
Classbox/J: Controlling the Scope of Change in Java

Alexandre Bergel
Software Composition Group

University of Bern –
Switzerland

www.iam.unibe.ch/∼scg

Stéphane Ducasse
Language and Software

Evolution Group
LISTIC – University of Savoie,

France &
Software Composition Group

University of Bern –
Switzerland

www.listic.univ-savoie.fr/

Oscar Nierstrasz
Software Composition Group

University of Bern –
Switzerland

www.iam.unibe.ch/∼scg

ABSTRACT
Unanticipated changes to complex software systems can introduce
anomalies such as duplicated code, suboptimal inheritance rela-
tionships and a proliferation of run-time downcasts. Refactoring to
eliminate these anomalies may not be an option, at least in certain
stages of software evolution. Classboxes are modules that restrict
the visibility of changes to selected clients only, thereby offering
more freedom in the way unanticipated changes may be imple-
mented, and thus reducing the need for convoluted design anoma-
lies. In this paper we demonstrate how classboxes can be imple-
mented in statically-typed languages like Java. We also present an
extended case study of Swing, a Java GUI package built on top of
AWT, and we document the ensuing anomalies that Swing intro-
duces. We show how Classbox/J, a prototype implementation of
classboxes for Java, is used to provide a cleaner implementation of
Swing using local refinement rather than subclassing.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.1.5 [Programming Languages]: Object-oriented Program-
ming

General Terms
Language, Design

Keywords
Module, Package, Open-classes, Class extension

1. INTRODUCTION
Programming languages traditionally assume that the world is

consistent. Although different parts of a complex system may only
have access to restricted views of the system, the system as a whole
is assumed to be globally consistent. Unfortunately this means that

Preprint of the ACM OOPSLA 2005 Version
OOPSLA’05, October 16–20, 2005, pp. 177-189, San Diego, California,
USA.
.

unanticipated changes may have far-reaching consequences that are
not good for the general health of the system. Consider, for exam-
ple, the development of Swing, a GUI package for Java that was
built on top of the older AWT package. In the absence of a large ex-
isting base of clients of AWT, Swing might have been designed dif-
ferently, with AWT being refactored and redesigned along the way.
Such a refactoring, however, was not an option, and we can witness
various anomalies in Swing, such as duplicated code, sub-optimal
inheritance relationships, and excessive use of run-time type dis-
crimination and downcasts.

In this paper we argue that unanticipated changes are better sup-
ported when we abandon the principle of the consistent world-view.
Classboxes offer us the ability to define a local scope within which
our world-view is refined without impacting existing clients. Class-
boxes can collaborate to control the scope of change in a way that
can significantly reduce the need for introducing anomalous design
practices to bridge inconsistencies between the old and the new
parts of a system.

In recent years, numerous researchers have proposed better ways
to modularize code in such a way as to allow a base system to be
easily extended, following the philosophy behind CLOS [17] or
Smalltalk [14]. For instance, Open Classes [25], AspectJ [1] and
Hyper/J [28] allow class members to be separately defined from
the class they are related to. They do not, however, permit multiple
versions of a class to be present at the same time. Other approaches,
like virtual types (as in Keris [38], Caesar [24], gbeta [11], and
Nested Inheritance [26]), allow multiple versions of a given class
to coexist at the same time: classes are looked up much the same
way that methods are. These mechanisms, however, only allow one
to refine inner classes inherited from a parent class. Refinement
divorced from inheritance is not supported.

We have previously proposed classboxes as a means to control
the scope of change in the context of Smalltalk [4,5]. A classbox is
essentially a kind of module which not only provides the classes it
defines, but may also import classes from other classes and refine1

them by adding or modifying their features. There are three key
characteristics to classboxes:

• A classbox is a unit of scoping within which classes and their
features (i.e., fields, methods, inner classes) are defined, im-
ported and refined. Each class is always defined in a unique
classbox, but it may be imported and refined by other class-
boxes. Refinements are either new features or redefinitions

1In the literature, such modifications are usually termed “exten-
sions”, but to avoid confusion with Java’s extends keyword, we re-
fer instead to “refinements”.

http://www.iam.unibe.ch/~scg/index.html
http://www.iam.unibe.ch/~scg/index.html

of features.

• A refinement is locally visible to the classbox in which it is
defined. This means that the change is only visible to (i) the
refining classbox, and (ii) other classboxes that directly or
indirectly import the refined class.

• A local refinement has precedence over any previous (i.e.,
imported) definition or refinement. This means that, although
refinements are locally visible, their effect impacts all their
collaborating classes. A classbox thereby determines a names-
pace within which local class refinements behave as though
they were global. From the perspective of a classbox, the
world appears to be consistent.

Classboxes were first introduced with an implementation in Small-
talk [5] and subsequently formally described [4]. In particular, we
were able to demonstrate that classboxes could be implemented ef-
ficiently in a dynamically-typed language with minimal run-time
overhead. In this paper we demonstrate how classboxes can be ap-
plied effectively to control unanticipated change in a large, industri-
ally-developed application framework written in a statically-typed
language, namely Java. The contributions of this paper are:

• A proof-of-concept implementation of classboxes for stati-
cally typed languages. Classbox/J consists of a minimal ex-
tension of Java: (i) package import clauses are made transi-
tive, and (ii) packages are able to refine imported classes and
export these classes to other packages.

• The original classbox model is extended with a mechanism
enabling refinements to access prior definitions. The Swing
refactoring towards classboxes motivates the need to invoke
original methods from their redefined bodies.

• Presentation of a large case study in which (i) the limits of
subclassing are clearly identified, and (ii) classboxes are used
to remove code duplication and incoherence in the class hi-
erarchy.

In Section 2 we use the Swing case study to point out anoma-
lies that can arise when subclassing is used to introduce significant
crosscutting changes. In Section 3 we present the model of class-
boxes for Java. In Section 4 we present an example illustrating how
classboxes support the implementation of cross-cutting changes. In
Section 5 we apply classboxes to refactor Swing. In Section 6 we
describe our Java implementation of classboxes. In Section 7 we
provide a brief overview of related work. In Section 8 we conclude
by summarizing the presented work.

2. SWING/AWT ANOMALIES
Using subclassing to incorporate crosscutting changes often in-

troduces serious drawbacks such as duplicated code and mismatches
between the original and the extended class hierarchy. We illus-
trate these problems by analyzing Swing [34], the Java standard
framework for building GUIs. We first describe the Abstract Win-
dow Toolkit (AWT [2]) and its relationships with the Swing frame-
work. Then we show how inheritance is used to share properties
between classes. Finally we identify some important drawbacks of
the Swing design.

2.1 AWT and Swing History
In its first release launched in 1995, Java included AWT 1.0, a

framework for building graphical user interfaces. AWT evolved
rapidly in version 1.1 to provide a better event handling mechanism.

javax.swing

Component

Window Button
Frame

Container

JButton

java.awt

JFrame
accessibleContext
rootPane
update()
setLayout()
setRootPane()
setContentPane()

JComponent
accessibleContext
update()

JWindow
accessibleContext
rootPane
update()
setLayout()
setRootPane()
setContentPane()

Figure 1: Swing is a GUI framework built on top of AWT.
Fields and methods shown in JFrame, JWindow and JCompo-
nent are duplicated code (gray portion). More than 43% of
JWindow is duplicated in JFrame.

AWT is close to the underlying operating system, therefore only a
small number of widgets are supported to make code easier to port.
In its latest version AWT consists of 345 classes and contains more
than 140,000 lines of code.

Release 1.2 of the Java Development Kit included a completely
new GUI framework named Swing. Swing contains 539 classes
and more than 260,000 lines of code. This GUI framework is built
on top of AWT. It provides a “pluggable look and feel”, double
buffering and more widgets. A small subset of the core of AWT
(Component, Container, Frame Window), and Swing is depicted in
Figure 1.

In AWT, the root of the graphical widget hierarchy is Compo-
nent. It provides the essential functionalities of the GUI frame-
work. JComponent is the base class for most of the Swing wid-
gets. The core of Swing is defined by subclassing the core classes
of AWT. Each Swing widget can be a container for other widgets,
so JComponent inherits from Container. All the widgets except
top-level containers (like windows and frames) inherit from JCom-
ponent. The classes JFrame and JWindow inherit from Frame and
Window, respectively.

The AWT and Swing class hierarchies guarantee certain proper-
ties and behavior. In the AWT framework (i) a widget is a com-
ponent – every widget inherits from Component, (ii) a frame is a
window – Frame is a subclass of Window. On the other hand, the
Swing framework has the following properties: (i) a Swing widget
is not necessary a Swing component because not all of the Swing
classes inherit from JComponent, (ii) a Swing frame is an AWT
frame and an AWT window: JFrame inherits from Frame which
has Window as its superclass, (iii) a Swing window is an AWT win-
dow: JWindow inherits from Window.

2.2 Problem Analysis
Subclassing and refinement relationships are fundamentally dif-

ferent: the former results in a new class containing the incremental
changes to its parent class, whereas the latter results in the creation
of scope within which the original class is changed. As pointed
out by Findler et al. [12] and Torgersen [35] under the extensibil-
ity problem, subclassing does not solve the problem of adding new

A

C B

C' B'

A'
newFeature

C''
newFeature

B''
newFeature

Clients

Figure 2: Two strategies (gray portions) to introduce changes
without impacting existing clients

operations to a class without having to modify or recompile the
original program component and its existing clients.

In Java, if we wish to extend the class Component by subclass-
ing, without impacting existing clients, we can use either of two
strategies (see Figure 2): either we build a completely new hier-
archy derived from the root of the old hierarchy, duplicating old
features in the new hierarchy, or we derive new classes from the
leaves of the original hierarchy, duplicating the new features.

Swing illustrates an example of this problem. Swing is built on
top of AWT and uses subclassing to extend AWT core classes with
Swing functionalities. Since Java supports neither multiple inheri-
tance nor class extension, this design leads, however, to the follow-
ing severe consequences:

Duplicated Code. Due to the absence of an inheritance link bet-
ween JFrame and JWindow, features defined in JWindow have to be
duplicated in JFrame. In Swing, each widget can (i) describe itself
(the accessibleContext variable refers to a description of the com-
ponent) and (ii) support double buffering to provide smooth flicker-
free animation (methods update(), setLayout(), . . .). The source
code of JWindow is 551 lines, and JFrame is 829 lines. As a result,
241 lines of code are duplicated between these two classes: 43% of
JWindow reappears as 29% of JFrame.

Breaking Subtyping Inheritance. Whereas all AWT widgets are
AWT components (because they inherit from Component), widgets
defined in Swing can either be AWT or Swing components. Fur-
thermore, the Swing design breaks the AWT inheritance relation:
while a Window is a Component in AWT, a JWindow is not a JCom-
ponent in Swing. While a Button is a Component and JButton is a
JComponent, a JButton is not a Button [19].

Explicit Type Checks and Casts. A Swing component is a con-
tainer for other components. This is a feature obtained from Con-
tainer by inheritance (JComponent is subclass of Container). There-
fore types of subcomponents are Component, and not JComponent
(the type of the collection of components is Component[]). The fol-
lowing code typifies what happens in Swing components:

public class Container extends Component {
int ncomponents;
Component components[] = new Component[0];
public Component add (Component comp) {

addImpl(comp, null, -1);
return comp;

}
protected void addImpl (Component comp,

Object constraints, int index) {
...
component[ncomponents++] = comp;

...
}
public Component getComponents(int index) {
return component[index];
}
}

public class JComponent extends Container {
public void paintChildren (Graphics g) {

...
for (; i > = 0 ; i--) {

Component comp = getComponent (i);
isJComponent = (comp instanceof JComponent);
...
((JComponent)comp).getBounds();
...
}
}
}

In the Swing framework numerous explicit type checks need to
be performed to determine if a subcomponent is issued from Swing
or from AWT. For instance, a JComponent needs to know if its
subcomponents use double buffering or not. 16 type checks (...
instanceof JComponent) and 25 casts to JComponent are performed
in JComponent. In the whole Swing library, these numbers rise to
82 and 151, respectively.

3. CLASSBOX/J
A package can define new classes and it may refer to classes

defined in other packages using an import clause. After import-
ing a class, a package can either subclass it or reference it in a
declaration. In pure Java, import statements are not transitive: a
package p2 cannot import a class C from a package p1 if C was
imported rather than defined in p1. In contrast to MultiJava [25],
Hyper/J [28], CLOS [10] and Smalltalk [14], a Java package can-
not add methods to a class defined in another package. Therefore a
package can be adapted only by subclassing its member classes.

Classbox/J addresses these shortcomings by offering a means to
refine classes within a well-defined scope.

3.1 Classbox/J in a Nutshell
Classbox/J is a module system for Java allowing classes to be

refined with new class members, such as fields, methods and inner
classes. A classbox in Classbox/J is essentially a Java package with
the following three important differences: (i) imported classes can
be refined by adding or redefining class members using the refine
keyword, (ii) a class defined or imported within a classbox p can be
imported by another classbox. This allows the import clause to be
transitive, and (iii) a refined method can access its original behavior
using the original keyword.

We illustrate Classbox/J with a small example based on the Swing
case study.

Refining classes. Figure 3 illustrates two classboxes WidgetsCB
and EnhWidgetsCB. WidgetsCB defines two classes Component and
Button. EnhWidgetsCB imports them, refining Component with a
new instance variable lookAndFeel and redefining the paint() method.
These classboxes are implemented as follows:

package WidgetsCB;
public class Component {
public void update () { this.paint(); }
public void paint () { /* Old Code */ }
}
public class Button extends Component {
public Button (String name) { ... }

WidgetsCB EnhWidgetsCB

Button

Component

paint()
lookAndFeel

import
CB

Classbox CB extending class
C with a method m

C
m

Button(String)

Button

new Button("Ok").update();

Old code

New code
using

lookAndFeel

update()

Component

paint()

new Button("MacOS Button!").update();

this.paint();

OldAppCB

Button OldGUIApp

NewAppCB

Button NewGUIApp

legend

Figure 3: Two versions of classes Component and Button are
used by two different clients OldAppCB and NewAppCB.

}

package EnhWidgetsCB;
import WidgetsCB.Component;
import WidgetsCB.Button;
refine Component {
private ComponentUI lookAndFeel;
public void paint () { /* New code using lookAndFeel */ }
}

Refining a class conceptually defines a new version of it. In the
previous example, two versions of Component coexist at the same
time within the system in different scopes. The original version is
accessible through WidgetsCB and the new version through Enh-
WidgetsCB. Class members refining an imported class are local to
the refining classbox and to other classboxes that may import the
refined class.

Transitive import. A class imported by a classbox can be transi-
tively imported by other classboxes, whether this class is refined or
not. For instance, a client of the new version of the widgets can be
defined as:

package NewAppCB;
import EnhWidgetsCB.Button;
public class App {
public static void main(String[] argv) {

... new Button().paint(); ...
}
}

3.2 New Method Lookup Semantics
As shown in the previous section, class refinements have bounded

visibility. Moreover, redefinitions have precedence over imported
definitions. This behavior is obtained by a new semantics for method
lookup. We illustrate this operationally.

Import over inheritance. Import statements between packages
have to be taken into account when looking up a message. The
main point is that the import clause has precedence over inheri-

Button

EnhWidgetsCB

update()

Component Component

paint()

Button(String)

Button

paint()

WidgetsCB

Button

NewAppCB

main()

NewGUIApp

123

4
56

Lookup of update when new Button().update() is performed in NewAppCB: 1, 2, 3, 4, 5, 6
The method update calls the method paint. The latter is looked up as: 1, 2, 3, 4, 5

(new Button()).
 update()

Figure 4: Locality of changes entails a new method lookup se-
mantics. The numbers within the black boxes indicate the steps
taken in looking up a message sent to a button.

tance: before looking a method up in the superclass, the chain of
imports has to be considered first.

Figure 4 illustrates the lookup of messages update() and paint().
When the message update() is sent to an instance of Button in the
classbox NewAppCB, the lookup algorithm first searches for the
implementation of update() in the classbox NewAppCB (1). This
method is not defined in this classbox, therefore the lookup follows
the chain of import (2). In EnhWidgetsCB, update() is not defined,
so the lookup continues in WidgetsCB (3). In this classbox, the
class Button is not imported anymore but defined in it. Therefore,
update() is looked up in the superclass Component but starting from
the source classbox (NewAppCB, in step 4). Because Component is
not visible within NewAppCB and Button is imported from Enh-
WidgetsCB, the lookup continues to EnhWidgetsCB (5). The class
Component is visible, but the method update() is not implemented.
Finally the method is found in WidgetsCB. The method update()
triggers the message paint(). In a similar way, the method paint() is
looked up as in steps 1 through 5.

Note that defining new semantics for the method lookup algo-
rithm does not necessarily mean that the virtual machine (VM)
must be modified. As described in Section 6, the desired behav-
ior can be obtained by inserting some code that performs dynamic
run-time stack introspection where a method redefinition occurs.

Multiple imports. As illustrated in Figure 5, a diamond graph of
imports may imply the use of different class refinements defined
by several classboxes. In the classbox AppCB, sending the paint()
message to an instance of LabelButton invokes the implementation
of paint() on Component defined by WidgetsCB. In a similar way,
sending this message to an instance of Button triggers the imple-
mentation brought by NewWidgetsCB on Component.

Accessing the original method. When a method is redefined, the
original method is accessible using the construct original().

For instance, in the classbox EnhWidgetsCB the extension of
Component could be:

refine Component {
private ComponentUI lookAndFeel;
public void paint () {

if (lookAndFeel == nil) { original();}
else { /* use lookAndFeel */ }

}
}

The original() construct invokes the first method (e.g.,WidgetsCB
.Button.paint() in Figure 6) in the import chain that was redefined by
the method containing the expression original() (e.g.,EnhWidgetsCB.Button.paint()).

Component

paint()

WidgetsCB

LabelButton

WidgetSetCB

Component

paint()

2

3

AppCB

ButtonLabelButton

App

paint()
new LabelButton().paint();
new Button().paint();

1 1

Button

NewWidgetSetCB

Component

paint()

2

3

1

1
Lookup of the WidgetSetCB version of paint():
Lookup of the NewWidgetSetCB version of paint():

2 3

2 3

Figure 5: Within one classbox, different versions of the same
class can be accessible. From AppCB sending the paint() mes-
sage sent to a LabelButton triggers WidgetsCB’s refinement,
whereas sending it to a Button triggers NewWidgetsCB.

WidgetsCB EnhWidgetsCB

Old look

return
super.paint();

new Button().paint();

paint()

Component
MacOSX
look

new Button().paint();

Button
paint()

Component
paint()

Button
paint() original();

Figure 6: The original() construct invokes the hidden method
but in the context of the classbox changes.

Note that in particular super invocation in the original methods
takes into account potential changes introduced by the classbox
containing the original() invocation, preserving that way the method
lookup semantics of classbox. In Figure 6, new Button().paint() dis-
plays a button having a MacOSX look since, first the method Wid-
getsCB.Button.paint() is executed and the super invocation invokes
EnhWidgetsCB.Component.paint().

It is precisely this kind of scenario, which arises frequently in
the Swing case study, that has motivated the addition of the original
mechanism into the classbox model.

3.3 Properties of the Model
The model of classboxes defined in the previous section exhibits

several properties related to the visibility of refinements.

Locality of Changes. MultiJava [25] with its open-classes and As-
pect/J [1] with its inter-types allow class members to be defined
separately from the class they are related to. Class members are
not, however, contained in a unit of scope, therefore redefinition
is not allowed and composition has to be explicitly stated. With
classboxes, refinements of an imported class are visible to the refin-
ing classbox and to other classboxes that import this refined class.
The refined class is a new version of the original class that coex-
ists in the same system. Figure 3 shows two clients OldAppCB and
NewAppCB using the old and new version of the widget frame-
work. Any refinement introduced to WidgetsCB by EnhWidgetsCB
does not impact OldAppCB. This is because changes are confined
to EnhWidgetsCB and to other classboxes that may imported the
classes it refines (e.g.,NewAppCB).

Precedence of redefinition. Redefined class members have prece-
dence over the imported definition. EnhWidgetsCB redefines the
method paint() for Component, thus hiding the previous definition.
From this classbox and other classboxes that may import Compo-
nent or its subclasses, the original definition of paint() is no longer
accessible. Within the classbox EnhWidgetsCB or NewAppCB, send-
ing the message update() or paint() to an instance of Button will
trigger the new definition of paint().

Refinements along a chain of import. With classboxes, imports
are transitive: a new version of an imported class can be re-imported.
Figure 3 shows the class Button defined in WidgetsCB that is im-
ported in EnhWidgetsCB and from this last, are imported in NewAp-
pCB. From the point of view of an importing classbox, there is
no distinction between a class that is defined or imported in the
provider classbox (i.e., classbox where the class is imported from).
An imported class can always be refined and then re-imported, even
multiple times over a chain of imports.

4. CROSS-CUTTING CHANGES
Refining a class is superficially similar to subclassing: a classbox

can add new interfaces, fields, methods, static field, inner classes
and constructors as well as redefine methods of an imported class.
The key difference is that the changes are applied to the original
class, not a subclass, but only within a well-defined scope. It is this
feature that supports the introduction of cross-cutting changes. The
following example shows how a look and feel feature is added to
the root of a class hierarchy without breaking former clients, while
propagating the refinements to collaborating classes. As shown
in Figure 7, two classboxes WidgetsCB and FactoryCB define a base
system which clients rely on. Since modifying these base classes
would break these clients, changes cannot be directly applied to the
classboxes WidgetsCB and FactoryCB, but are introduced in class-

AppCBLookAndFeelCB

WidgetsCB FactoryCB

Factory

App

Factory generates
widgets with look and feel

LookAndFeel

lookAndFeel
Component

Button

paint()
Button()

Window

paint()
Window()

Window

Button

Window

Button

Introduce cross-cutting changes Use the changed application

Original Application without look and feel

Component
paint()

Window
x1,y1,x2,y2
Window()
paint()

Button

Button()
paint()

Factory

newButton()
newWindow()

Figure 7: From the viewpoint of AppCB, refinements of the root
of the hierarchy (Component) are propagated to the class Fac-
tory. This is a consequence of importing the version of widgets
that have a look and feel.

box LookAndFeelCB and used by a new client in AppCB. The rest
of this section shows how classboxes allow one to incorporate these
changes without having to modify WidgetsCB and FactoryCB.

The following example shows some refinements defined with
classboxes on a base system that (1) does not break clients that rely
on the original definitions of this system, and that (2) propagate
these refinements to collaborating classes defined in other class-
boxes.

Base system. The classbox WidgetsCB defines three classes: an
abstract class Component and two subclasses Button and Window.
The source code of this classbox is:

package WidgetsCB;
public abstract class Component {

public abstract void paint();
}
public class Button extends Component {

public Button () { }
public void paint() {

System.out.println(”Button”);
}

}
public class Window extends Component {

int x1, y1, x2, y2;
public Window () { x1 = 50; y1 = 50; x2= 200; y2=200;}
public void paint() {

System.out.println(”Window”);
}

}

New widgets are created using a factory. This factory is imple-
mented in a separate classbox FactoryCB. When it was designed,
the implementor of Factory relied on the version of the widgets
obtained from WidgetsCB without any look and feel. The widget
factory is defined as:

package FactoryCB;
import WidgetsCB.*;
public class Factory {

public Button newButton () { return new Button(); }
public Window newWindow () { return new Window(); }

}

Refinement of the base system. To introduce the changes that add
a “look and feel” to the widgets, two new classboxes are added:
LookAndFeelCB, which effectively defines the changes, and Ap-
pCB, which is a new client of the resulting system. In LookAnd-
FeelCB the root class Component is refined with a lookAndFeel
variable. In order for classes Button and Window to use this new
variable added to their superclass, their constructor and paint() are
redefined. These refinements are defined as:

package LookAndFeelCB;
import WidgetsCB.Component;
import WidgetsCB.Button;
import WidgetsCB.Window;
public class LookAndFeel {
...
}
refine Component {

LookAndFeel lookAndFeel; // Variable added to Component
}
refine Button {

public Button() { // Constructor redefined
lookAndFeel = new LookAndFeel(”ButtonMacOSX”);
original(); // Original constructor called
}
public void paint() { // Method paint redefined

System.out.println(lookAndFeel.getName());
}

}
refine Window {

public Window() { // Constructor redefined
lookAndFeel = new LookAndFeel(”WindowMacOSX”);
original(); // Original constructor called
}
public void paint() { // Method paint redefined

System.out.println(lookAndFeel.getName());
}

}

A small application is built in the classbox AppCB. This classbox
imports the class Factory from FactoryCB and the widgets having a
look and feel from LookAndFeelCB. Now when the new application
uses the factory to create widgets, it gets widgets with the look and
feel as defined in the LookAndFeelCB classbox, whereas the clients
of the original code defined in WidgetsCB are not impacted, i.e.,
get widgets without look and feel. As AppCB imports the version
of Window and Button with a look and feel, from the perspective of
AppCB, this version of the widgets takes precedence over the one
present in FactoryCB.

package AppCB;
import FactoryCB.*;
import LookAndFeelCB.*;
public class App {

public static void main (String[] argv) {
Factory f = new Factory();
Window w = f.newWindow();
Button b = f.newButton();
//Display ”WindowMacOSX” and ”ButtonMacOSX”
w.paint();
b.paint();

}
}

5. SWING AS A CLASSBOX
Because the mechanism provided by Java to specialize code is

inheritance, Swing is built on top of AWT using subclassing. As
already shown in Section 2 this extension of AWT is developed
at a high cost: (i) properties defined in AWT according to the in-
heritance property are not valid in Swing anymore (i.e., in AWT a

Component

Window
Button

Frame

Container

java.awt

Component

Window ButtonFrame Container

javax.swing

Figure 8: An ideal refactoring based on classboxes

Frame is a Window, but in Swing a JFrame is not a JWindow. Not
all Swing widgets are JComponent), (ii) a serious amount of code is
duplicated to emulate missing inheritance links in Swing (i.e., 43%
of JWindow is duplicated in 29% of JFrame), and (iii) Swing code
is littered with explicit type checks.

Figure 8 shows an ideal situation where Swing would be extend-
ing AWT using classboxes. Obtaining such a situation would be
possible if Swing would have been implemented by following the
inheritance tree of AWT (i.e., introducing a JContainer class) or if
we could afford to perform a complete overhaul of Swing. Since
Swing, however, is a large framework with complex logic we can-
not rewrite it totally to obtain the situation depicted. In order to
illustrate how classboxes offer a working solution, we refactored
Swing as a classbox that refines AWT classes. In this section we
first describe the new architecture of Swing made out of classboxes,
then we present the results obtained, and finally we describe some
issues that we encountered while refactoring.

5.1 Swing Refined from AWT Class
We focus on the refactoring of the core class JComponent, and

then we describe how the classbox SwingCB is defined.

Component refactored in two steps. The goal of refactoring JCom-
ponent is to make the Swing version JComponent a refinement of
the AWT version Component. As depicted in Figure 1, the class
JComponent is a subclass of the AWT classes Container and Com-
ponent. As Container is an intermediate class between JComponent
and Component, the refactoring of the class JComponent is done in
two steps, as illustrated in Figure 9:

1. Incorporating the class Container in JComponent. A Swing
component has the ability to contain other components. Fea-
tures defined by Container have first to be included in JCom-
ponent. Container defines 108 methods and 21 fields, how-
ever only a few of them have to be duplicated (32 methods re-
lated to container management (e.g.,add, remove) and events
management, and 3 variables). We define this “enlarged”
JComponent in the classbox SwingCB. This new class is a
subclass of Component, which is imported in the new class-
box SwingCB. JComponent overrides 22 methods in Con-
tainer and most of the overriding methods do not perform
any super call. For the methods in JComponent that perform
a super call, the two implementations are simply merged.

2. Making this new JComponent a refinement of Component
The inheritance link between JComponent and the imported
Component is replaced by a refinement link.

javax.swing

Component

java.awt

update()

JComponent
accessibleContext

add(Component)

Container
components

remove(Component)

SwingCB

update()

 Component
accessibleContext

add(Component)

components

remove(Component)

step 1 step 2

SwingCB

update()

JComponent
accessibleContext

add(Component)

components

remove(Component)

Component

Window

Component

AwtCB

add(Component)

Container
components

remove(Component)

Window

Component

AwtCB

add(Component)

Container
components

remove(Component)

Window

Figure 9: The refactoring of the AWT class Component is per-
formed in two steps: (i) the intermediate class is merged to
JComponent, then (ii) this merge becomes a refinement of the
AWT class Component.

Swing as AWT refined. Figure 10 depicts the new architecture of
Swing. Because the definition of a Java package is a valid definition
of a classbox, the package java.awt is immediately turned into the
AwtCB classbox: no modification is applied to AWT.

The classbox SwingCB imports the class Component, Window,
Frame, and Button from AwtCB. These classes are refined with the
Swing features.

SwingCB

Component

Window

Button

Frame

Container

Button
Frame

AwtCB

Window

getAccessibleContext()
setLayout()
setRootPane()
setContentPane()
...

rootPane

update()

 Component
accessibleContext

add(Component)

components

remove(Component)
...

Figure 10: Swing refactored as a classbox.

5.2 Advantages with Classboxes
The Swing classes JComponent, JButton, JWindow and JFrame

have been refactored as refinement of their AWT counterpart classes.
The amount of code refactored is about 6,500 lines of code spread
over these 4 classes. Designing Swing with classboxes has several
advantages over the original implementation.

Inheritance coherence. The inheritance link defined in the AwtCB
is fully preserved in the SwingCB. Therefore every Swing widgets,
including frames and windows, are swing components. The rela-
tion “a frame is a window” stated by AWT is true in SwingCB.

Removed duplicated code. JWindow and JFrame are refactored
into refinements of Window and Frame. As a result: Frame re-
mains a subclass of Window in Swing and all the duplicated meth-
ods and variables related to the layout, root pane and content pane
in JFrame are removed. The size of refined Frame is 29% less than
the original JFrame.

Because JFrame and JWindow do not inherit from JComponent,
the update() method defined by the latter had to be duplicated in
JFrame and JWindow. With Swing as a classbox, this duplication
is eliminated.

Explicit type checks avoided. Within the SwingCB classbox, a
Swing component is a Component. Therefore, all the explicit type-
checks and casts used in the original Swing to check if a subcom-
ponent is a Component or a JComponent are useless.

Since the checks (... instanceof JComponent) are always true,
downcasts from Component to JComponent are simply removed.
The 16 type-checks (... instanceof JComponent) and 25 casts to
JComponent were removed while refactoring the class JComponent
(no such expressions are present in the other refactored classes).

5.3 Issues and Limits
Now we discuss the results obtained and the impacts on the pack-

ages in terms of their visibility.

Refactoring super calls. Several methods related to the content
management in JWindow like remove(Component) and setLayout(
LayoutManager) override methods defined in Window. These meth-
ods perform a check on a property of the root pane, then call the
original definition using a super call. For instance, the definition of
setLayout(LayoutManager manager) in JWindow is:
public void setLayout(LayoutManager manager) {

if (isRootPaneCheckingEnabled()) {
throw createRootPaneException(”setLayout”);

}
else {

super.setLayout(manager);
}

}

The expression super.setLayout(manager) triggers the implementa-
tion defined in the AWT class Window. Refactoring this overriding
method into a refinement of Window implies that the original key-
word must be used to invoke the original AWT definition. This
scenario convinced us of the need to introduce the original() con-
struct to the classbox model.

Need to enlarge visibility of some Swing classes. Replacing the
Swing class JComponent by a refinement of Component enlarges
the visibility of some classes that were in Swing. For instance,
JComponent references Swing classes like AncestorNotifier, which
are private to the javax.swing package. Swing classes that were pri-
vate to Swing need to be visible outside their defining package.

Limitations of our refactoring. Unfortunately, removing the class
JComponent would entail a major overhaul of Swing. The reason is
that each method of the class javax.swing.plaf.ComponentUI refers
to the name JComponent. Given our limited resources for this ex-
periment, we confined this overhaul to the classes JWindow, JFrame
and JButton. As a consequence, our version of Swing does not con-
tain the pluggable look and feel.

Execution cost. With our current implementation of classboxes,
the new method lookup semantics is about 22 times slower than the

normal one. This result is obtained from triggering 10000 times the
update() methods redefined in Component. This loop takes 1008
ms, whereas it is 45 ms for the same method directly implemented
in this class. As explained in the following section, our imple-
mentation is rather naive. In our previous work with classboxes in
Smalltalk [4], we were able to optimize the implementation so that
the cost of the redefined method lookup is only 1.1 times slower
(compared to 22 times slower with the Java version).

6. IMPLEMENTATION
We implemented a preprocessor that translates classbox defini-

tions into pure Java files, which are then compiled using a classical
compiler. While producing Java source files, classboxes are com-
piled away by producing a Java package for each classbox. Our
implementation is freely available at www.iam.unibe.ch/∼scg/Re-
search/Classboxes. It offers an executable cbj compiler similar
to the javac compiler, where argument files are classbox-aware.
Please note that this implementation is naive and serves only as a
proof-of-concept for Java.

Our implementation handles three different ways of refining an
imported class: (i) a new class member is added (i.e., not rede-
fined), (ii) a class member other than a method is redefined, and
(iii) a method is redefined. The following sections examine each of
these cases. We drew a distinction between redefined methods and
other redefined class members because the former are dynamically
looked up when messages are sent, but not the latter (which are
statically bound). We then describe how the new method lookup se-
mantics is implemented using dynamic introspection of the method
call stack (Section 6.4). And finally we show how the transitivity
of imports is handled (Section 6.5) and we present some limitations
and possible improvements (Section 6.6).

6.1 Pure Class Member Addition
Class members that are new additions (not redefinitions) are in-

serted into the Java class without being modified. For instance, a
classbox WidgetsCB defines an empty class Component, that is re-
fined in a classbox EnhWidgetsCB.

//Classbox WidgetsCB
package WidgetsCB;
public class Component {
}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {
private int color;
public int color () {

return color;
}
}

When passed to our cbj preprocessor, the resulting Java pack-
age used to generate pure java bytecodes is:

package WidgetsCB;
public class Component {
private int color;
public int color () {
return color;
}
}

6.2 Redefinition of Class Members Other Than
Methods

For class members that are not looked up (i.e., variables, static
fields, static initializations) a renaming is performed while compil-
ing a classbox away. Classbox WidgetsCB defines a class Compo-
nent that contains a variable color accessed by a method color1()
and an inner class Color. This class is refined in a classbox En-
hWidgetsCB with a new variable color, a method color2() and a new
inner class Color.

http://www.iam.unibe.ch/~scg/Research/Classboxes
http://www.iam.unibe.ch/~scg/Research/Classboxes

//Classbox WidgetsCB
package WidgetsCB;
public class Component {

Color color;
public Color color1() {
return color;
}
class Color {}
}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {
Color color;
public Color color2() {
return color;
}
class Color {}
}

The resulted Java code gathers all the class members:

package WidgetsCB;
public class Component {

WidgetsCBColor WidgetsCBcolor;
EnhWidgetsCBColor EnhWidgetsCBcolor;
public WidgetsCBColor foo() {

return WidgetsCBcolor;
}
public EnhWidgetsCBColor bar() {

return EnhWidgetsCBcolor;
}
class WidgetsCBColor { }
class EnhWidgetsCBColor { }
}

6.3 Method Redefinition
Looking up methods that are redefined requires a new method

lookup semantics (Section 3.2). When producing Java source code,
method redefinitions are compiled into one method where each re-
definition is contained in a if statement used to trigger the right
definition according to the current position in the execution flow of
the program (cf., following section). The method paint() contained
in the class Component is redefined in EnhWidgetsCB

//Classbox WidgetsCB
package WidgetsCB;
public class Component {
public void update() {
paint();
}
public void paint() {

//Original paint
}
}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {
public void paint() {

//Enhanced paint
}
}

The pure Java source code produced contains only one paint()
method that gathers the two implementations of the method.

package WidgetsCB;
public class Component {

public void update() {
paint();
}
public void paint() {
if (ClassboxInfo.methodVisible (

”EnhWidgetsCB”, ”Component”, ”paint”)) {
//Enhanced paint
}
if (ClassboxInfo.methodVisible (

”WidgetsCB”, ”Component”, ”paint”)) {
//Original paint
}
}
}

ClassboxInfo is a generated class that (i) gathers some informa-
tions about the composition of classboxes needed at runtime like
a description of the classboxes that were used to produce the Java
code, and (ii) offers some methods useful to introspect the method
calls stack. At runtime, when the update() method is invoked, one
of the two implementations is executed according to the structure
of classboxes inferred from the method calls stack.

6.4 Dynamic Introspection of the Method Call
Stack

Whenever a redefined method is invoked, the method call stack
is reified (by using the exception handling mechanism of Java) to
build the structure of the classboxes.

//Classbox OldAppCB
package OldAppCB;
import WidgetsCB.Component;
public class OldApp {

public static void main (String[] argv) {
// Original paint method invoked
new Component().update();
}
}

When the main(...) method of the OldApp is invoked, before en-
tering the paint() method the corresponding method call stack given
by Java is:

WidgetsCB.Component.update() //Top of the stack
OldAppCB.OldApp.main() //Bottom of the stack

Using this stack reification and the information about the struc-
ture of classboxes kept in ClassboxInfo, the static method Classbox-
Info.methodVisible (“EnhWidgetsCB”, “Component”, “paint”) yields
false, whereas ClassboxInfo.methodVisible (“WidgetsCB”, “Compo-
nent”, “paint”) return true.

NewAppCB is a client of the refined Component:

//Classbox NewAppCB
package NewAppCB;
import EnhWidgetsCB.Component;
public class NewApp {
public static void main (String[] argv) {

// Enhanced paint method invoked
new Component().update();
}
}

In a similar way, before entering the paint() method, the method
call stack is:

WidgetsCB.Component.update() //Top of the stack
NewAppCB.NewApp.main() //Bottom of the stack

Because the paint() method is redefined in the classbox NewAp-
pCB, the new implementation has to be used: the static method
ClassboxInfo.methodVisible (“EnhWidgetsCB”, “Component”, “paint”)
yields true, whereas ClassboxInfo.methodVisible (“WidgetsCB”, “Com-
ponent”, “paint”) return false.

6.5 Adapting Classbox Import to Package Im-
port

Since class imports are transitive in Classbox/J, but not in plain
Java, all transitive imports must be compiled away. In the resulting
Java source code, each import statement must refer to the original
package that defines this class.

For example, while producing the package corresponding to the
classbox NewAppCB the import statement import EnhWidgetsCB.
Component is translated into import WidgetsCB.Component because
the class Component is defined in WidgetsCB.

6.6 Limitations and Possible Improvements
Since the current implementation is only intended to serve as a

proof of concept, we feel it is important to raise a few points con-
cerning the limitations of this prototype.

Native methods. A native method is a function written in a lan-
guage other than Java. Only the signature of the method is declared
within the Java class. Because such methods do not contain any
Java code, they cannot be rewritten using the mechanism described
above. As a consequence, native methods cannot be redefined.

Super call in a constructor. Constructors can be redefined as well
as methods. Constructor redefinitions are compiled into one sin-
gle constructor following the mechanism described in Section 6.3.
This approach is, however, limited when a constructor performs a
super call. Java enforces the constructor of the superclass to be ex-
ecuted before the constructor of the subclass: the super call has to
be the first statement of the constructor. Therefore the body of a
constructor cannot be embedded in a if statement.

Debugging facilities. Even with our current approach where class-
boxes are compiled away, information about classboxes needed to
structure the system is available (class ClassboxInfo). This informa-
tion is accessible with a debugger, however it is tedious to manually
retrieve the defining classbox for a given class member. Develop-
ment with classboxes would be more comfortable with a classbox-
aware debugger.

Modifying the VM. Prior to this work, we implemented two ver-
sions of the classbox model in Smalltalk: (i) by implementing a
new method lookup algorithm within the VM [5], and (ii) by using
bytecode transformation and method context reification on a nor-
mal VM [4]. The cost of the former strategy is about 1.1 times
slower and the latter is about 1.25 times slower (these figures were
obtained by comparing the execution times of a normal Smalltalk
application in a classbox and a plain environment).

The Java VM does not provide a bytecode that reifies the con-
text of a method call. Therefore, the latter strategy cannot be im-
plemented in Java. By modifying the Java VM to implement a
new method lookup algorithm [5], we expect to achieve a similar
speedup. Whereas with this approach we would need to modify the
VM (which can be tedious), the advantage is that classboxes would
be transparent in term of run-time cost.

7. RELATED WORK
Over the last decade considerable research has focused on new

ways to modularize or change a system. One main line of our work
has been to keep the notion of class and package distinct. This has
to be put in contrast with systems like virtual classes [21] or hier-
archy inheritance [8] where classes and modules are unified under
a common lookup algorithm operating on namespaces that serve as
classes and modules.

The related work presented in this section can be classified ac-
cording to five families: (i) class extensibility (class extensions,
Unit, Jiazzi, open classes), (ii) module (MixJuice, MJ), (iii) alter-
native inheritance (mixins, virtual classes, nested and hierarchy in-
heritance), (iv) other approaches (AOP, namespaces).

Class Extensibility
Class extension. CLOS [17], Smalltalk [14] and Objective-C [27,
29] allow an already existing class to be extended with new me-
thods or method redefinitions (not in Objective-C). These class ex-
tensions, however, are global, which leads to conflicts when two
packages extend the same class with the same methods. The reso-
lution policy usually adopted is that the last version of a redefined
method is the one that will be globally used. As a consequence,
only a single version of a class can be present in a running system.

Classboxes make it possible for multiple versions of the same class
to be present in the system at the same time.

Unit. MZScheme [13] offers an advanced module system in which
a unit is the basic building block. A unit is a packaging entity
composed of requirements, definitions and exports. Mixins are de-
fined by creating within a unit a subclass of a class that will be pro-
vided by other units at linking time. Units have to be instantiated
and composed with each other to form a program. Reusability and
extensibility are expressed by recombining units. An application,
made of units, can be recomposed and by aliasing new units can
inserted. Units differ from classboxes since a unit acts as a black
box: a class within a unit cannot be refined. Instead a new unit has
to be provided and included in a recomposition. New mixins can be
defined to extend a base system, but we fall again in all the problem
related to using inheritance. Therefore not much would have been
gained if Swing had been refactored with units.

Open classes. MultiJava [25] is an extension of Java that supports
open classes and multiple method dispatch. An open class is a class
to which new methods can be added. Method redefinitions are not,
however, allowed: an open class cannot have one of its existing
methods refined.

Jiazzi. The unit system of MZScheme has been ported to Java. Ji-
azzi [22] is an enhancement of Java that adds support for encapsu-
lated code modules as unit. The main difference with MZScheme is
that Jiazzi enables the creation of open classes that can be enhanced
with new methods and fields without invasively modifying the orig-
inal definitions or breaking their existing subclasses. This enables
a modularization of cross-cutting concerns [23]. Refinements oc-
cur with links between units. The difference with classboxes are
twofold: (i) classes defined in the same unit are tied together. Let’s
assume a class PointFactory and a class Point are contained into the
same unit, and Point is imported and refined with a color feature in
another unit. Because PointFactory is defined in the same unit that
the colorless version of Point, even if PointFactory is also imported
in the unit containing the color addition, there is no way for the
factory to produce colored points. (ii) Refinement applications are
implemented with subclassing, therefore an instance of Point pro-
duced in a unit is not an instance of the refined class Point.

Modules
Mixjuice. Mixjuice [16] defines difference-based modules, in which
a module can refine a class defined in another module by adding
new class members. A refined class constitutes a new version. Con-
trary to classboxes, with MixJuice multiple versions of the same
class cannot, be present in the system at the same time.

MJ. MJ [9] is a module system for Java that provides a high-level
interface to abstract low-level Java technical issues related to class
loading. The focus of MJ is to support the deployment of different
versions of the same package. As such with MJ changes cannot
be added to existing classes. In MJ, a module contains the follow-
ing information: (i) class definition, (ii) dependencies with classes
offered by other modules, (iii) access control for this module’s pro-
vided classes like class privacy and restriction for the clients in sub-
classing provided classes, and (iv) some initialization code.

By removing some technical limitations of the dynamic class
loading mechanism related to the use of CLASSPATH, MJ allows
multiple versions of a class to coexist at the same time within a
system. These versions are referenced by different namespaces

(i.e., classloaders), therefore, they are considered to be two dif-
ferent classes. New versions of a class cannot be propagated to
formerly collaborating classes without modifying the original de-
pendancies: modules are considered to be black boxes in which
contained classes cannot be modified. This mechanism differs from
classboxes because, for a given class, formerly collaborating classes
can be reused with new versions of the original class. MJ cannot be
used to refactor Swing to our new architecture since classes cannot
be extended with new changes.

Alternative Inheritance
Virtual classes. Virtual classes were originally developed for the
language BETA [18], primarily as a mechanism for generic pro-
gramming rather than for extensibility [21]. Keris [37], Caesar [24],
and gbeta [11] offer such a mechanism, where method and class
lookup are unified under a common lookup algorithm. Virtual clas-
ses are not statically safe because they permit types of method pa-
rameter to change covariantly with subtyping. In a similar way that
a method is looked up according to an instance, a class is looked up
according to an instance (i.e., an encapsulating class). With such a
unification of method and class lookup, the role of a class is over-
loaded with semantics of packages and objects constructor. With
classboxes, we keep the original meanings of class and package
separate.

Hierarchy Inheritance. Cook [8] presents a use of inheritance as a
derivation of modified hierarchies or other graph structures. Links
between nodes in a graph are interpreted as self-references from
within the graph to itself. By inheriting the graph and modifying
individual nodes, any access to the original nodes is redirected to
the modified versions. For example, a complete class hierarchy
may be inherited, while new definitions are derived for some in-
ternal classes. The result of this inheritance is a modified class hi-
erarchy with the same basic structure as the original, but in which
the behavior of all classes modified that depend upon the classes
explicitly changed is modified. Hierarchy inheritance is based on
having a lookup of classes and on relationship between group of
classes, whereas with classboxes, no class-lookup is involved and
import is done at the class-level.

Nested inheritance. The Jx programming language [26] is an ex-
tension of Java where members of an encapsulating class or pack-
age may be enhanced in a subclass or subpackage. Packages may
have a declared inheritance relationship. Nested classes in Jx are
similar to virtual classes. Unlike virtual classes, nested classes in
Jx are attributes to their enclosing class, not attributes of instances
of their enclosing class. The difference with classboxes is that in
Jx (i) inheritance is overloaded with import semantics, and (ii) a
class is defined in only one classbox and can be extended by others,
whereas with Jx classes are looked up according to the inheritance
defined between packages and between classes.

Scala. Scala [32] is a statically-typed object-oriented and func-
tional programming language developed at EPFL, the École Poly-
technique Fédérale de Lausanne. Scala introduces a new concept
to solve the extensibility problem (Section 2.2): views allow one
to augment a class with new members. Views follow some of the
intuitions of Haskell’s type classes, translating them into an object-
oriented approach. The scope of a view can be controlled, and com-
peting views can coexist in different parts of one program. A view
is statically applied by the compiler to satisfy type constraints. For
instance, if a variable anA is of type A, the compiler would translate

an expression var aB: B = a, which declares a variable aB of type B
and initializes it with a reference to anA, as var aB: B = view(anA),
where view is a method (or a function) provided by the programmer,
taking an argument of type A and returning an object of type B. In
Scala a conversion is done by using type information provided by
the programmer whereas with classboxes the scope of change de-
pends on the graph of classboxes involved in the computation.

Mixin Layers. A collaboration-based design [15, 36] aims at sup-
porting large-scale refinements. A collaboration is a set of roles
applied to a set of participant objects. Collaborations are layered
linearly to form an application. In mixin layers [33], Smaragdakis
and Batory represent a collaboration as a C++ template, a role as a
mixin [6], and a participating object as a class. A layered applica-
tion that uses mixin layers is open to changes by adding new col-
laborations. However, for an application that is not layered, mixin
layers do not offer a satisfying solution to support unanticipated
changes.

Feature-oriented programming. Feature-Oriented Programming
is the study of feature modularity in product-lines [30]. AHEAD [3,
20] is an approach to Feature-Oriented Programming (FOP) where
a base system is regarded as a constant and refinements intended
to be added are functions adding features to this base system. A
refinement is a function that takes a program as input and produces
a refined program as output. FOP advocates program construction
as a set of functions applied to a base system. New changes are
modeled as new functions. Contrary to classboxes, AHEAD does
not support multiple versions of the same class living in the same
system.

Generic type. Torgersen [35] uses generic type extensions of C#
and Java to solve the extensibility problem in a secure and type safe
manner. His solutions rely on the use of F-bounds [7] and wildcards
in the declaration of type variable to make them type-safe when a
system is extended with new data-types and operators. However,
use of generic type has to be foreseen prior to apply an extension,
as a consequence, this approach does not fit to support unantici-
pated changes.

Other Approaches
Aspect-oriented programming. Hyper/J [28] is based on the no-
tion of hyperspaces, and promotes composition of independent con-
cerns at different times. Hyperslices are building blocks containing
fragments of class definitions. They are intended to be composed
to form larger building blocks (or complete systems) called hyper-
modules. A hyperslice defines methods for classes that are not nec-
essarily defined in that hyperslice: class members are spread over
several hyperslices. With its notion of inter-type, AspectJ [1] al-
lows class members to be separated from the class definition by
being defined in an aspect. Whereas with classboxes a class can be
refined in two classboxes with two method having the same name,
with Aspect/J conflicts are not allowed: two aspects cannot define
two methods having the same name on the same class. This kind
of extension does not allow redefinition and consequently does not
help in supporting unanticipated evolution.
Sister namespaces. In Java, a class type is uniquely identified at
runtime by the combination of a class loader and a fully qualified
class name. The same class loaded into two different class loaders
(i.e., namespaces) has two distinct types [31]. Let’s assume that
two classloaders N1 and N2 load the same class C. One instance
of the class C in the classloader N1 cannot be regarded as an in-

stance of C in a second classloader N2 because they have different
types. This is identified as the problem of the version barrier. Sis-
ter namespaces [31] relax the version barrier between application
components by defining the notion of binary compatibility and ex-
tending the type checker. Sister namespaces make the exchange of
instance of different class versions possible across classloaders by
relaxing the type checker. To be compatible, two class versions has
to be “close enough”, whereas with classboxes a class can be re-
fined with any kind of class members.

8. CONCLUSION
Classboxes address the problem of delimiting visibility of a change

to a restricted scope in order to avoid conflicts with other changes
and to avoid impacting clients that should not be affected. In a
classbox, classes can be defined, classes can be imported from other
classes, and class members can be defined for any classes visible
(i.e., defined or imported) in this classbox. Classboxes offer an el-
egant way of bringing some unanticipated changes over a system
while delimitating the impact of these changes.

In this paper, we present the Java implementation of this model
by adding a small number of constructs to Java. A classbox is
a Java package where imported classes can be refined with new
class members and imported classes that are refined or not to be re-
imported in other classboxes. Having a Java version of the model
shows that classboxes can be applied to a statically-type language
like Java.

By refactoring Swing, we stress-tested the classbox model by
applying it to a large case study. Our new version of Swing removes
(i) the incoherence in the original Swing hierarchy and (ii) the code
duplication that was introduced due to the limitations of the Swing
inheritance hierarchy. Moreover, while refactoring, we found the
need to extend the classbox model with a new construct that allows
a previous definition of a redefined method to be accessed.

As a future work we plan to enhance the notion of refinement in
order to enable the use of classboxes as a way to express general
changes that can be applied to a system (and not just additions or
redefinitions of class members).

Acknowledgments. We gratefully acknowledge the financial sup-
port of the Swiss National Science Foundation for the projects “Tools
and Techniques for Decomposing and Composing Software” (SNF
Project No. 2000-067855.02) and “Recast: Evolution of Object-
Oriented Applications” (SNF 2000-061655.00/1).

We also like to thank Gabriela Arévalo, Marcus Denker, Günter
Kniesel, Sean McDirmid, Eric Tanter, Matthias Rieger, Klaus D.
Witzel for their valuable comments and discussions.

9. REFERENCES
[1] AspectJ home page. http://eclipse.org/aspectj/.
[2] Awt api.

http://java.sun.com/j2se/1.3/docs/api/java/awt/package-
summary.html.

[3] D. Batory, J. Liu, and J. N. Sarvela. Refinements and
multi-dimensional separation of concerns. In Proceedings
ESEC/FSE-11, pages 48–57, New York, NY, USA, 2003.
ACM Press.

[4] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts.
Classboxes: Controlling visibility of class extensions.
Computer Languages, Systems and Structures,
31(3-4):107–126, May 2005.

[5] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A minimal
module model supporting local rebinding. In Proceedings of
JMLC 2003, volume 2789 of LNCS, pages 122–131.
Springer-Verlag.

[6] G. Bracha and G. Lindstrom. Modularity meets inheritance.
Uucs-91-017, University of Utah, Dept. Comp. Sci., Oct.
1991.

[7] P. S. Canning, W. Cook, W. L. Hill, J. C. Mitchell, and W. G.
Olthoff. F-bounded polymorphism for object-oriented
programming. In Proceedings of the ACM Conference on
Functional Programming and Computer Architecture, pages
273–280, Sept. 1989.

[8] W. R. Cook. A Denotational Semantics of Inheritance. Ph.D.
thesis, Department of Computer Science, Brown University,
Providence, RI, May 1989.

[9] J. Corwin, D. F. Bacon, D. Grove, and C. Murthy. MJ: a
rational module system for Java and its applications. In
Proceedings OOSPLA 2003, pages 241–254. ACM Press.

[10] L. G. DeMichiel and R. P. Gabriel. The common lisp object
system: An overview. In J. Bézivin, J.-M. Hullot, P. Cointe,
and H. Lieberman, editors, Proceedings ECOOP ’87,
volume 276 of LNCS, pages 151–170, Paris, France, June
1987. Springer-Verlag.

[11] E. Ernst. gbeta – a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD
thesis, Department of Computer Science, University of
Aarhus, Århus, Denmark, 1999.

[12] R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In Proceedings of the
third ACM SIGPLAN international conference on Functional
programming, pages 94–104. ACM Press, 1998.

[13] M. Flatt and M. Felleisen. Units: Cool modules for hot
languages. In Proceedings of PLDI ’98 Conference on
Programming Language Design and Implementation, pages
236–248. ACM Press, 1998.

[14] A. Goldberg and D. Robson. Smalltalk-80: The Language.
Addison Wesley, 1989.

[15] I. M. Holland. Specifying reusable components using
contracts. In O. L. Madsen, editor, Proceedings ECOOP ’92,
volume 615 of LNCS, pages 287–308, Utrecht, the
Netherlands, June 1992. Springer-Verlag.

[16] Y. Ichisugi and A. Tanaka. Difference-based modules: A
class independent module mechanism. In Proceedings
ECOOP 2002, volume 2374 of LNCS, Malaga, Spain, June
2002. Springer Verlag.

[17] S. E. Keene. Object-Oriented Programming in
Common-Lisp. Addison Wesley, 1989.

[18] B. B. Kristensen, O. L. Madsen, B. Moller-Pedersen, and
K. Nygaard. The BETA programming language. In
B. Shriver and P. Wegner, editors, Research Directions in
Object-Oriented Programming, pages 7–48. MIT Press,
Cambridge, Mass., 1987.

[19] W. LaLonde and J. Pugh. Subclassing 6= Subtyping 6= Is-a.
Journal of Object-Oriented Programming, 3(5):57–62, Jan.
1991.

[20] R. E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
support for features in advanced modularization technlogies.
In Proceedings ECOOP 2005.

[21] O. L. Madsen and B. Moller-Pedersen. Virtual classes: A
powerful mechanism in object-oriented programming. In
Proceedings OOPSLA ’89, ACM SIGPLAN Notices,

volume 24, pages 397–406, Oct. 1989.
[22] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New age

components for old fashioned java. In Proceedings OOPSLA
2001, ACM SIGPLAN Notices, pages 211–222, Oct. 2001.

[23] S. McDirmid and W. C. Hsieh. Aspect-oriented
programming with jiazzi. In AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software
development, pages 70–79, New York, NY, USA, 2003.
ACM Press.

[24] M. Mezini and K. Ostermann. Conquering aspects with
caesar. In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 90–99. ACM
Press, 2003.

[25] T. Millstein, M. Reay, and C. Chambers. Relaxed multijava:
balancing extensibility and modular typechecking. In
Proceedings OOSPLA 2003, pages 224–240. ACM Press.

[26] N. Nystrom, S. Chong, and A. C. Myers. Scalable
extensibility via nested inheritance. In : Proceedings
OOPSLA 2004, pages 99–115. ACM Press.

[27] The objective-c programming language.
http://developer.apple.com/documentation/Cocoa/-
Conceptual/ObjectiveC/index.html.

[28] H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation
of concerns for java. In Proceedings of the 22nd
international conference on Software engineering, pages
734–737. ACM Press, 2000.

[29] L. J. Pinson and R. S. Wiener. Objective-C. Addison Wesley,
1988.

[30] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In M. Aksit and S. Matsuoka, editors, Proceedings
ECOOP ’97, volume 1241 of LNCS, pages 419–443,
Jyväskylä, June 1997. Springer-Verlag.

[31] Y. Sato and S. Chiba. Loosely-separated “sister” namespaces
in java. In Proceedings ECOOP 2005.

[32] Scala home page. http://lamp.epfl.ch/scala/.
[33] Y. Smaragdakis and D. Batory. Mixin layers: an

object-oriented implementation technique for refinements
and collaboration-based designs. ACM TOSEM,
11(2):215–255, Apr. 2002.

[34] Swing api.
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/package-
summary.html.

[35] M. Torgersen. The expression problem revisited — four new
solutions using generics. In M. Odersky, editor, Proceedings
ECOOP 2004, LNCS, Oslo, Norway, June 2004.
Springer-Verlag.

[36] M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. In Proceedings
OOPSLA ’96, pages 359–369. ACM Press, 1996.

[37] M. Zenger. Evolving software with extensible modules. In
International Workshop on Unanticipated Software
Evolution, Malaga, Spain, June 2002.

[38] M. Zenger. Programming Language Abstractions for
Extensible Software Components. PhD thesis, University of
Lausanne, EPFL, 2003.

	Introduction
	Swing/AWT Anomalies
	AWT and Swing History
	Problem Analysis

	Classbox/J
	Classbox/J in a Nutshell
	New Method Lookup Semantics
	Properties of the Model

	Cross-cutting Changes
	Swing as a Classbox
	Swing Refined from AWT Class
	Advantages with Classboxes
	Issues and Limits

	Implementation
	Pure Class Member Addition
	Redefinition of Class Members Other Than Methods
	Method Redefinition
	Dynamic Introspection of the Method Call Stack
	Adapting Classbox Import to Package Import
	Limitations and Possible Improvements

	Related Work
	Conclusion
	REFERENCES -9pt

