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Abstract. Classical module systems support well the modular devel-
opment of applications but do not offer the ability to add or replace
a method in a class that is not defined in that module. On the other
hand, languages that support method addition and replacement do not
provide a modular view of applications, and their changes have a global
impact. The result is a gap between module systems for object-oriented
languages on one hand, and the very desirable feature of method ad-
dition and replacement on the other hand. To solve these problems we
present classbozres, a module system for object-oriented languages that
provides method addition and replacement. Moreover, the changes made
by a classbox are only visible to that classbox (or classboxes that im-
port it), a feature we call local rebinding. To validate the model, we have
implemented it in the Squeak Smalltalk environment, and performed
experiments modularising code.
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1 Modules in the Presence of Extensibility

The term module is overloaded. We follow the definitions of Modular Smalltalk
[16] and Szyperski [12].

Modules are program wunits that manage the wvisibility and accessibility
of names. A module defines a set of constant bindings between names
and objects [16]. A module is a capsule containing (definitions of ) items.
The module draws a strong boundary between items defined inside it and
items defined outside other modules [12].

A class extension is a method that is defined in another source packaging
entity (for example, a Java package or an Envy application [9]) than the class it
is defined for. There exist two kinds of class extension: a method addition adds
a new method, while a method replacement replaces an existing method.

Classical module systems, like those of Modula-2[17], Modula-3 [1], Oberon-
2 [8], Ada [13], or MzScheme’s [4] do not support class extensions. Numerous
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object-oriented programming languages, such as Java, C++, and Eiffel 7] lack
this facility. However, it is widely used in those languages that support it, such as
Smalltalk[16] and GBeta [3]. In “Capsules and Types in Fresco” A. Wills reports
that in the goody library! goodies-lib@cs.man.ac.uk 73% of the files modify
existing classes, and 44% define no new classes at all [14]. Even if these figures
should be tempered due to the fact that goodies are not industrial applications,
these numbers reflect that class extensions are not an anecdotical mechanism.
There is some ongoing research that explores the introduction of class extensions
to Java (for example OpenClasses [2], Keris [18] or MixJuice [5]), which is another
indication that this is quite an important concept.

Languages supporting class extensions such as Smalltalk or Flavors do not
offer the notion of modules. In these languages the changes are globally visible
and impact the whole system. Even in module systems that support class exten-
sions (Modular Smalltalk [16]), changes are visible to everyone after they have
been applied.

To summarise, module systems exist for languages that do not support class
extensions on the one hand, and languages exist that support class extensions but
not modules on the other hand. The Classbox model provides modules that fully
support class extensions, and these extensions are only visible to the classbox
that defined them. Outside the classbox the system runs unchanged. This is
accomplished by redefining the method lookup mechanism to take classboxes
into account, so that the desired method is executed.

For validation we implemented this system in Squeak, an open-source Smalltalk
environment, and implemented some small applications. Section 3 describes one
of these examples, an application to check dead links on a web page. Classboxes
are used to extend an existing system with a visitor and to replace existing
system code.

The rest of the paper is structured as follows. Section 2 presents an overview
of the Classbox model. In Section 3 we illustrate the model by showing the
implementation of an application to check for dead links on web pages. Section 6
concludes the paper.

2 Overview of the Classbox Model

This section describes the semantics of the Classbox model. The next section
illustrates the semantics and usage on a concrete case-study highlighting its
unique features.

Classbox contents. A classbox consists of imports and definitions:
— An import is either a class import (stating explicitly from which classbox
the class is imported, called the parentbox) or a classbox import (i.e., that

imports every class from the imported classbox).

1 A goody is a small application provided without warranty or support.
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— A definition can be a class definition or a method definition. A method defi-
nition declares the class that a method belongs to, the name of the method,
and the implementation of the method.

Static completeness. Methods can only be defined on classes that are known
within the classbox (e.g., defined or imported). Furthermore, the implementation
of a method can only refer to classes known in the classbox.

Extension. Extending a class C with one method m has the following semantics:
if the class C has a method with the same signature as m, m replaces that
method, otherwise m is added to C.

Flattened class. A flattened class describes what methods a class in a certain
classbox contains, taking imports into account:

— The flattened definition of a class C defined in a classbox cbl consists of C
and all the method definitions for C in cbl.

— The flattened definition of a class C imported in a classbox cbl is the flattened
definition of C in its parentbox extended by the method definitions for C in
cbl.

Note that this implies that for the method lookup, importing takes precedence
over inheritance (first the import chain is used, and then the inheritance chain).
This is explained in Section 4.

Flattened classbox. A flattened classbox consists of the flattened definitions
of all the classes (defined or imported) of that classbox.

Class name uniqueness. When defining or importing a class C in a classbox
cbl, the name of C has to be uniquely defined in flattened C. This guarantees
that class import cycles are not possible.

Method addition. Method m is a method addition for class C if m is a method
defined for C, and the flattened definition of C in its parentbox does not define
a method with the same signature as m.

Method replacement. Method m is a method replacement for class C if m is a
method defined for C, and the flattened definition of C in its parentbox contains
a method with the same signature as m. Following the definition of flattening,
the method replacement takes precedence in the flattened version of C.

These rules ensure the following property, which we call local rebinding. Sup-
pose a classbox cbl defines a class C with two methods, m calling n, and classbox
cb2 imports C from cbl and replaces n. We say that cb2 locally rebinds n in cbl
to represent the fact that calling m in the context of cb2 invokes the method
n as defined in cb2 while calling m in the context of cbl invokes the method n
as it is defined in cbl. The runtime semantics are illustrated in the next section
and explained in Section 4.
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Fig. 1. The Squeak Classbox and the HTMLVisitor Classbox that extends Squeak with
an HTML Visitor.

3 The Running Example

To illustrate the key properties of the Classbox model we develop an application
that allows one to check dead links on a web page. We use Squeak|[6], an open
source Smalltalk, to implement the Classbox model. The user specifies the web
page to be checked and the application returns the list of URLs that cannot be
reached within a given time-out.

Out of the box, the Squeak environment comes with a sophisticated develop-
ment environment and a rich class library. All this code is contained in a single
“image” within a single global namespace and consists of about 1800 classes.
Squeak contains a HTML parser, a hierarchy of HTML nodes that are built by
the HTMLParser and several network protocols.

To write our application we use the existing HT'ML parser to create a HTML
tree of the web page for which we want to check the dead links. Then we walk this
tree, checking whether each link can be reached. While these checks can be hard-
coded as methods in the HTML parse tree itself, it is a common practice to write
a visitor for the HTML parse tree which can be reused by other applications.
Then we only need to write a specialised visitor that checks for dead links.
Therefore, the implementation of our application consists of the definitions of
two classboxes: one extending Squeak with a visitor for the HTML parse tree
and one customising that generic visitor with one that checks for dead links. The
resulting system is shown in Figure 2, and is explained in the next sections.

3.1 Class Import and Class Extensions

As shown in Figure 1, extending the HTML parse tree with a visitor consists in
adding a new HTMLVisitor class, and adding one method to each existing HTML
parse tree node to call the visitor. Since the visitor methods and the visitor
class itself logically belong together, we group them in the same classbox called
HTMLVisitor. Figure 1 shows a part of the Squeak classbox (that contains the
whole unmodularised library of around 1800 classes of the Squeak environment)
and the HTML visitor classbox. This classbox imports every HTML parse tree
node class (only three are shown in the picture) and extends each of these classes



Classboxes: A Minimal Module Model Supporting Local Rebinding 5

Squeak HTMLVisitor
HTMLEntity + HTMLEntity |
N N
T i HTMLVisitor

HTMLBody HTMLHead .- ’L.H.Tyﬂe.af-,‘ istBody:

.- : ==~ - :

AP 1 aceeptVisitor: | visitHead:
[ socket | 17 17 HTMBody "
""""" 1

r '
T ] _ }‘p’in‘g:’ **** ! LinkChecker
*********

Fig. 2. The LinkChecker classbox, that defines a HTMLVisitor subclass that checks for
dead links and that replaces the method ping: in the class Socket to throw exceptions
instead of opening dialogue boxes.

with a single method to visit them (called acceptVisitor:). It also contains the
HTMLVisitor class, that implements the abstract visitor class.

Illustrated Model Properties: Method Additions. The example shows
that classboxes can be used not only to define whole classes (like the HTMLVis-
itor class); they can also define methods on classes that are imported (all the
acceptVisitor: methods), i.e., classboxes support method additions [16] [2].

Without this feature it is very difficult to factor out the visitor in a separate
classbox from the tree it operates on. In languages that do not support method
additions, the solution would be to create visitable subclasses for every HTML
node and add the visiting methods there. However this has two undesirable
effects: first of all, the existing code that used the classes has to be changed
to use the new subclasses, and second, other applications that need to make
similar extensions would have to independently add the same subclasses. Class
extensions do not exhibit either problem.

Illustrated Model Properties: Local Rebinding. The addition of the method
acceptVisitor: to the HTML tree classes is only visible for code executed in the
context of the HTMLVisitor classbox. Code running in the Squeak classbox cannot
see this method addition. The next sections elaborate on this point.

3.2 Classbox Import and Method Replacement

With the HTMLVisitor classbox defined it becomes easy to implement the Link
Checker application. It basically boils down to adding a subclass of HTMLVisitor
that overrides the visitAnchor: method to implement the checking of dead links.
Checking a link means opening a connection to the specified URL within a
certain amount of time.
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In practice it turns out that the class that actually builds the connection (the
class Socket) does not throw exceptions when links are not reachable. Instead it
directly opens a dialogue box explaining the error that was encountered!

This makes it suddenly quite hard to implement the Link Checker. The solu-
tion would be to change the method that opens a dialogue box and let it throw
exceptions instead. However, this also means that all the applications that use
this method and rely on dialogue boxes to be opened have to be changed as well.
While this may be a worthwhile endeavour that would result in a cleaner Squeak
system, it is too much work when just writing a Link Checker. The solution is
to change this method in such a way that it will throw exceptions only in the
places where it is needed. All other places should still use the unchanged method.
This is what is done by the LinkChecker classbox. How this works is explained
in detail in Section 4.

Figure 2 shows the classbox LinkChecker. It imports the classbox HTMLVisitor,
i.e., all classes defined in HTMLVisitor are imported and it imports class Socket
from the Squeak classbox. The classbox LinkChecker defines a class LinkChecker,
a subclass of HTMLVisitor, and a method visitAnchor: that implements the actual
checking of the links contained in a HTML document. It also defines a method
ping: on Socket that replaces the existing implementation that opens dialogue
boxes with an implementation that throws exceptions.

Illustrated Model Properties: Local rebinding. This example shows that
a classbox allows one to replace methods for existing classes. Moreover, these
changes are again local to LinkChecker: it is only in the LinkChecker classbox that
exceptions are raised when network locations are not reachable. The rest of the
system is unaffected by this change, and still gets dialogue boxes when time-outs
occur.

3.3 Local rebinding and Flattening

This section elaborates how local rebinding in the presence of the flattening
property allows a classbox to change the behaviour of methods in the system in
such a way that these changes are local to the classbox.

To illustrate this we execute some expressions in the example described in
previous sections. We execute an expression that creates an HTML parse tree
for a certain url in two different contexts: first in the Squeak classbox then in
the LinkChecker classbox.

HtmlParser parse: ('http://www.iam.unibe.ch/“scg/’ asUrl contents)

In the Squeak classbox, the result of this expression is a parse tree consisting
of instances of HTMLEntity that cannot be visited. This is exactly the intended
behaviour, as the expression is performed in the context of the Squeak classbox,
and that classbox does not know anything about visitors for its parse tree.

In the LinkChecker classbox the same expression the result is a HTML parse
tree that can be visited. Again, this is exactly what is intended since we imported
the HTML parse tree nodes from HTMLVisitor (indicating that we want those
classes to be used).
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lookup: selector class: cls
startBox: startbox currentBox: currentbox classboxPath: path

| parentBox theSuper togoBox newPath |
self

lookup: selector

ofClass: cls

inClassbox: currentbox

ifPresentDo: [:method | ~ method].
parentBox := currentbox providerOf: cls name.
~ parentBox

ifNotNil: [path addLast: parentBox.

self

lookup: selector
class: cls
startBox: startbox
currentBox: parentBox
classboxPath: path]
ifNil: [theSuper := cls superclass.
theSuper ifNil: [~ cls method: selector notFoundIn: cls].
togoBox := path detect: [:box | box scopeContains: theSuper].
newPath := togoBox = startbox
ifTrue: [OrderedCollection with: startbox]
ifFalse: [path].
self
lookup: selector
class: theSuper
startBox: startbox
currentBox: togoBox
classboxPath: newPath]

Fig. 3. The lookup algorithm that provides local rebinding.

4 Runtime Semantics of the Model

Depending on the classbox an expression is executed in, objects can understand
different messages or have methods with different behaviour. For this to work,
a classbox-aware lookup mechanism for methods and a change in the structure
of method dictionaries are needed. We focus on Smalltalk method dictionaries
here, but the same approach holds for other object-oriented languages.

Normally, method dictionaries are used to lookup a key comnsisting of the
signature of the method (in Smalltalk this is only the name, as there are no
static types), and return a value corresponding to the method body. To support
classboxes we encode the classbox where the method is defined in the method
signature (i.e., the key). For example the method dictionary for HTMLEntity has
entries prefixed with “#Squeak.” for the methods defined in Squeak, and entries
with “#HTMLVisitor.” for the method additions defined in that classbox. The
method dictionary for class Socket now has two entries for the ping: method: one
for the Squeak classbox and one for the LinkChecker classbox. Class LinkChecker
has only a single entry for the visitAnchor method.

Encoding the classbox with the method signature makes it possible to let
different implementations for a method live alongside each other. However, to
take advantage of this, the method lookup mechanism has to be changed as well.
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Benchmark Regular lookup|Classbox lookup|Overhead
direct call 5439 6824 25%
looked up call 5453 6940 27%
opening and closing a web browser 332 548 65%
opening and closing a mailreader 536 760 41%
call through 3 classboxes - 10554 -

call through 6 classboxes - 10654 -

Table 1. Benchmarks results from Squeak comparing the regular method lookup mech-
anism with the classbox-aware lookup mechanism (units are in milliseconds).

Figure 3 describes the lookup algorithm we implemented that ensures the local
rebinding property.

The algorithm first checks whether the class in the current classbox imple-
ments the selector we are looking for (lines 5 to 9). If it is found, the lookup is
successful and we return the found method (line 9). If it is not found, we recurse.
The algorithm favours imports over inheritance, meaning that first the import
chain is traversed (in lines 12 to 18) before considering the inheritance chain (in
lines 19 to 30). This last part is the difficult part of the algorithm, since we need
to find the classbox where the superclass is defined that is closest to the class-
box we started the lookup from. Therefore the algorithm remembers the path
while traversing the import chain (line 12), and uses this when determining the
classbox for the superclass (line 21).

4.1 Runtime Performance

As can be expected, introducing the classbox aware method lookup mechanism
introduces some runtime overhead, especially since our current implementation is
currently not optimised. Table 1 shows the results for some benchmarks that we
performed to compare the regular method lookup performance vs. the classbox-
aware lookup performance:

1. sending a message defined in the class of the instance (10 millions times),
and sending a message defined in a super class hierarchy (10 millions times).

2. measuring launching and closing of two applications implemented in Squeak
(a web browser and an e-mail client) within the same classbox (average over
10 times).

3. performing a method call through a chain formed by classboxes extending a
class.

The table shows that the penalty for the new lookup scheme by itself is
roughly 25 percent, where the real-world applications run about 60 percent
slower. We think that this difference is due to the fact that we did not adapt the
method cache in the virtual machine.

Note that our current implementation is straightforward and does not in-
corporate any optimisations yet. For example we are thinking of changing the
structure of the method cache in order to take classboxes into account.
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5 Related Work

No existing mainstream language supports class extensions, modules, and local
rebinding. Classical module systems, like those of Modula-2[17], Modula-3 [1],
Oberon-2 [8], Ada [13] or Java, do not support class extensions.

Keris introduces extensible modules which are composed hierarchically and
linked implicitly. Keris does not support class extension [18]. MzScheme’s units
are modules system with external connection facilities [4], and act as components
that can be instantiated and linked together. They do not support class exten-
sions. Classboxes on the other hand, are source code management abstractions.

OpenClasses [2] supports a modular definition of class extensions but only
supports method addition and not method replacement. MixJuice [5] offers mod-
ules based on a form of inheritance which combines module members and class
extensions but not local rebinding.

Modular Smalltalk only supports method additions that are globally visi-
ble [16]. In the Subsystems proposal [15], modules (subsystems) support selector
namespaces, as in SmallScript [10]. A selector namespace contains method def-
initions (of possibly different classes). Selector namespaces are nested and this
structure is used for the method lookup.A local selector takes precedence over
the same selector defined in a surrounding namespace. With selector names-
paces, class extensions can be defined as layers where methods defined in a
nested namespace may redefine methods defined in their enclosing namespaces.
Selector namespaces, however, do not support local rebinding.

Us, a subject-oriented programming extension of Self [11], provides for object
extensions and method invocations in the context of perspectives, but Us does
not provide modules.

6 Conclusion

This paper introduces the Classbox Model, a module model for object-oriented
systems that supports local rebinding. Hence it provides method additions and
replacements that are only visible in the module that defines them. Classboxes
enhance both existing object-oriented languages that support method addition
and replacement, and those that provide module systems. For the former it
localises method additions and replacements. It extends the latter with a mech-
anism that supports unanticipated evolution. To apply local rebinding to an
object-oriented language efficiently, the method lookup mechanism has to be
changed, and a slightly different method dictionary has to be introduced.

We have implemented the model in the Squeak Smalltalk environment, and
performed experiments using classboxes. In the paper we describe an example of
how classboxes allow one to extend an existing parse tree with a visitor (making
use of class extensions), and replacing a badly implemented method in a system
class without affecting the whole system (using method replacement). As far as
we know, no other module system is able to achieve this separation.
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