk metaclass hierarchy by a dashed arrow.

The metaclass of the class Browser is Browser class. It defines two abstract
methods defaultMetaNode and defaultRootNode that return the root metanode
and the root domain node, respectively. Subclasses override these methods,
and they are called when a browser is instantiated. A browser is opened by
sending the message open to an instance of the class Browser.

1 http://www.squeaksource.com/FileOmnibrowser.html

10

http://www.squeaksource.com/FileOmnibrowser.html

actionsForNode:
actionsForParent:

Actor

name
text
definition

Node

dispatcher
panels

Browser

childAt:put:
addActor:
displaySelector:

displaySelector
edges

MetaNode

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Filter

defaultMetaNode
defaultRootNode
open
title

Browser class

defaultMetaNode

defaultRootNode

 metaNode

filterClass

Omnibrowser core framework

ModalFilter

accept:notifying:
text
text:

Definition

name
text

path
FileNode

directories
files
fullName
text

DirectoryNodeactionsForNode:
removeFile:
renameFile:

FileActor FileBrowser

defaultMetaNode
defaultRootNode
title

FileBrowser
class

File browser

instance of

actors

*

Fig. 5. Core of the OmniBrowser framework and its extension for the file browser.

The navigation graph is built with instances of the class MetaNode. Transitions
are built by sending the message childAt: selector put: metanode to a MetaNode
instance. This has the effect of creating a directed metaedge named selector
from the metanode receiver of the message to metanode.

At runtime, the graph traversal is triggered by user actions (e.g., pressing
a button or selecting a list entry) which sends the metaedge’s name to the
node that is currently selected. Actors are attached to a metanode using the
method addActor:. Rendering nodes is done by invoking the selector stored in
the variable displaySelector in the metanode on the domain node.

The class Actor is normally instantiated by metanodes and is used to define
node related actions. The method actionsForNode: may be overridden in sub-
classes to answer an ordered collection of actions. It is used to specify actions
that are independent from any nodes. These actions are typically shown on a
menu when no node is selected.

The class Node represents an element of the domain graph. Each node has a
name. This name is used when lists of nodes are displayed in the navigation
columns of the browser. When a node is selected in a list, information related
to this node needs to be displayed in the bottom text pane. When the node
is not supposed to be edited, the message text is sent to it, returning a string

11

displayed in the bottom pane. When it is editable, it is sent the message
definition which needs to return an instance of a subclass of Definition. Note
that the nodes do not need to be configured to be editable or not. When they
implement a method definition, this will be used and the node will be editable.
If that method is not present, then the method text is used.

When the browser is in a state where several transitions are available, it dis-
plays the possibilities to the user. From all the possible transitions, Omni-
Browser framework fetches all the nodes that represent the states the user
could arrive at by following those transitions and list them in the next col-
umn. Once a selection is made, the transition actually happens, the pane
definition is updated and the process repeats.

As explained before, a filter or modal filter can be used to select only a number
of outgoing edges when not all of them need to be shown to the user. This is
useful for instance to display the instance side, comments, or class side of a
particular class in the classic standard system browser (cf. Section 4). Class
Filter is responsible for filtering nodes in the graph. The method nodesForPar-
ent: computes a transition in the domain metagraph. This method returns a
list of nodes obtained from a given node passed as argument. The class Filter
is subclassed into ModalFilter, a practical filter that represents transitions in
the metagraph that can be traversed by using a radio button group in the
GUI, as explained in the next section.

3.4 Glueing Widgets with the Metagraph

From the programmer’s point of view, creating a new browser implies defining
a domain model (set of nodes like FileNode and DirectoryNode, Figure 5),
a metagraph intended to steer the navigation and a set of actors to define
interaction and actions with domain elements. The graphical user interface
of a browser is automatically generated by the OmniBrowser framework. The
GUI generated by OmniBrowser framework is contained in one window, and it
is composed of 4 kinds of widgets (lists, radio buttons, menus and text panes).

The layout of a browser can be redefined and use other widgets than the ones
described above, but those are then not used by the metagraph. For instance,
the OmniBrowser framework-based system browser uses a toolbar widget that
allows a user to launch other kind of browsers like the variable and hierarchy
browsers. We will not describe how to use other widgets, as this is outside the
scope of this paper.

Lists. Navigation in OmniBrowser framework is rendered with a set of lists
and triggered by selecting one entry in a list. Lists displayed in a browser are
ordered and are displayed from left to right. Traversing a new metanode, by

12

Fig. 6. Example of menu in the OmniBrowser framework system browser.

selecting a node in a list A, triggers the construction of a set of nodes intended
to fill a list B. List B follows list A.

The root of a metagraph corresponds to the left-most list. The number of lists
displayed is equal to the depth of the metagraph. The depth of the system
browser metagraph (Figure 9) is 4, therefore the system browser has 4 panes
(Figure 7). Because the metagraph of a filesystem may contain cycles (i.e.,
a directory may contain directories, as shown in Figure 4), the number of
lists in the browser increases for each directory selected in the right-most
list. Therefore a horizontal scrollbar is used to keep the width of the browser
constant, yet displaying a potentially infinite number of lists in the top half.

Radio buttons. A modal filter in the metagraph is represented in the GUI
by a group of radio buttons, where each edge leading away from the filter
is represented as one radio button in the group. Only one button can be
selected at a time in the radio button group, and the associated choice is
used to determine the outgoing edge. For example, the second list in the
system browser contains the three buttons instance, ? and class as shown the
transition from the environment to the three metanodes class, class comment
and metaclass in Figure 7.

Menus. A menu can be displayed for each list widget of a browser. Typically
such a menu displays a list of actions that can be executed by a browser user.
These actions enable interaction with the domain model, however they do not
allow further navigation in the metagraph.

Figure 6 shows an example of a menu offering actions related to a class. These
correspond to the list of actions returned by the method actionsForNode: in
the class ClassActor.

13

Text pane. When a node is selected in a list, some information related to this
node is displayed in a text pane. Committing a change in the text pane sends
the message accept: newText notifying: aController to the definition shown in
this pane. A browser contains only one text pane.

4 The OmniBrowser-based System Browser

In this section we show how the framework is used to implement the traditional
class system browser.

4.1 The Smalltalk System Browser

The System Browser is probably the most important tool offered by the
Smalltalk programming environment. It enables code navigation and code
editing. Figure 7 shows the graphical user interface of this browser, and how
it appears to the Smalltalk programmer.

Fig. 7. OmniBrowser framework based Smalltalk system browser.

This browser replicates the traditional four panes system browser discussed
in Section 2. The system browser is composed of four lists (upper part) and a
text pane (lower part). From left to right, the lists represent (i) class categories,
(ii) classes contained in the selected class category, (iii) method categories de-
fined in the selected class to which the – all – category is added, and (iv) the list
of methods defined in the selected method category. On Figure 7, the class

14

named Class, which belongs to the class category Kernel-Classes is selected.
Class has three methods categories, plus the – all – one. The method template-
ForSubclassOf:category contained in the instance creation method category is
selected.

The lower part of the system browser contains a large text pane that displays
information about the current selection in the lists. Selecting a class category
makes the render display a class template intended to be filled out to create
a new class in the system. If a class is selected, then this pane shows the
definition of this class. If a method is selected, then the definition of this
method is displayed. The text contained in the pane can be edited to create
or redefine a class or a method.

In the upper part, the class list contains three buttons (titled instance, ? and
class) to let one switch between different “views” on a class: the class definition,
its comment and the definition of its metaclass. Just above the pane, there
is a toolbar intended to open more specific browsers like a hierarchy browser
and a variable access browser.

4.2 System Browser Internals

The Omnibrowser-based implementation of the Squeak system browser is com-
posed of 19 classes (2 actors, 2 classes for the browser, 3 classes for the def-
initions of classes, methods and organization, 10 classes defining nodes and
2 utility classes with abstractions to help link the browser and the system)
and 220 methods. Figure 8 shows the classes in the OmniBrowser framework
that need to be subclassed to produce the system browser. Note that the two
utility classes are not represented on the picture.

Compared to the default implementation of the Squeak System Browser, the
OmniBrowser-based implementation uses less code and has a better structure.
In addition other code-browsers can freely reuse these parts.

Figure 9 depicts the metagraph of the system browser. The metanode environ-
ment contains information about class categories. The filter is used to select
what has to be displayed from the selected class (i.e., the class definition, its
comment or the metaclass definition). A class and a metaclass have a list of
method categories, including the – all – method category that shows a list of
methods.

Widgets notification. Widgets like menu lists and text panes interact with
each other by triggering events and receiving notifications. Each browser has a
dispatcher (referenced by the variable dispatcher in the class Browser) to pass
events between widgets. The vocabulary of events is the following one:

15

Omnibrowser core framework

System browser

Category
Actor

Class
Actor

Code
Browser

System
Browser

Class
Definition

Method
Definition

Organization
Definition

Code
Node

ClassAware
Node

ClassComment
Node

ClassNode

MetaClassN
ode

Method
CategoryNode

AllMethod
CategoryNode

Method
Node

ClassCategory
Node

Environment
Node

BrowserNode ActorDefinition

Fig. 8. Extension of the OmniBrowser framework to define the system browser.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment

Fig. 9. Metagraph of the system browser.

• refresh is emitted when a complete refresh of the browser is necessary. For
instance, if a system change occurs (for example, when a class is added to
the system), this event is triggered to order a complete redraw.

• nodeSelected: is emitted when a list entry is selected with a mouse click.
• nodeChanged is emitted when the node that is currently displayed changes.

This typically occurs when one of buttons related to the class is selected.
For example, if a class is displayed, pressing the button instance, class or
comment triggers this event.

• okToChangeNode is emitted to prevent loosing changes to the content of a
text pane while editing. This might happen when a node is being edited,
but the user navigates to another node before accepting (i.e., compiling)
the changes.

16

Each graphical widget making up a browser can function both as listener and
as emitter of events. Creation and registration of widgets as event listener and
emitter is completely transparent to the end user.

State of the browser. Contrary to the original Squeak system browser where
each widget state is contained in a dedicated variable, the state of a Omni-
Browser framework-based browser is defined as a path in the metagraph start-
ing from the root metanode. Each metanode on this path is associated to a
domain node. This preserves the synchronization between different graphical
widgets of a browser.

5 The Coverage Browser

The coverage browser is an extension of the system browser to show the cov-
erage of code by unit tests. It extends the system browser in two ways. First
of all it appends the percentage of elements covered by tests to the elements
in the lists making up the browser. Secondly it adds a fifth pane that lists the
unit tests that test a selected method. A screenshot is shown in Figure 10. It
shows us that 39% of the class UUID is covered by tests, and that the method
initialize is covered at 100% by the tests shows in the right-most pane. One of
these test is testCreation.

Fig. 10. Screenshot of the coverage browser.

The coverage browser is composed of 11 classes (1 class for the browser, 5
actors and 5 nodes). Figure 11 illustrates how classes in OmniBrowser and in
the system browser are extended to define this new browser. The metagraph is
depicted in Figure 12 and is identical to the system browser except with a new
Method Coverage metanode. The depth of the graph, which is 5, is reflected
in the number of list panes the browser is composed of.

The Coverage browser is freely available 2 .

2 www.squeaksource.com/Coverage.html

17

http://www.squeaksource.com/Coverage.html

Coverage browser

Omnibrowser core framework

System browser

Coverage
Browser

Code
Node

ClassAware
Node

Method
Node

BrowserNode ActorDefinition

Coverage
MethodNode

Coverage
MethodNode

Coverage
ElementNode

Coverage
EnvironmentNode

CoverageSet
Node Coverage

Actor

ElementActorEnvironmentActor

System
Browser

Code
Browser

MethodNode
Actor

CoverageSet
Actor

Fig. 11. Extension of Omnibrowser and system browser to define the coverage
browser.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment Method
Coverage

Fig. 12. Metagraph for the coverage browser.

6 Multiple Views with the Duo Browser

Previous sections described a file browser, a system code browser and the
coverage browser. Those browsers use a single view to browse a domain. For
example, the system code browser displays the list of class categories in the
left-most pane, and a list of classes for the selected category in the second pane.
The hierarchy browser on the other hand shows an inheritance hierarchy in
the left-most pane, and the implementation of the selected class in the rest of
the panes. This makes it easy to browse the implementation of methods in the
superclasses, which is frequently needed in non-trivial inheritance hierarchies.

18

The system code browser and the hierarchy browser are very useful since they
offer a dual view on the implementation of a system, respectively one that lets
a developer work on her classes, and one that shows in detail the inheritance
relationships.

While both views are needed, they are offered in separate browsers, and users
frequently need to open a hierarchy browser from a full system browser and
vice versa. The Duo Browser integrates both views in a single browser. This
idea in itself is not new, and was pioneered by the System Browser in the
VisualWorks Smalltalk distribution. The Duo Browser uses the OmniBrowser
framework to implement the core idea of this browser, and was implemented
in a matter of days.

The principle of the Duo Browser is simple: it offers to show either the packages
in the system and the classes in each package, or the inheritance hierarchy
and the packages for each of the classes in the inheritance hierarchy. Two
buttons allow to switch between these views. Crucial to the functioning of the
browser is that when switching views, the selections of the old view are used
to determine the contents in the other view.

Furthermore this setup makes it easy to properly integrate class extensions in
the browser. A class extension is a method that is defined in a package, but
that belongs to a class that is not defined in that package. This can be used
to add and even replace methods of existing classes.

Figure 13 gives a screenshot of the Duo Browser. The left-most pane lists
all Monticello packages in the image, with the package DuoSystemBrowser3.9
currently being selected. The second pane shows a hierarchical list with the
classes in this package, as well as the class extensions (when the classes are in
italic). The class extension OBClassAwareNode is currently selected.

Switching views is done with the package and hierarchy buttons below the
first pane. Figure 14 shows the result when clicking the hierarchy button with
the browser being in the state shown in Figure 13. The left-most pane now
contains the class hierarchy that includes the class OBClassAwareNode, and
lists all classes until the root class. The second pane shows all packages that
either define the class selected in the left pane, or that provide extensions (the
italic entries).

From a usability point of view we stress that it is important that the selections
are taken into account when switching views. We saw this in the example: after
switching, the left pane is centered around the class OBClassSwareNode. When
we would press the package button we would again be in the same state as
shown in the first figure.

As depicted in Figure 15, use of filters in the metagraph enables a browser

19

Fig. 13. The Duo Browser shows on the left-most pane a list of packages. The second
pane shows the list of classes belonging to the DuoSystemBrowser3.9.

Fig. 14. The class hierarchy containing the class OBClassAwareNode is displayed on
the left-most pane. The second pane lists the packages that define or extend this
class.

to offer different views to navigate through a domain. Views can be switched
using the filter installed on the metagraph root.

The implementation required one extension to the OmniBrowser framework.
As was explained before, the OmniBrowser framework layouts the panes from

20

Packages

Classes

Class

PackagesFor
Class

ProtocolRoot Method

Fig. 15. The Duo Browser metagraph reflects the ability of having multiple views
by using filters.

left to right, where a selection in one pane is used to show the content of a
pane that is put to the right of that pane. A consequence of this approach is
that each pane has a well-defined kind of items that does not change. In the
System Browser, for example, the left-most pane will always display classes.

This is not true for the Duo Browser: the left-pane can display either Monti-
cello packages or classes, and the same holds for the second pane. Moreover,
pressing the button results in swapping the contents of these panes, while
keeping the selections. Implementing this with the OmniBrowser framework
required two tricks:

• a node class was added (PackagesOrClassesNode) that can play the role of
either classes or packages. So it can be used in either pane and will work
correctly. This is also used as the root node.

• a new filter class was added (ModalDuoFilter) that has as responsibility to
keep track of the selected elements in both panes and, when switching views,
re-selecting the right elements again in the switched panes.

On the one hand these tricks show some shortcomings of the framework (that
are further discussed in Section 8), but on the other hand it also showed that by
slightly extending the framework (adding a switch class) and properly under-
standing how it works, this different behaviour could easily be accomodated.
This shows the simplicity and the openness of the OmniBrowser framework.

The Duo Browser is freely downloadable 3 .

7 Rendering Dynamic Information with Dynamic Protocols

Up to now we have been describing browsing tools that navigate through
a static domain (e.g., composed of classes and methods). This section illus-
trates an extension of the system code browser to render some dynamically

3 http://www.squeaksource.com/DuoSystemBrowser.html

21

http://www.squeaksource.com/DuoSystemBrowser.html

Fig. 16. Dynamic information is accessible from the third upper pane.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

MethodEnvironment Dynamic
Protocols

Fig. 17. Dynamic protocols extends the metagraph of the system code browser.
Extension are shown in bold.

computed information like methods that are uncommented, super calls con-
tained in methods and methods for which their source code is considered too
long.

A list of dynamic protocols is displayed in the third pane in the upper pane
of the system code browser. Figure 16 shows a screenshot of it. On this figure,
the dynamic procotol – Long – is selected. The effect is that the right-most
upper pane lists those methods for which their source code is considered too
long (e.g., greater than 20 lines of code in our case).

The metagraph of the system code browser is extended as the following (ex-
tensions are written in bold):

22

OBCodeBrowser� defaultMetaNode
...
metaclass childAt: #allCategory put: allMethodCategory;

childAt: #categories put: methodCategory;
childAt: #dynamicProtocols put: protocols; ”Added line”
... .

class childAt: #allCategory put: allMethodCategory;
childAt: #categories put: methodCategory;
childAt: #dynamicProtocols put: protocols; ”Added line”
... .

The resulting new metagraph is illustrated in Figure 17. The method dynam-
icProtocols is defined on the class OBClassNode, which in essence contains the
following code:

OBClassNode� dynamicProtocols
↑ self allActivatedProtocols

collect: [:dpClass | dpClass on: aClass]
thenSelect: [:dp | (dp getSelectorsFor: aClass) notEmpty].

The method allActivatedProtocols returns a list of classes that implement dif-
ferent dynamic protocols. Those protocols are represented by a subclass of the
DPAbstract class. The method getSelectorsFor: returns the list of methods that
have to be displayed on the fourth upper pane of the browser. For instance
this method is redefined in the class DPLongMethod that returns the list of
methods having more than 20 lines of source code.

Dynamic protocols is freely available 4 .

8 Evaluation and Discussions

Several other browsers such as a browser specifically supporting traits [DNS+06]
have been developed using OmniBrowser framework demonstrating that the
framework is mature and extensible [RJ97]. Figure 18 shows some browsers
that are based on OmniBrowser framework. We now discuss the strengths and
limitations of the OmniBrowser framework.

8.1 Strengths

Ease of use. Like with any good framework, instantiating the OmniBrowser
framework following the framework’s intention makes it easy to specify ad-

4 http://www.squeaksource.com/DynamicProtocols.html

23

http://www.squeaksource.com/DynamicProtocols.html

Code
Browser

Hierarchy
Browser

Inheritance
Browser

List
Browser

Implementor
Browser

Reference
Browser

Sender
Browser

Variables
Browser

System
Browser

Version
Browser

Browser

Fig. 18. Some code browsers developed using OmniBrowser framework.

vanced browsers. The fact that the browser navigation is explicitly defined in
one place lets the programmer understand and control the tool navigation and
user interaction, and removes the burden to explicitly create and glue together
the UI widgets and their specific layout. Additional decorating widgets such as
extra-menu are possible and are defined independently. Still the programmer
focuses on the key domain of the browser: its navigation and the interaction
with the user.

Explicit state transitions. Maintaining coherence among different widgets
and keeping them synchronized is a non-trival issue that, while well supported
by GUI frameworks, is often not well used. For instance, in the original Squeak
browser, methods are scattered with checks for nil or 0 values. For instance, the
method classComment: aText notifying: aPluggableTextMorph, which is called
by the text pane (F widget) to assign a new comment to the selected class (B
widget), is:

Browser�classComment: aText notifying: aPluggableTextMorph
theClass := self selectedClassOrMetaClass.
theClass

ifNotNil: [...]

The code above copes with the fact that when pressing on the class comment
button, there is no warranty that a class is selected. In a good UI design, the
comment class button should have been disabled however there is still checks
done whether a class is selected or not. Among the 438 accessible methods in
the non Omnibrowser-based Squeak class Browser, 63 of them invoke ifNil: to
test if a list is selected or not and 62 of them invoke ifNotNil:. Those are not
isolated Smalltalk examples. Code that uses JHotDraw [JHo] uses a pattern
to check for a nil value of variables that may reference graphical widgets.

Such situations do not happen in OmniBrowser framework, as metagraphs
are declaratively defined and each metaedge describes one action the user can
do in the browser, and all states a browser can be in are explicitly and fully
described.

24

Separation of domain and navigation. The domain model and its navi-
gation are fully separated: a metanode does not and cannot have a reference
to the domain node currently selected and displayed. Therefore both can be
reused independently.

8.2 Limitations

Hardcoded flow. As any framework, OmniBrowser framework constrains
the space of its own extension. OmniBrowser framework does not support the
definition of navigation not following the left to right list construction (the
result of the selection creates a new pane to the right of the current one and
the text pane is displayed). For example, building a browser such as Whiskers
that displays multiple methods at the same time would require to deeply
change the text pane state to keep the status of the currently edited methods.

Currently selected item. The OmniBrowser framework does not easily sup-
port the building of advanced browsing facilities such as those found in the
VisualWorks standard browser. In VisualWorks, it is possible to select a pack-
age, then select one class of this package and then to see the inheritance
hierarchy of this class within the context of the previously selected package.
The problem is that conceptually the selected item is not part of the state rep-
resentation. It is possible using UI events between the widgets to implement
such functionality, but such support has to be implemented manually.

9 Related Work

MVC. The Model-View-Controller [KP88,Ree,Ree79] promotes a distinction
between three important roles (namely data, output and interaction) that
should be reflected in the design of a user interface framework. Those roles
were reflected in three abstract superclasses: Model, View, Controller. Still for
system browsers, developers consider the model as the entities of the domain
and do not have explicit or meta entities describing the navigation within the
domain model. Note also that a controller in MVC captures the interaction
of users with a widget, and passes this information to the model. The level
of abstraction, however, is lower than what is offered by the Actor in the
OmniBrowser framework, which is not programmed in terms of a widget but
in terms of the domain entities.

HotDraw. The state transitions between the possible tools in HotDraw [Joh92]
are driven by an explicit state machine and follow an explicit transition struc-
ture. There is a graphical editor (constructed with HotDraw itself) to construct

25

the view and edit the state machine. The goal of the state machine is similar to
the goal of the metagraph in the OmniBrowser framework: to make navigation
explicit.

HotDraw and the OmniBrowser framework differ in the way that users instan-
tiate the framework. HotDraw makes extensive use of meta programming, and
users therefore need to know what methods to implement on what classes in
order to successfully use the framework. For example, every tool offered by the
editor to manipulate graphical figures has a button on the toolbar. Therefore
the editor has to offer icons to use as buttons for every tool name mentioned in
the method toolNames on the metaclass of the editor. These icons are returned
by methods that reside on the class side of the editor meta class. However,
there has to be some mapping between the name of the tool, and the name
of the method used to provide the icon. This mapping is actually a naming
convention which is all but implicit. Hence the toolbar is constructed by enu-
merating all the tool names provided by the toolNames method, and retrieving
the icon for this tool using the naming convention. Using meta programming
for instantiating the framework is sometimes quite cumbersome. Instantiating
the OmniBrowser framework is done by subclassing, which makes it easier to
understand what needs to be done.

HyperCard. Conceptually, a HyperCard [Goo98] application is a stack of
cards. Each card contains some information and links to other cards in the
same or other stacks. The information on the cards is shown using text and
graphics. The links to other cards are presented as buttons, typically com-
pleted with an icon representing the destination card. A user of HyperCard
browses the cards of a stack using the link button. Only one card of a stack is
displayed at a time. Clicking a link button results in the display of the desti-
nation card. When a stack has not only information to be displayed, but also
has to exhibit an active behavior, the stack designer has to develop cards by
means of a scripting level, on which programming in the dedicated language
HyperTalk is supported. There is no concept like the metagraph in Omni-
Browser that describes the overal navigation of a domain graph: every card
locally describes its links with other cards.

ApplFLab. Steyaert et al. defined the notion of reflective application buil-
der [SHDB96] with as explicit goal to be able to construct and reuse (parame-
trizable) user interface components. ApplFLab was used to construct several
domain specific user interfaces, including browsers in development environ-
ments [Wuy96].

ApplFLab structures a software program using four distinct kinds of compo-
nents:

• a user interface component controls the display and the user interaction of

26

a particular piece of information, supplied by the domain model. Note that
this component is parametrized by the domain model, and therefore can be
reused across different domains.

• an application model manages the global behavior of group of interface com-
ponents. It is responsible for the user interface logic and controls user inter-
face. A same application model can be reused on different domain models
and a domain model can have several application models in parallel.

• a domain model models the overall functionality of the problem domain and
maintains user interface independent constraints.

• a set of aspects is needed to separate the domain model from the user
interface component.

Interaction between these four components is based on emitting events and
receiving notifications. There are three kinds of event: display, notify and
control.

The advantage of ApplFLab lies in its notion of parametrized user interface
component. A user interface component consists of a GUI description, and pa-
rameters to link the component to the domain or to specify other information
when it is used in an application. The components are plugged together to form
applications. One could for example build a list component, and parametrize
it with categories, classes, protocols and selectors to get the four top elements
that make a System Browser (as shown in Section 4.1). Combine it with a
Text component and the System Browser is complete.

While both ApplFLab and the OmniBrowser make it easy to build browsers,
there are some differences. The OmniBrowser is a domain specific approach
for building browsers, while ApplFLab is general. So when using ApplFLab to
build browser, browser specific components need to be built first, for example
to get the left-to-right selection behavior that is built-in with OmniBrowser.
ApplFLab also had a steeper learning curve, since building a good reusable
component (be it a visual one or a regular one) remains fairly difficult. On the
other hand, OmniBrowser offers more built-in behavior which makes it easier
to use but also forces certain behavior that might not always be wanted.

ThingLab. Freeman-Benson and Maloney [FB89] wrote ThingLab II, an
object-oriented constraint system for a direct manipulation user interface im-
plemented in Smalltalk-80. In ThingLab II, user-manipulable entities are col-
lections of objects know as Things. ThingLab II provides a large number of
primitive Things equivalent to the operations and data structures provided in
any high-level language: numerical operations, points, strings, bitmaps, con-
version, etc.

A thing is constructed from things objects and constraint objects. Higher-level
things can be built out of the lower-level ones. Constraints are either satisfied

27

or they are not satisfied, and they are simple declarative declarations that
do not hold state. Browser navigation can be expressed as constraints on the
different elements that compose a browser. But there is no explicit distinction
between the domain and its navigation.

10 Conclusion

Smalltalk is known for its advanced development environment, featuring ad-
vanced browsers that let developers navigate and change code relatively easily.

Building browsers, however, is a daunting task. The main problem is that ev-
ery navigation action performed by a user in a widget changes the state of
that (and possibly other) widgets. Given the high number of possible navi-
gation actions, the complexity of managing the navigation by managing the
states of the browser is a very complex task. This can be seen in most current
browser implementations, which are complex and hard to extend because the
navigation is implicitly encoded in the management of the state of the widgets.

To make it easier to build and extend browsers, this paper introduces a frame-
work for building browsers that is based on modeling user navigation through
an explicit graph. In this framework, browsers are built by modeling the do-
main with nodes, expressing the navigation with a metagraph and describ-
ing the interaction between the browser and the domain through actors. The
framework uses these descriptions to construct a graphical application. The
top half of the application uses lists that allow the user to navigate the de-
scribed domain. The bottom half of the pane allows to visualize and edit nodes
selected in the top half.

The framework is implemented in Squeak Smalltalk through the OmniBrowser
framework. The paper showed three concrete instantiations of the framework:
a file browser to navigate a file system,a reimplementation of the ubiquitous
Smalltalk System Browser, and a code coverage browser. There are more in-
stantiations of the browser that we have not discussed in this paper but that
are available. The validation shows that the goals of the frameworks are met.
Building the System Browser with the OmniBrowser framework shows that
the code is lots simpler. The Code Coverage browser shows that it is easy to
extend an existing browser.

For future work we plan to enhance the OmniBrowser framework with the
ability to have multiple text panes to be part of a browser. We also plan to
extend the framework to support more and richer widgets (such as toolbars
and flaps). Last but not least we want to investigate how we can extend the
metagraph to look at other ways of navigating it.

28

Acknowledgment. We would like to thank Damien Cassou for his precious
review on an early draft version. Thanks also to Niklaus Haldimann and Stefan
Reichnart for their use of the OmniBrowser framework.

References

[ABW98] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, 1998.

[BDPW06] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts.
Meta-driven browsers. In Proceedings of the International Smalltalk
Conference (ISC 2006), LNCS. Springer, 2006. To appear.

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk
in a production environment. In Proceedings OOPSLA ’93, ACM
SIGPLAN Notices, volume 28, pages 215–230, October 1993.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew Black. Traits: A mechanism for fine-grained reuse. ACM
Transactions on Programming Languages and Systems, 28(2):331–388,
March 2006.

[FB89] Bjorn N. Freeman-Benson. A module mechanism for constraints in
Smalltalk. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices,
volume 24, pages 389–396, October 1989.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

[Gol84] Adele Goldberg. Smalltalk 80: the Interactive Programming
Environment. Addison Wesley, Reading, Mass., 1984.

[Goo98] Danny Goodman. The Complete HyperCard 2.2 Handbook. iUniverse,
1998.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983.

[Hal05] Niklaus Haldimann. A sophisticated programming environment to cope
with scoped changes. Informatikprojekt, University of Bern, December
2005.

[Hon98] Koen De Hondt. A Novel Approach to Architectural Recovery in
Evolving Object-Oriented Systems. PhD thesis, Vrije Universiteit
Brussel,Departement of Computer Science, Brussels — Belgium,
December 1998.

[JHo] Jhotdraw: a java gui framework for technical and structured graphics.
http://www.jhotdraw.org.

29

http://www.jhotdraw.org

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In
Proceedings OOPSLA ’92, volume 27, pages 63–76, October 1992.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26–49, August 1988.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–
263, 1997.

[RBJO96] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96, Chicago, IL,
April 1996.

[Ree] Trygve M. H. Reenskaug. The model-view-controller (mvc) – its past
and present. JavaZONE, Oslo, 2003.

[Ree79] Trygve M. H. Reenskaug. Models - views - controllers, December 1979.
http://heim.ifi.uio.no/∼trygver/1979/mvc-2/1979-12-MVC.pdf.

[RJ97] Don Roberts and Ralph E. Johnson. Evolving frameworks: A pattern
language for developing object-oriented frameworks. In Pattern
Languages of Program Design 3. Addison Wesley, 1997.

[SB04] Nathanael Schärli and Andrew P. Black. A browser for incremental
programming. Computer Languages, Systems and Structures, 30(1-
2):79–95, 2004.

[SHDB96] Patrick Steyaert, Koen De Hondt, Serge Demeyer, and Niels Boyen.
Reflective user interface builders. In Chris Zimmerman, editor, Advances
in Object-Oriented Metalevel Architectures and Reflection, pages 291–
309. CRC Press — Boca Raton — Florida, 1996.

[SLMD96] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt.
Reuse Contracts: Managing the Evolution of Reusable Assets. In
Proceedings of OOPSLA ’96 (International Conference on Object-
Oriented Programming, Systems, Languages, and Applications), pages
268–285. ACM Press, 1996.

[SM88] Pedro Szekely and Brad Myers. A user interface toolkit based on
graphical objects and constraints. In Proceedings OOPSLA ’88, ACM
SIGPLAN Notices, volume 23, pages 36–45, November 1988.

[WD04] Roel Wuyts and Stéphane Ducasse. Unanticipated integration of
development tools using the classification model. Journal of Computer
Languages, Systems and Structures, 30(1-2):63–77, 2004.

[Wuy96] Roel Wuyts. Class-management using logical queries, application of
a reflective user interface builder. In I. Polak, editor, Proceedings of
GRONICS ’96, pages 61–67, 1996.

30

http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf

	Introduction
	Defining and Maintaining the State of a Graphical User Interface
	Defining a Browser: a Graph and a Metagraph
	Overview of the OmniBrowser framework
	A Simple Example: A File Browser
	Core Behavior of the Framework
	Glueing Widgets with the Metagraph

	The OmniBrowser-based System Browser
	The Smalltalk System Browser
	System Browser Internals

	The Coverage Browser
	Multiple Views with the Duo Browser
	Rendering Dynamic Information with Dynamic Protocols
	Evaluation and Discussions
	Strengths
	Limitations

	Related Work
	Conclusion
	References

