
Accepted to IWST2016

A low Overhead Per Object Write Barrier for the Cog VM

Clément Béra
RMOD - INRIA Lille Nord Europe

clement.bera@inria.fr

Abstract
In several Smalltalk implementations, a program can mark
any object as read-only (unfortunately incorrectly some-
times miscalled immutable). Such read-only objects cannot
be mutated unless the program explicitly revert them to a
writable state. This feature, called write barrier, may induce
noticeable overhead if not implemented carefully, both in
memory footprint and execution time. In this paper I discuss
the recent addition of the write barrier in the Cog virtual
machine and the support introduced in the Pharo 6 image.
I detail specific aspects of the implementation that allows,
according to multiple evaluations presented in the paper, to
have such a feature with little to no overhead.

Keywords Language Virtual Machine, Just-in-Time Com-
pilation, Interpreter, Write Barrier, Store Check.

1. Introduction
Read-only objects are frequently used in several Smalltalk
dialects to ensure the unchangeable state of runtime objects
such as compiled methods’ literals and in the context of
object modification tracker frameworks such as Gem Builder
for Smalltalk1 (GBS). The Cog virtual machine (VM) [11] is
the most widely used open source Smalltalk virtual machine,
with multiple Smalltalk clients: Pharo [2], Squeak [8] and
Cuis [3]. Unfortunately, the Cog VM did not support read-
only objects. I decided to introduce such a feature, with
the help and advises of the lead Cog VM architect, Eliot
Miranda.

In this paper, I discuss the design decisions behind the
write barrier and the implementation in both the Cog VM
and the Pharo 6 implementation. Other Smalltalk clients run-

1 GBS is a tool maintained and evolve by GemTalkTM Systems allowing
applications written in any Smalltalk dialects to communicate with the
Gemstone persistence layer.

[Copyright notice will appear here once ’preprint’ option is removed.]

ning on the Cog VM have or can have a similar implemen-
tation, but each Smalltalk dialect has some specificities so I
needed to pick a specific one to show the production imple-
mentation.

Conceptually, having read-only objects requires each
store into an object to have an extra check to fail the store
if the object mutated is read-only. An extra check induces
extra memory and execution time overhead as additional
machine instructions are required to perform the check. In
addition, the memory representation of the object needs to
be adapted to encode the read-only property of the object.
The main challenge in the write barrier implementation is to
reduce the overhead, both in term of memory footprint and
execution time, as much as possible.

In most VMs for high-level object-oriented languages,
each store into an object has already multiple checks for the
garbage collector (GC) write barrier [9, 10]. In the imple-
mentation sections, I detail the most critical part: how the
machine code generated by the JIT shares portion of ma-
chine code between the read-only check and the existing GC
write barrier to limit the overhead.

2. Problem
In this section I specify what I mean by read-only object
write barrier, discuss the terminology used, then describe
briefly some use-cases and precise the problem statement.

2.1 Specification
The feature wanted, the write barrier, allows a Smalltalk
program to mark or unmark any non-immediate object2 as
read-only at any time. Any write into a read-only object is
intercepted before the object is mutated and it should be
possible to handle the mutation failure at the language level.

2.2 Terminology
This feature is called in some other Smalltalk, especially
VisualWorks, immutability. Using the term immutability was

2 Non-immediate objects have a memory zone holding the object’s state and
references to the object are implemented through pointers to that memory
zone. On the contrary, immediate objects are not present in memory and
their state is directly encoded in the pointer referencing the immediate
object. The best example of immediate objects are 31-bit signed integers,
also called SmallIntegers.

1 2016/8/26

contested by the Smalltalk community. Indeed, in object-
oriented and functional programming, for example in Racket
[4], an immutable object is an object which state cannot be
modified after it is created. Therefore, in our case, as the
programmer can revert the read-only state of an object to
writable state at any time, the immutability definition does
not apply. This is why in Pharo and in this paper the feature
is called write barrier and not immutability.

2.3 Use-cases
There are multiple use-cases for read-only objects. I detail
here the two most common ones.

Modification tracker. The most popular use-case is the
ability to track the mutations done to a specific object. In
this case, the tracked object is marked as read-only. Each
mutation of the tracked object triggers Smalltalk code speci-
fied by the programmer to do something about the mutation,
for example, logging. Then, the modification tracker frame-
work temporarily makes the object writable, performs the
mutation, and mark back the object as read-only to resume
the execution while still tracking the object’s mutations. This
modification tracking ability is for example used in GBS, a
framework to deeply integrate a Smalltalk application with
the gemstone persistence layer.

Core read-only objects. Another interesting read-only ob-
ject use-case is the ability to mark runtime objects such as
compiled methods’ literals as read-only. Having the literals
read-only allows compilers to make stronger assumptions to
allows more aggressive optimisations and forbid inconsis-
tent modification of literals avoiding hard-to-debug issues.

2.4 Problem: limiting the overhead
The problem statement is as follows:

Is it possible to mark object as read-only, forbidding any
mutations and letting Smalltalk code handle the mutation
failures, with little to no overhead in term of memory foot-
print and execution time ?

To solve this problem, I chose to extent the virtual ma-
chine. Indeed, I believe the solutions provided at image level
either induce an important overhead or are not thorough
enough. For example, it is possible using reflective APIs to
activate any primitive operation on any object in the system.
Some primitive operations, such as the at:put: primitive, mu-
tate objects. Detecting such mutations is very difficult, likely
even impossible, without VM support.

The solution was implemented in three steps:

• Enhancing the memory representation of objects to be
able to encode their read-only state.

• Adding support in the execution engine to forbid read-
only objects mutations.

• Adding support in the Pharo image to be able to use the
new feature.

Memory representation of objects. To support read-only
object, the first thing is to change the memory representa-
tion of objects to be able to mark them as read-only. To do
so, each object needs a specific memory location to encode
the state: is the object read-only or not ? As other Smalltalk
dialects, a bit seems appropriate as there are only two possi-
ble cases. I detail later in the paper the position of this bit. As
the bit is in the object’s header and immediate objects have
no header, immediate objects cannot be read-only.

The VM can directly access the object’s state, but the
Smalltalk code can’t. So I added two convenient primitives
in Pharo to access the bit state. One primitive tells if an
object is read-only or not, the other sets the object as read-
only or writable.

Execution support. The objects are mutated in two main
ways in the current virtual machine:

• By storing into one of their instance variable field (byte-
code instruction).

• By performing a primitive operation that mutates object,
such as at:put:.

In the paper I omit explicitly another case, the literal
variable stores. For the execution engine, a literal variable
store is an instance variable store mutating the second field
of an object specified in the literal frame of the method.
Hence, the discussions related to instance variable store also
apply to literal variable stores.

In the execution engine, the instance variable store code
was changed to fail if the mutated object is read-only. If
that happens, a callback is triggered in the image to inform
the program that an attempt to assign a value to a read-
only object was made, and once the call-back returns, the
execution resumes after the store. The callback is triggered
instead of the store, hence if one wants the store to be
performed one needs to do it explicitly in the callback.

The code of the primitives mutating objects was rewritten
to fail the primitive if they mutate a read-only object.

Limitations. While implementing the solution, I realized it
is really difficult to have a few specific objects read-only.

The first problem is related to process scheduling. At
each interrupt point, the execution may switch to another
process. Switching from a process to another process implies
multiple process scheduling objects mutations, whereas the
execution state (in the middle of a process switch) is not in a
state where a call-back can be safely triggered in the image.

The second issue lies with context objects. Contexts rep-
resent method and closure activations. They are handled very
specifically in the virtual machine for performance and they
are mutated all the time during normal execution: any byte-
code operation requires at least to mutate the active context
program counter.

Lastly, by design, the VM assumes that temp vectors (data
structure used to store closure enclosing context informa-
tion), are never read-only.

2 2016/8/26

To solve these problems, I specify here a list of objects
that cannot be marked as read-only. Any attempt to mark
those objects as read-only from Smalltalk will fail. These
objects are:

• Context instances
• All objects related to process scheduling:

the global variable Processor

the array of linked lists of processes (Processor in-
stance variable)

ProcessLinkedList instances

Process instances

Semaphore instances

In addition to those objects, specific objects used directly
by the runtime cannot be marked as read-only. One example
is temp vectors, which are used to hold block closures re-
mote variable values, but also objects internal to the VM as
for example the class table.

I discuss in future work how one may be able to bypass
some of those limitations.

3. Image API design and implementation
In this section I introduce the APIs added in the image
to support read-only objects. I do not discuss the in-image
implementation of features using the write barrier such as
an object modification tracker. I discuss only the interface
between the virtual machine and the image allowing one to
use the write barrier and to build features such as an object
modification tracker.

3.1 Core write barrier primitives
Two main primitives were added into the Object class:

• Object»isReadOnlyObject

• Object»setIsReadOnlyObject:

Object»isReadOnlyObject. The primitive answers if the
receiver read-only. The primitive cannot fail on a VM sup-
porting the write barrier. The primitive method code is avail-
able in Figure 1. The Pharo 6 alpha version is available with
additional comments, omitted in the paper.

Object>>isReadOnlyObject
<primitive: 163>
^self primitiveFailed

Figure 1. Object»isReadOnlyObject primitive

Object»setIsReadOnlyObject: This second primitive marks
the receiver as being read-only or writable, depending on the
boolean parameter. The primitive method code is available
in Figure 2.

The design of the primitive in Pharo can be questionable:
why having a single method with a boolean argument instead

Object>>setIsReadOnlyObject: aBoolean
<primitive: 164 error: ec>
^ self primitiveFailed

Figure 2. Object»setIsReadOnlyObject: primitive

of two methods ? The answer is simple, the number of prim-
itives has to be kept as small as possible to keep the VM im-
plementation simple, hence sharing the same primitive num-
ber for these two operations seemed the right thing to do.
However, for convenience, two helper methods were added,
Object»beWritableObject and Object»beReadOnlyObject, only
calling the primitive with the corresponding boolean param-
eter, as shown in Figure 3.

Object>>beWritableObject
^ self setIsReadOnlyObject: false

Object>>beReadOnlyObject
^ self setIsReadOnlyObject: true

Figure 3. Helper methods

3.2 Primitive failure
As stated in the Section 2.4, primitive operations mutating
objects should fail if they attempt to mutate a read-only
object. Two modifications are required to support the write
barrier.

Image-side. Each primitive failure fall-back code needs to
be edited to raise an appropriate error if it failed due to the
write barrier. For example, in the case of the primitive for
at:put:, the in-image fall-back code should check if the re-
ceiver is read-only, raising an appropriate error (for example
’object cannot be modified’) instead of ’Instances of Objects
are not indexable’. Unfortunately, this part has not, at the
moment where I write the paper, been integrated in the Pharo
6 alpha.

VM-side. To help the programmer understanding why a
primitive fails, the virtual machine is able to provide error
messages. This is done by adding the keyword error: in the
primitive pragma. For example, in Figure 2, the primitive
pragma has the error: keyword, hence if the primitive fails the
temporary variable ec is going to hold an error message. The
special objects array defines a list of error messages that can
be answered by the VM. This list now defines the message
’no modification’ which is raised when a primitive fails due
to the write barrier.

3.3 Instance variable store
As instance variable stores are encoded directly in the byte-
code and not through message sends as primitives, they can’t
simply just fail or the VM state would be inconsistent. The
easiest way to handle this case was to add a VM call-back to

3 2016/8/26

be performed when a store fails. An infrastructure for such
call-backs is already available and is used for example for
doesNotUnderstand:.

However, this VM-call back is more difficult to imple-
ment. Our specification requires the read-only failure to re-
sume execution, once the call-back is done, after the variable
store. The problem is that the VM does not expect any value
to be pushed on stack after a variable store.

If we take the example of doesNotUnderstand:, the call-
back is triggered during a message send. In Smalltalk, each
message send is expected to return a value, hence the value
returned by the doesNotUnderstand: method activation is
pushed on stack instead of the regular message send returned
value.

In the read-only call-back case, the VM does not expects
any value to be pushed on stack after a variable store. There-
fore, I needed to design a call-back that does not answer
any value. This is currently possible in Pharo by modify-
ing the active process. The cannotAssign:withIndex: call-back
was designed this way. After handling the mutation failure,
the call-back does not return any value as the Smalltalk code
on Figure 4 shows. The comment "CAN’T REACH", indicates
that the execution flow cannot reach that part of the code.

attemptToAssign: value withIndex: index
| process |

"Handle here the mutation failure. Code omitted."

"Process modified to return no value"
process := Processor activeProcess.
[| sender |

sender := process suspendedContext sender.
process suspendedContext: sender.

] forkAt: Processor activePriority + 1.
Processor yield.
"CAN’T REACH"

Figure 4. Pharo call-back implementation

This implementation is a temporary solution as it cannot
work with processes already at max priority. I am consider-
ing alternatives, such as a new primitive or a bytecode in-
struction performing returns non returning any value.

3.4 Other in-image features
Support flags. The Cog VM provides to the Smalltalk
clients a set of parameters. A new parameter was added,
answering if the VM currently used supports read-only ob-
jects. In the case of Pharo, it is now possible to run Smalltalk
vm supportsWriteBarrier to know if the feature is enabled.

Mirror primitives. The Cog VM, as well as several other
Smalltalk VMs, supports having objects with a class not
inheriting from Object. Such objects are typically used for
proxies. Sending messages to this kind of objects can be a

problem: the object may not be able to answer the message
nor to answer the doesNotUnderstand: message, leading to a
VM crash. This kind of problem usually happens when the
programmer attempts to debug a program with proxy ob-
jects: in this case, the proxies understand all the messages
required for the application, but do not understand the mes-
sages required for debugging.

To avoid VM crashes, proxies are debugged through mir-
ror primitives. For example, the primitive instVarAt: answers
the value of an instance variable of an object. This primitive
exists in two variants:

• instVarAt:: Answers an instance variable of the receiver.
• object:instVarAt:: Answers an instance variable of the ob-

ject passed as first argument.

The second version, ignoring the receiver entirely, is
called a mirror primitive. It is able to perform a primitive op-
eration on an object (in this case, the first argument), without
requiring the object to be able to understand a message. In
the context of the write barrier, the two primitives isReadOn-
lyObject and setIsReadOnlyObject: are also available as mir-
ror primitives (the primitive number is shared), in the form
of object:isReadOnlyObject and object:setIsReadOnlyObject:.
This way, it is possible to modify and read the read-only
property of proxy objects.

4. VM implementation
The VM implementation is split in three subsections, the
object representation, the interpreter and the JIT compiler
changes.

4.1 Object representation
Each non-immediate object is represented in memory with
an object header, describing the object, and multiple fields,
depending on the object’s layout. Several bits in the object
header are unused and a single bit was reserved by design in
the Spur Memory Manager [12] for the write barrier. I used
this bit to mark the read-only state of an object, as shown on
Figure 5.

s x x x x x x x n h x x x x x x x x x x x x x x x x x
x e z f x x x x o c x x x x x x x x x x x x x x x x

s

h

f

c

x

number of slots

identity hash

object format

class index

is grey ?

Spur's object header
s s s s s s s h h h h h h h h h h h h h h h h h

c c c c c c c c c c c c c c c cf f f f c

e is pinned ?

z is remembered ?

n is marked ?

o isReadOnly ?

unused bits

Figure 5. Object header memory representation in Spur

4 2016/8/26

4.2 Interpreter implementation
4.2.1 Primitives.
I needed to add support for primitives to fail if they attempt
to mutate a read-only object.

Many primitives can already fail. For example, <primi-
tive:1>, the addition between two small integers, fails if the
argument is not a small integer. Hence, I needed to edit all
the primitives mutating objects to first check if the object
mutated is read-only, and fail the primitive if this happens.
This was quite tedious as I had to go through all the primitive
table and check manually for each primitive if the code mu-
tates an object. This task was simplified by the limitations:
as stated in Section 2.4, several objects can’t be read-only,
so the primitives related to process scheduling and context
accessing didn’t need to be changed.

4.2.2 Instance variable stores.
I needed to update the interpretation of instance variable
stores to fail and trigger the cannotAssign:withIndex: call-
back if the object mutated is read-only. Some aspects are
challenging.

Interpreter compilation and emulation. The interpreter
code is written in Slang, a DSL to write virtual machines
written using the Smalltalk syntax to be able to emulate the
execution on top of the Smalltalk VM. For the production
VM, Slang is compiled to C with the GNU extensions, which
is then compiled to machine code. The C-language exten-
sions are critical for performance as an interpreter has a very
different behavior than mainstream C application.

C extension constraints. Most of the interpreter code is
compiled in a single C function. That function uses the
C-extensions to fix specific values to registers, such as
the Smalltalk stack pointer, frame pointer and instruction
pointer. The execution jumps quickly from the interpreta-
tion of a bytecode to the next one using threaded jumps the
the new bytecode execution code address. If the interpreter
needs to call another function, it needs to save the fixed reg-
isters manually and restore them upon function return if they
are going to be used.

Challenges met. This specificity is sometimes difficult to
handle because the execution flow in the extended C code is
non trivial to reproduce on the simulation engine which runs
on top of the Smalltalk VM. In addition, one has to be very
careful if the interpreter calls a function non-inlined during
Slang to C compilation in the main interpreter function to
correctly maintain the registers state.

Conclusion. To implement the read-only write barrier,
both the simulation engine used for debugging and the ex-
tended C code needs to have the same behavior according to
the new specifications.

4.3 JIT compiler support
4.3.1 Primitives.
As for the interpreter, I needed to update the JIT to compile
primitive operations according to the new specification.

Primitives redefined in the JIT. The interpreter primitives
are normally written in Slang and are compiled to machine
code as the rest of the VM. As the compilation is done
through the optimizing C compiler, the primitives perfor-
mance is usually very good. However, calling C code from
a machine code Smalltalk method has a cost: the runtime
needs to switch from the Smalltalk machine code runtime to
the C runtime, execute the primitive, then switch back to the
Smalltalk machine code runtime. This cost can be significant
on very frequently used primitives, as for example the addi-
tion between two small integers. For this purpose, a set of
primitives are redefined in the JIT register transfer language
(RTL)3 and are compiled to machine code with the methods
holding the corresponding primitive number.

For the purpose of this paper, we will consider that there
are two kinds of primitives:

• Frequently called primitives: They are redefined in the
JIT’s RTL.

• Rarely called primitives: When a method with such prim-
itive is compiled to machine code, the machine code
switches to the C runtime and then calls the interpreter
primitive code.

All the existing interpreter primitive code was updated to
fail for read-only objects. However, primitives redefined in
the JIT’s RTL needs to be updated to correctly fail if they
mutate a read-only object.

Updating at:put:. Fortunately, only two primitives consid-
ered as frequently called and therefore defined in the JIT’s
RTL mutate objects. One of them is the primitive at:put:
while the other one is a specific version of at:put: for strings.
I updated these two primitives to generate machine code fail-
ing if the receiver is read-only.

4.3.2 Instance variable stores.
With the write barrier, the machine code generated for in-
stance variable stores require an extra check to fail if the
object mutated is read-only.

Studied case. The JIT compiles to machine code the stores
differently depending on multiple constraints. For example,
the compilation is different depending on which register is
live or not when compiling the store. In this subsection, I
will only discuss the most common cases, a generic instance
variable store of the first instance variable of an object that
we will call a lambda store. Other cases are handled in a
similar way.

3 A register transfer language (RTL) is a kind of intermediate representation
that is very close to assembly language, similar to those used by compilers.
RTLs describe data flow at the register-transfer level of an architecture.

5 2016/8/26

GC store check. Before the write barrier implementation,
a lambda store needs to change in memory the value of the
instance variable and to deal with the GC write barrier. Cur-
rently, the GC requires each object from old space referenc-
ing a young object to be in the remembered table. Hence,
each store can require the VM to add an entry in the remem-
bered table.

Each store generates machine code to check if the ob-
ject needs to be added in the remembered table. If this is the
case, the VM calls a trampoline4 which saves the registers
state, call the interpreter function adding the object in the
remembered table, restores the registers and resumes execu-
tion. The existing machine code generated for a lambda store
is shown on Figure 6.

x86 Assembly Meaning

 movl -12(%ebp), %edx

 popl %edi

 movl %edi, %ds:0x8(%edx)

 testl 0x00000003, %edi If the value to store is
immediate, jump after the
store check. jnz after_store
Jump after the store check if
the receiver is young:
compare the young object
space limit with receiver
address

 movl 0x00040088, %eax

 jb after_store

 cmpl %eax, %edx

Load the receiver in %edx.

 jnb after_store

 cmpl %eax, %edi If the value to store is an old
object, jump after the store
check.

 jnz after_store

 testb 0x20, %al

 movzbl %ds:0x3(%edx), %eax
If the receiver is already in
the remembered table, jump
after the store check.

 call store_check_trampoline Calls the store check
trampoline.

Perform the store in the first
instance variable using both
registers (%edx and %edi)

Load the value to store in
%edi.

after_store: Code following the store.

Figure 6. Vanilla lambda store

Naive read-only check implementation. I needed to add
the read-only check. My first idea was to add it at the begin-
ning of the store, once the receiver and the value to store are
loaded in register. As shown on Figure 7, I added a branch
which ensures that the receiver is writable and calls a tram-
poline to trigger the cannotAssign:withIndex: call-back if it’s
not the case. This solution implied the creation of a single
new trampoline that calls an interpreter function when the
receiver is read-only to call in the language the cannotAs-
sign:withIndex: call-back.

4 A trampoline is a specific machine code routine switching from the as-
sembly code runtime to the C runtime.

x86 Assembly Meaning

 movl %ds:(%edx), %eax

 testl 0x00800000, %eax

 jz begin_store

 movl -12(%ebp), %edx

 jmp after_store

If the receiver is writable,
jump to the store.

Restore the receiver (to
keep its register live) and
jump after the store.

 call cannot_assign_trampoline Calls the read-only failure
trampoline.

begin_store: Next instruction is the first
store instruction.

Figure 7. Considered read-only check

This solution implied quite some overhead because the
machine code needed to take an extra branch on the com-
mon path and because many new machine instructions were
added per instance variable store.

Efficient read-only check. I then built a second solution,
where a single per-store trampoline is shared between the
GC and the read-only write barrier, as shown on Figure 8.
As the instruction to call the trampoline is the one that takes
the more bytes, the general idea was to avoid most of the
overhead by having single call. I created new trampolines
that are able to deal with both the case of the GC and the
read-only write barrier. In this new version, the machine
code tests first if the object is read-only, and if so, directly
jumps to the shared trampoline.

New trampolines. To be able to share the trampoline with-
out adding too many instructions, as the trampoline is rarely
taken, the trampoline duplicates the read-only check. The
normal execution flow checks if the object is read-only and
jumps to the trampoline if it is the case. In the trampoline, the
VM does not know any more if the trampoline was reached
for a read-only mutation failure or the GC write barrier.
Hence, the trampoline tests again if the object mutated is
read-only and calls the correct interpreter method to handle
either case.

Specialized trampolines for common indexes. In the case
of a read-only mutation failure, to perform the call-back, the
VM has to know what is the variable index of the object. In
the case of a lambda store, we said the instance variable was
the first instance variable, so in a 0-based array, the variable
index is 0. The problem is that to perform the trampoline
call the variable index needs to be passed as a parameter, re-
quiring extra machine instructions per-store (In the Cog VM
all trampoline parameters are passed by registers). To avoid
the extra instructions, the trampoline is duplicated. A fixed
number of trampolines based on a VM setting are created,
currently 6. Each of the most common variable indexes (0
to 4) can call a specialized version of the trampoline for the

6 2016/8/26

given index (so it is not required to pass the variable index
by parameter in those common cases), and other variable in-
dexes, less common, call the generic trampoline passing by
parameter the variable index.

Register liveness. As the read-only failure trampoline cre-
ates a new stack frame for the cannotAssign:withIndex: call-
back, the registers cannot remain live across the trampoline.
I decided to keep the receiver live if it was already live by in-
jecting the corresponding machine code after the store if the
receiver was live before, as a live receiver is the most critical
for performance. Hence, only the receiver can remain live in
a register across the read-only write barrier trampoline call.

x86 Assembly Meaning

 movl -12(%ebp), %edx

 popl %ecx

 movl %ecx, %ds:0x8(%edx)

 testb 0x03, %cl If the value to store is
immediate, jump after the
store check. jnz after_store

If the receiver is a young
object, jump after the store
check.

 movl 0x00040088, %eax

 jb after_store

 cmpl %eax, %edx

 jnb after_store

 cmpl %eax, %ecx If the value to store is an old
object, jump after the store
check.

 jnz after_store

 testb 0x20, %al

 movzbl %ds:0x3(%edx), %eax
If the receiver is already in
the remembered table, jump
after the store check.

 call store_trampoline
Calls the store check
trampoline.

Perform the store in the first
instance variable using both
registers (%edx and %ecx)

Load the receiver in %edx.

Load the value to store in
%ecx.

 movl -12(%ebp), %edx

 movl %ds:(%edx), %eax

 testl 0x00800000, %eax

 jnz store_trampoline

If the receiver is read-only,
jump to the store trampoline.

Restore the receiver (to keep
its register live).

store_trampoline:

after_store: Code following the store.

Figure 8. Production lambda store with the write barrier

Debugging support. Without the write barrier, literal and
instance variable stores are not interrupt points. The debug-
ger cannot be opened at this program counter and processes
can’t switch on variable stores. With the write barrier, the
cannotAssign:withIndex: call-back can create new stack frame.
If one of the method called opens a debugger, the program-
mer needs to be able to debug the context with the canno-
tAssign:withIndex: call-back and the sender of this context. I

therefore needed to extend the machine code method meta-
data to be able to debug methods interrupted on stores.

Compilation. The write barrier was introduced as a com-
pilation setting in the Cog virtual machine. By design, two
choices were at hand, having the write barrier as a Slang to C
compiler setting or as a C to machine code compiler setting.
I firstly made it as a Slang compiler setting, but it was incon-
venient as the build repository hierarchy needed to be dupli-
cated by two to support the write barrier in all the builds. The
write barrier was lastly changed to be a C compiler setting.
The C compilation has now an extra setting, the (mislead-
ing) -DIMMUTABILITY=1 flag, to compile the VM with the
write barrier.

5. Evaluation
I evaluate firstly the memory overhead of the feature, then
the execution time overhead.

5.1 Memory overhead
Object representation. As described in Section 2.4, each
object requires a single bit to mark their read-only state. As
all the objects need to be 64bits aligned in the spur memory
manager and one bit had already been reserved for the write
barrier, in practice there is no memory overhead at all.

Machine code memory footprint evaluation. The size of
the machine code representation of methods matters a lot in
the Cog VM. In fact, the VM keeps a fixed-sized executable
zone holding all the machine code of methods. This zone is
allocated at start-up depending on an in-image setting, which
is usually between 1 and 2 Mb, but can be any value.

The size of the machine code matters because:

• When installing a new method, the VM needs to scan all
the machine code zone and flush all the caches related to
the new method selector. The machine code zone has to
have a limited size to avoid for this scan to be too long.

• Internally, the processor maps the frequently executed
machine code to the cpu instruction cache. Having a
limited machine code zone allows the cpu to have more
instruction cache hits and improve the VM performance.

• As machine code versions of methods directly refer to
objects (the literals are compiled inlined in the machine
code), the GC needs to scan the machine code zone to
mark referenced objects. The size of the machine code
zone matters as the GC needs to read the metadata asso-
ciated with each machine code method to locate the ob-
jects referenced, so the bigger the zone is, the longer the
GC takes.

• As the machine code zone has a fixed size, if the methods
are compiled in a smaller amount of machine code, the
VM can fit more methods in the machine code zone
before requiring a machine code zone garbage collection.

7 2016/8/26

I evaluate the machine code size growth firstly globally, then
locally.

Machine code zone (globally). As shown on Figure 9, just
after start-up, the machine code zone occupied is 1.52%
bigger with the write barrier that without. The overhead is
there for multiple reasons:

• Each instance and literal variable store is compiled in
more machine instructions for the read-only write barrier.

• The at:put: primitives are compiled with more instruc-
tions.

• Additional trampolines are required at the beginning of
the machine code zone for the write barriers failure.

Machine code zone
size after start-up (hex)

Vanilla 91C00
Write Barrier 93F80

Figure 9. Machine code zone size

Locally: trampolines. When comparing the first available
address between the VM with and without the read-barrier,
one notices an overhead of 400 bytes, which corresponds to
the size of the new trampolines.

Locally: per-store overhead. In the case of a lambda store,
the most common, the store needs 12 extra bytes per store
to encode the extra machine instructions for the read-only
check. The overhead may vary slightly as the number of
Nops required for alignment between methods may change
if the number of bytes of the method changes.

Locally: at:put:. Each at:put: primitive is 16 bytes bigger
with the write barrier.

Comments. The main concern in our case is the number
of literal and instance variable stores. The number of tram-
polines is fixed during execution and there are at most two
at:put: primitives. Hence, only the number of stores can seri-
ously impact the memory foot print. As the global evaluation
shown, stores seems to be pretty rare as the overall memory
overhead is evaluated at 1.52%.

5.2 Execution time
Benchmarks. I evaluated the difference in performance
using the Games benchmarks [7] that is normally used for
VM performance evaluation. Even in benchmarks with in-
tensive instance variable stores, such as the binary tree
benchmark, the execution overhead was within the cpu noise
(so little that it could not be evaluated). I believe there is
some overhead in such benchmarks, but the overhead is un-
der 1% of execution time and I did not achieve to measure
it.

Building a pathological case. To see the performance dif-
ference, I built a micro-benchmark around a pathological
case doing almost only instance variable store.

MicroBench>>#setImmediate: imm nonImmediate: nonImm
"Immediate constant store"
iv1 := 1.
"Non Immediate constant store"
iv2 := #foo.
"Immediate store"
iv3 := imm.
"Non Immediate store"
iv4 := nonImm.

DoIt
| guineaPig |
guineaPig := MicroBench new.
[guineaPig setImmediate: 2 nonImmediate: #bar] bench

Time to run pathological bench
Vanilla 11.5 ±3 nanoseconds per run

Write Barrier 13.6 ±2 nanoseconds per run

Figure 10. Pathological benchmark code and results

In this pathological case, as shown on Figure 10, one
notices a 18.2% performance overhead. However, the binary
tree benchmark, which was larger, calls extensively a similar
method (see Figure 11) and does not show any significant
overhead. It is therefore unclear if this result means anything
on real applications.

ShootoutTreeNode>>left: leftChild right: rightChild item: anItem
left := leftChild.
right := rightChild.
item := anItem.

Figure 11. Binary tree setter method

I profiled the pathological case and realized the perfor-
mance overhead was mostly due to the stack frame creation.
Indeed, instance variable stores do not require a stack frame
without the write barrier, but they do with the write barrier to
be able to perform the cannotAssign:withIndex: call-back. Dif-
ferent solutions are considered for this problem, as discussed
in the future work section.

6. Related work
Immutability. Other programming languages such as Ada,
C++, Java, Perl, Python, Javascript, Racket or Scala support
immutable objects. In those cases, an immutable object is an
object whose state cannot be modified after it is created. It
differs from our approach where at any time, the program
can mark or unmark an object as read-only. In the context
of Smalltalk where most features are reflexive, it seems the

8 2016/8/26

right thing to allow an object to be able to change from
immutable to mutable state, and the other way around, using
reflexive APIs.

Garbage collector write barrier. Other people have im-
plemented write barriers in the machine code for efficient
garbage collection [9, 10]. Tracing generational GCs require
the runtime to maintain a specific invariant: objects referenc-
ing other objects from a younger generation need to be re-
membered. This way, the runtime can mark a generation of
objects without scanning older generations, leading to better
performance. In this kind of GCs, when an object is stored
into an older object, some actions may be taken by the run-
time to remember the old object thanks to a write barrier.

In addition, many modern GCs are also incremental to
limit the impact of garbage collection pauses for the appli-
cation. Incremental GCs may require additional invariants.
For example, in a tri-color marking garbage collector [1], a
new invariant is that black and white objects cannot refer-
ence each others.

In the case of the Cog VM, the runtime now provides both
a write barrier for the generational GC and for read-only ob-
jects. As discussed in Section 4.3.2, part of the machine code
is shared between both write barriers to limit the overhead.
As of today, the Cog VM does not feature an incremental
GC hence no write barrier is required for this purpose.

High level modification tracker tools. The main use-case
of the write barrier is the implementation of object modifica-
tion trackers. Others implementation of objects modification
trackers are available. The most popular nowadays are the
ones made with the Reflectivity framework [5]. On the con-
trary to our approach where the overhead is close to zero,
the other approaches available have a significant overhead
as they need to execute additional bytecodes.

Other Smalltalks. Other Smalltalk dialects, such as Vi-
sualWorks Smalltalk and the HPS VM (High Performance
Smalltalk Virtual Machine) [6], have a similar features. In
the case of VisualWorks, as the VM is a pure-JIT VM (there
is no interpreter), the implementation does not require the
cannotAssign:withIndex: call-back to return no value (the ma-
chine code generated has a specific execution path to take
care of it).

7. Future Work
I discuss in this section multiple performance improvement
and features that would be nice in the future release of the
Cog VM.

7.1 Performance improvements
Stack frame mapping and trampolines. While profiling
code in the VM to look for methods getting slower with the
write barrier, it came to light that one could optimize multi-
ple trampolines in the JIT (related and unrelated to read-only
objects). Indeed, trampolines such as cannotAssign:withIndex:

or mustBeBoolean add strong pressure on register allocation5

while they are taken infrequently.
It would be possible to convert stack frames triggering

those trampolines from machine code frame to bytecode
interpreter frames lazily, only when one of the unfrequent
trampoline is taken. This way, infrequent execution paths
would be interpreted, leading to overhead only in rare cases,
while the common execution path could be optimized better.

Stack frame creation for setter. As discussed in Section
5.2, the main remaining slow-down in the current implemen-
tation lies with setter methods, i.e., methods only setting the
value of one or multiple instance variables. It is possible to
change the JIT to generate two paths for such methods. The
method would start by testing if the receiver is read-only or
not, if it is not the case, which is the most common, a quick
path without stack frame creation nor read-only checks can
be taken instead of the slow path with stack frame creation
and read-only checks.

7.2 Features
Read-only contexts. For simplicity, I enforced all contexts
to be writable. It would be interesting to allow context to be
read-only, though it is not clear what would be the use-cases.
Read-only contexts can’t be executed by the existing VM as
code execution requires at least the mutation of the program
counter of the context. Hence, such contexts would not be
mapped to stack frames and would only exist as normal
objects. Execution returning to read-only contexts would
fail and Smalltalk code would be able to handle the failure.
The only way such contexts could be executed is through
a separated runtime directly written by the programmer to
correctly execute the code. Work in that direction is going to
happen if someone provides a valid use-case.

Modification tracker. One of the main use-cases of the
write barrier is to track object modifications. To do so, one
has to implement an in-image framework on top of the write
barrier APIs proposed in this paper. The framework has to
correctly handle store failures of both primitives such as
at:put and instance variable store.

In-image primitive fall-back. As stated in Section 3.2, all
the primitive methods mutating an object need to have their
fall-back code updated to raise the correct error. If such
primitives fail because of a read-only object, the primitive
failure error should be appropriate and not an unrelated error.
This has still to be done.

8. Conclusion
In this paper I have described the implementation of the
write barrier in the Cog VM and the Pharo image. Accord-
ing to the multiple evaluations, the feature was introduced

5 These trampolines require specific registers to hold specific values to be
called and forbid other registers to stay alive across the trampoline calls.

9 2016/8/26

with little to no overhead in term of memory footprint and
execution time in most applications.

Although the overhead is minimal, very uncommon
pathological cases still show an execution time overhead
of up to 18.2%. I believe the pathological cases overhead
could be solved by compiling two paths for setter methods
and by falling back to bytecode interpretation on uncommon
machine code paths. Hopefully, once polished over months
of production and customer feed-back, the write barrier will
induce a negligible overhead even in uncommon cases.

Acknowledgements
I thank Eliot Miranda for helping me implementing the write
barrier in the Cog VM and reviewing all my commits.

I thank Colin Putney for clarifying the term immutability
against write barrier and discussing the implementation in
general, as well as Tobias Pape, Jan Van de Sandt, Ryan
Macnak, Tudor Girba, Chris Cunnigham, Tim Rowledge,
Ben Coman, Bert Freudenberg and Denis Kudriashov on the
Squeak virtual machine mailing list.

This work was supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Council,
CPER Nord-Pas de Calais/FEDER DATA Advanced data
science and technologies 2015-2020.

References
[1] H. G. Baker. The Treadmill: Real-time Garbage Collection

Without Motion Sickness. SIGPLAN Not., 1992.

[2] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009.

[3] Contributors. Cuis smalltalk website. http://www.cuis-
smalltalk.org/.

[4] Contributors. Racket website. http://racket-lang.org/.

[5] M. Denker. Reflection in Pharo 5, European
Smalltalk User Group talk, ESUG ’15, 2015.
http://www.slideshare.net/MarcusDenker/reflection-in-
pharo5.

[6] L. P. Deutsch and A. M. Schiffman. Efficient Implementation
of the Smalltalk-80 system. In Principles of Programming
Languages, POPL ’84, 1984.

[7] I. Gouy and F. Brent. The Computer Language Benchmarks
Game, 2004. http://benchmarksgame.alioth.debian.org/.

[8] M. Guzdial and K. Rose. Squeak — Open Personal Comput-
ing and Multimedia. Prentice-Hall, 2001.

[9] U. Hölzle. A Fast Write Barrier for Generational Garbage
Collectors. In Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA‘93 Workshop on
Garbage Collection, 1993.

[10] A. L. Hosking, J. E. B. Moss, and D. Stefanovic. A Com-
parative Performance Evaluation of Write Barrier Implemen-
tation. In Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’92, 1992.

[11] E. Miranda. Cog Blog: Speeding Up Terf, Squeak, Pharo
and Croquet with a fast open-source Smalltalk VM, 2008.
http://www.mirandabanda.org/cogblog/.

[12] E. Miranda and C. Béra. A Partial Read Barrier for Efficient
Support of Live Object-oriented Programming. In Interna-
tional Symposium on Memory Management, ISMM ’15, New
York, NY, USA, 2015.

10 2016/8/26

	Introduction
	Problem
	Specification
	Terminology
	Use-cases
	Problem: limiting the overhead

	Image API design and implementation
	Core write barrier primitives
	Primitive failure
	Instance variable store
	Other in-image features

	VM implementation
	Object representation
	Interpreter implementation
	Primitives.
	Instance variable stores.

	JIT compiler support
	Primitives.
	Instance variable stores.

	Evaluation
	Memory overhead
	Execution time

	Related work
	Future Work
	Performance improvements
	Features

	Conclusion

