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Abstract

Controlling object graphs and giving specific semantics to references (such as read-only, owner-
ship, scoped sharing) has been the focus of a large body of research in the context of static type
systems. Controlling references to single objects and to graphs of objects is essential to build
more secure systems, but is notoriously hard to achieve in absence of static type systems. In this
article we embrace this challenge by proposing a solution to the following question: What is an
underlying mechanism that can support the definition of properties (such as revocable, read-only,
lent) at the reference level in the absence of a static type system? We present handles: first-class
references that propagate behavioral change dynamically to the object subgraph during program
execution. In this article we describe handles and show how handles support the implementa-
tion of read-only references and revocable references. Handles have been fully implemented by
modifying an existing virtual machine and we report their costs.

Keywords: Security, Dynamic language, First class references, Language design

1. Introduction

Controlling references is essential to build secure systems. Monitoring references and giv-
ing them specific properties have been the focus of a large body of research in the context of
statically typed languages [Hog91, CPN98, CD09]. For example, references are qualified as
read-only, lent, shared, immutable [BNR01]. The problem addressed by such approaches is cen-
tral to building more secure systems [Bis03]. Some works proposed to control the interface of an
object [HLR+99, FZ04]. However such approaches are not adequate in presence of open-world
and dynamic type systems [GN07].

Before going further we define two terms used in this article with precise meaning: property
and capability.

Property. We use the term property to denote the general behavior that an object or a computa-
tion should exhibit. For example, when we write that an object should ensure a read-only
property, it means that during a computation the state of this object should not be changed.

URL: http://jeanbaptiste-arnaud.eu (Jean-Baptiste Arnaud),
http://stephane.ducasse.free.fr (Stéphane Ducasse), http://marcusdenker.de (Marcus Denker),
http://rmod.lille.inria.fr (Camille Teruel)
Preprint submitted to Elsevier September 3, 2014



Our use of the term property should not be confused with properties in the sense of fields,
attributes or instance variables of objects.

Capability. A capability is a key to access a resource. In the object capability model proposed
by Miller [Lev84, MS03, Mil06], a capability is a reference to an object and the available
operations are the methods of this object. An object has to offer a limited interface to limit
access to its operations.

We continue our introduction by presenting approaches that tried to control references. Few
approaches have been proposed in the context of dynamically-typed languages: encapsulation
policies propose different per-reference encapsulation interfaces [SBD04]. Dynamic ownership
proposes to control access to object parts by changing message passing with an execution cost
up to 51% [GN07]. In addition, most approaches to control references are concerned with con-
trolling a single reference. In practice, one is often interested in controlling the complete graph
of objects that is accessible at run time from the reference.

Several works use the object capability model as a way to control references [Lev84, MS03,
Mil06, FMSW08]. The idea behind capabilities-as-objects is that the reference itself is a ca-
pability that is a key to access a resource or behavior ; without this key the resources are not
accessible. This means that if a client has a reference to an object, it has a capability that is equal
to what the object can do. In such approaches, there is no way to restrict what a reference can do,
other than just giving another reference to a different object that has a constrained interface. The
programmer thus must follow idioms and patterns to make sure that there is no reference leaked
with the full interface, or the safety would be compromised. Capability-based implementations
such as Joe-E are again based on a static type system [FMSW08]. Such approaches do not fully
address our needs since some properties should propagate through all the objects reached during
a particular execution and this only from the perspective of a given reference.

These works raise the following question: What is an underlying mechanism that can support
the definition of properties (such as revocable or read-only) at the reference level in the absence
of a static type system? This article proposes Handles as one answer to such question.

A handle is a first-class reference1 which acts as a viewpoint on the object it refers to. In
addition, a handle enforces the semantics that it embeds (such as read-only) on the referenced
object but only when such object is accessed via this handle. Finally, handles act as an overlay
on the dynamic object graph in which they are automatically propagated at run time.

Our approach is structured as a framework: firstly, the language designer has to specify how
a class holding a property (for read-only, raising an error on field write, for revocable, blocking
execution when revoked) is derived from a class to which the property has to be applied. For
example, when the class Point should be accessed via a handle, the read-only property is applied
to the class Point to create a read-only version of this class. Secondly, the handle mechanism
ensures the systematic propagation of that property at execution time.

The contributions of this article are:

1. the presentation of challenges to control references and object graphs in the context of
dynamically-typed languages,

1i.e., reification of reference
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2. Handles: first class references that propagate their behavior and their formal description,

3. the application of this framework to implement read-only execution and revocable refer-
ences, and

4. a precise description of the implementation in Pharo, a Smalltalk derivative [BDN+07].

The differences with our previous work [ADD+10] are: (1) a generalization and new defini-
tion of the handle concept to be able to convey different semantics such as revocable references,
(2) the introduction of metahandles to allow run-time control over handles, and (3) a new and
minimal implementation of handle propagation not based on bytecode rewriting.

In the following section we present two problems to show that dynamic languages need better
control over references. Section 3 presents Handles: behavior-propagating first-class references.
Its formal model is presented in Section 4. We then proceed to use handles to realize read-only
execution (Section 5.1) and revocable references (Section 5.2). Low-level virtual machine imple-
mentation details are shown in Section 6, followed by an evaluation in Section 7. In Section 8 we
present an overview of the related work. In Section 9 we conclude by summarizing the presented
work and outlining future work.

2. A Case for Handles

This section presents two examples, the goal is to stress the specific requirements needed to
control references.

2.1. Constraints brought by Dynamically-Typed Languages
Controlling references is a hard problem for any programming language. But in the case of

reflective dynamically-typed languages, we face some additional problems:

No static types. For example, using a static type system, Birka et al. add a read-only type qual-
ifier, which ensures that all state that is transitively reachable from a read-only reference is
also read-only [BE04]. Dynamically-typed languages do not provide static type informa-
tion, seriously compromising any static analysis at compile time.

Open world. System openness (with dynamic code loading and dynamically-typed systems)
has two consequences. First, there is a need for more control (for example, when loading
untrusted extensions at run time). Second, it makes analysis harder since there is no fixed
system to be analyzed before execution.

2.2. Supporting Read-Only Execution
We analyze preconditions as an example of the need for read-only references. From this ex-

ample we extract requirements to support read-only references in a dynamically-typed language.
The challenge is that the execution of a method precondition should not change the state of
the participating objects (receiver and arguments). Most existing languages supporting pre and
post conditions are either based on coding conventions (programmers should not invoke methods
changing the state of the objects and arguments) or on copying the objects (which is unrealistic
in most of the cases).

An ideal solution is to define the scope of execution of a precondition and ensure that any
modification will raise a run time error. Remember that we do not have static types so the error
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can only occur at run time. Imagine the definition of the method submorphsDo: of the class Morph
written in Smalltalk 2:

Morph>>submorphsDo: aBlock
<precondition: self submorphs isOrdered >
...
self submorphs isOrdered
...

Within the precondition scope (denoted here using <>) the programmer should get the war-
ranty that the state of the receiver and its object subgraph are unchanged and that an error is
raised if an attempt is performed. Not only the receiver but any modification of the objects
reached during such execution should raise such an error [ADD+10]. In contrast, using exactly
the same expression (here self submorphs isOrdered) in the method body can modify the receiver
and its object subgraphs.

2.3. Supporting Revocable References

Miller et al. show that capabilities can be used to support confinement and revocable refer-
ences [MYS03]. Figure 1 shows an example with three objects: Alice can give Bob a reference
to Doc. But Alice should be able to revoke it later i.e., Bob cannot access it anymore even if he
holds a reference to it. The conceptual solution proposed by Miller et al. is to create a revoking
facet (R) and only pass such facet to Bob. Such a facet can be seen as an object with a restricted
interface or a first class reference. In the example, Alice has to make sure to wrap all objects
discoverable from the reference handed to Bob. Idioms and special safety patterns should be
followed by the programmer to make sure that there is no reference leaked by accident. Indeed,
imagine that Doc holds a reference to a SubDoc which also has a back pointer to Doc. While
Bob cannot access Doc once its reference to Doc is revoked, if Bob gets a reference to SubDoc
and this reference is not a revocable one then Bob broke the system and can access Doc even if
it should not be able to do so.

In the example, the facet needs to be carefully thought to not leak references and only re-
turn facets instead. This example shows that there is a need for more advanced way to control
references than traditional ones. Membranes [Mil06, VCM13] is such an advanced way that is
discussed in Section 8.

2.4. Requirements

The previous examples show the following requirements for controlling object graphs:

Reference-based. The previous examples show that we need to control object graphs per refer-
ence. The same graph can be referenced from multiple objects that do not use the same
property or do not use properties at all.

2In Smalltalk, as a first approximation, messages follow the pattern receiver methodName1: arg1 name2: arg2
which is equivalent to the Java syntax receiver.methodName1name2(arg1, arg2). Hence, self submorphs isOrdered is
equivalent to this.submorphs.isOrdered(). In addition, a method definition starts with a method definition without type
definition. Hence, the method signature submorphsDo: aBlock is equivalent to void submorphDo(b Block).
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BobAlice

Doc

R

object

facet

refers to

message
with args

SubDoc

leak and full access 
to Doc via SubDoc

Figure 1: Revocable references: Alice can decide Bob should not be able to access Doc. References to SubDoc should
also be revokable, else Bob can access Doc even after revocation.

Propagating. An important aspect is how specific properties propagate to the object graph dur-
ing program execution. Controlling a single object is not enough, as all non-trivial pro-
grams use multiple objects to model data structures which form a graph of objects. We
want to be able to control such a graph of objects, even though we might only reference
only one object of the structure.

• When we want to ensure that the execution of a precondition is read-only, the read-
only property should be propagated to all the objects involved in the precondition
execution [ADD+10].

• Similarly, when a user is granted a revocable reference, the propagation of such
behavior to the objects participating in a control flow is important: when the reference
is revoked all the references to this object graph made during the execution should
be revoked as well.

Such a propagation should not be limited to a thread but should nevertheless follow exe-
cution.

Transparent. Sending messages via controlled reference should not be different than normal
sends. For example, when Bob accesses Doc a controlled reference, it should be able to
perform any actions on it and should not be aware that it is using a special reference. We
discuss transparency and the relationship with identity in Section 7.2.

3. Handles

Handles are first class references that propagate behavioral changes dynamically to the object
subgraph during program execution. We present them formally in Section 4.

Vocabulary. We call target the object on which handles are created. When adequate, we dis-
tinguish between the creator of a handle and one of its users (i.e., programmers that access an
object via a handle obliviously). A creator is able to create handles and control them if necessary.
A user simply uses a handle. When the user has only access to a handle, he cannot access the
handle’s target object.
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a TextMorph

<<instance>>

text
textStyle

TextMorph

newContents:
contents

newContents:
contents

ReadOnlyTextMorph'

<<shadow class>>

newContents: stringOrText
     ...
   text := newText.

newContents: stringOrText
    ^Error signal: 'Store is not allowed'.

position:
ReadOnlyMorph'

 aReadOnlyHandle

Specified by the language designer

a Text

Supported by the Handle framework

executionhandle

transformed into

execution

instance of

 
 

shadow class

bounds
Morph

position:

Figure 2: Handle supports the management of reference properties and their propagation at run time. The language
designer has to provide the transformation that defines the semantics of his new construct: here read-only.

A Two-Step Approach. Our approach is structured in two parts as illustrated by Figure 2. First
the language designer has to define in his own way how the property that he wants to support is
implemented. He does this by specifying how a class is transformed into a shadow class. The
result of such a transformation is a class that has the property applied to the class of the target
object. For example, to implement the read-only property, all the write accesses in a given class
should raise an exception (Figure 2). Second, once handles are created, the framework ensures
at run time that the property is propagated dynamically reference by reference through the object
subgraph. They ensure that the target object cannot leak and that the property is preserved.

As a complement to Figure 2, the following code snippet shows how a programmer will get a
read-only reference using the message asReadOnly provided by the language designer using the
Handle framework. aReadOnlyClient is a handle on the object anTextMorph.

"Used by the programmer"
aReadOnlyHandle := anTextMorph asReadOnly.

"Defined by the language designer"
Object>>asReadonly

^ ReadOnlyHandle for: self
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3.1. Handle Model

Figure 3 describes the underlying principle of Handles: (1) a handle is a transparent reference
to a target object. By transparent we mean that a programmer cannot detect by using pointer
equality that he has a pointer on an object or on a handle on the same object. (2) a handle
can define different behavior than the target object. When the message contents is sent via the
reference authorizedClient1 the handle executes its contents’ method using the identity and the
state of the target object. In addition, authorizedClient1 has only access to the transformed target
behavior which is stored in a shadow class. Obviously, the shadow class can have additional
methods as we can see in Figure 3: the primitiveRedraw method can only be accessible using
authorizedClient1 or authorizedClient2. There is no lookup mechanism between the shadow class
and the target class. If a method is not defined in the shadow class but is defined in the class of
the target, it will not be accessible to the handle client. Multiple handles can have the same target
object. A target can be accessible via a normal reference normalAccessClient and controlled ones
such as authorizedClient1. It is the responsibility of the infrastructure built on top of handles to
ensure the adequate use of properties and references. In its current version, the Handle framework
does not keep the target class and its shadow class synchronized automatically.

aTarget

authorizedClient1

newContents:'
contents'
primitiveRedraw

PrimTextMorph

<<instance>>

 '

normalAccessClient

authorizedClient2

handle

instance of

 
 

shadow class

text
textStyle

TextMorph

newContents:
contents

Figure 3: Handle Principle: a handle uses target state and identity and defines a specific behavior (potentially adapted
from target class). Several handles can co-exist on the same target.

State Access through Handles. When a handle method accesses state, it accesses the state of the
target object. Thus changing state from a handle reference is not local to the handle (the handle
does not shadow the state of the target). Instead, the state of the target object that will change.
Like objects, handles can be stored in instance variables.

Handle Propagation through Execution. Figure 4 presents handle propagation. When accessed
via a handle, any instance variable read wraps the instance variable, i.e., creates a handle on the
object held in the variable.
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<<shadow class>>

aHttpClient

connection
url:
get

connection
session

HttpClient

<<instance of>>

connection
  ^ connection

url: urlObject
  url := urlObject asHttpURL.
  ^ self

restrictedClient 1

aHttpSecure
SocketStream(1)

an execution
path

...

...

HttpSecure
SocketStream

<<instance of>>

connection

restrictedClient1 url:  ==> Handle for: aHttpSecureSocketStream
restrictedClient1 connection ==> Handle for: aHttpClient

...
HttpClient'

... 

HttpSecure
SocketStream'

Figure 4: Handle Propagation Principle. All accesses via a handle to target object state are wrapped with a handle and
propagated at run time.

• Sending a message that returns an instance variable of the target object, returns a handle
on this object. In Figure 4 the expression restrictedClient1 connection returns a handle on the
object held by the instance variable: aHttpSecureSocketStream.

• This propagation is recursive and follows the application execution (1 in Fig. 4).

• Finally, a handle do not wrap on store and self references stay wrapped. The expression
restrictedClient1 url: ’https://www.google.com’ stores a new httpURL (and not a handle on this
new object) in the target object and returns the handle (accessed via restrictedClient1).

The Case of self. Since sending a message to a handle leads to the application of a handle
method to the target object, this raises the question of what self/this refers to. In particular, a
handle method returning its receiver could leak the target object and this is clearly not what we
want [Lie86].

• When a method is executed via a reference that is not a handle, self/this in a (target) method
represents the target object as in traditional object-oriented languages.

• When a method is executed via a reference that is a handle, self/this refers to the handle.

Handles conserve the invariant that self/this represents the receiver of the message.
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3.2. Handle creation and metahandle

Handle Creation. To ensure that once a handle is created, there is no possibility for the program-
mer to access the target directly, we divide handle lifetime in two distinct periods:

• Initialization. A handle is initialized with information relative to its target object. Imme-
diately after its initialization the system activates the handle.

• Handle activation. Once a handle is activated, it represents a view on the target object. It
is impossible to directly send messages to the handle. Such messages are automatically
managed as messages sent to the target and follow the behavior described earlier. This
behavior is implemented at virtual machine level and cannot be reverted.

Metahandle: Controlling a Handle. Handles face an important tension: on the one hand, han-
dles should forward messages they receive to their target. They should transparently represent
other objects. On the other hand we want to be able to control their behavior. For example, to
implement revocable references we need to be able to mark a graph of handles. To solve this
tension, the model offers metahandles.

a 
Target 
Object

isMeta
MetaHandle

<<shadow class>>

foo
Target' <<shadow class>>

Creator

restrictedClient  

Figure 5: Metahandle Principle: a metahandle is a handle whose target is a handle.

A metahandle is a handle whose target is another handle (see Figure 5). Since an activated
handle is a point of view on its target and as such may change the target behavior, sending a
message to a metahandle can modify a handle. Using metahandles, handles can be reconfig-
ured dynamically. Nevertheless the behavior of the metahandle can be partial, depending of the
shadow class used. An important point is that a metahandle can only be created on inactive
handles. The reason is that a handle user should not be able to alter the handle.

A handle creator can keep a reference to a metahandle to later configure or change the asso-
ciated handle behavior. When the handle creator does not keep a reference to the metahandle,
there is no way to change the behavior of a handle. In addition, depending on their class (and
the language designer needs), during their initialization, handles will return their metahandle or
not (by default they do not return it). Therefore, as long as the handle creator does not give away
a reference to a metahandle, there is no way to interact with the handle (the behavior is the one
described earlier: a message sent to a handle looks for a method in the handle shadow class and
applies it to the handle’s target object, not the handle itself).

Of course, it is possible to create a metahandle on a metahandle. This meta-metahandle could
be used to restrict the use of a metahandle that has been handed over to a client. For example, one
could hand over a metahandle that is a revocable reference. The meta-metahandle then controls
revocation of the metahandle.
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4. HANDLELITE: handle operational semantics

We present the operational semantics of Handles by extending SMALLTALKLITE [BDNW08].
SMALLTALKLITE is based on CLASSICJAVA [FKF98] but adapted to dynamically-typed lan-
guages: it does not support any notion of static type, interface, and considers fields as private.
SMALLTALKLITE formalisation is given in appendix. Our goal is to provide a precise descrip-
tion of handle execution. Then we explore an example to show how properties are ensured and
propagated during program execution.

Property representation. Handles are motivated by approaches coming from the safety and se-
curity domain such as read-only execution and revocable references. Our model needs to be able
to express such properties at the reference-level.

A property is a mechanism created by the language designer which defines how to control
an object graph at the reference-level. This includes the change of behavior, the configuration
of a handle and how the handle should be propagated. The designer creates a mechanism for
transforming a class c into a class c′ holding the property p. If we take the example of the read-
only property, it may recompile some methods to raise errors on field assignment. We add a new
syntax for defining property application: p(c). The property p takes as argument the class c and
return a new class c′. The intuition behind c′ is that it enforces property p. See Figure 6.

p(c) = c′

Where c’ respects the property p.
And c and c’ are classes.

Figure 6: handle: property translation

We only model properties and their propagation and not their actual implementation: remem-
ber that the language designer has to provide a way to map a class and a property to a class. The
property will be enforced by handles at reference-level.

Handle representation. We add a new construct to SMALLTALKLITE for defining handle cre-
ation: handle(o, p). It takes as arguments the target object o and a property p. We use hop as a
compact form for handle(o, p) and we add it to the reducible expressions of SMALLTALKLITE
(see Figure 7).

ε = [...] | hop

Figure 7: Handle: new reducible expressions for HANDLELITE

We have the infrastructure for modeling, manipulating message passing and state access at
reference-level. We present how to enforce behavior shadowing, transparency and propagation.

4.1. Per reference behavior shadowing

To enforce behavior shadowing, a handle needs to keep a behavior. We add handles to re-
ducible expressions to allow one to send message to a handle hop.m(ε∗), and to pass a handle as
a parameter to a method send. In addition, we add the possibility to perform a super-send on a
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handle (ie. super〈hop, c〉.m(ε∗)). Moreover, we add two rules to the reduction rules of SMALL-
TALKLITE to change how message and super-send are managed (Figure 8) when performed on a
handle. We create a [handled send] reduction and [handled super-send] reduction for handle that
we explain now:

[handled send] represents how message sends are managed (lookup and evaluation) on a han-
dle. The rule [handled send] defines the expression 〈E[hop.m(v∗)],S〉 (see Figure 8),
which evaluates the method body [[e[v∗/x∗]]]c′′ . This method body is found in class c′′

using a traditional method lookup beginning at class c′, where c′ is class holding the prop-
erty p (provided by p(c) = c′ where c is the class of the object o). This means, when
hop receives a message (hop.m(ε∗)), the lookup begins in class c′, where c′ is provided by
the handle property p (see [BDNW08] Fig 8 page 17). Note that self is bound to hop. To
summarize, the usual self-send mechanism is applied, except that the receiver is bound to
the handle.

[handled super-send] represents how super-sends are managed when performed on a handle.
The rule [handled super-send] defines the expression 〈E[super〈hop, c′〉.m(v∗)],S〉 (see
Figure 8), which evaluates the method body [[e[v∗/x∗]]]c′′′ . This method body is found us-
ing a traditional lookup starting from the superclass of the class containing the super-send
expression. This means, when hop receives a message(super〈hop, c′〉.m(ε∗)), the lookup be-
gins in class c′′, where c′′ is the superclass of the c′ and c′ the class containing the method
using super. c′′′ is the class containing the matching method. To summarize, the usual
super-send mechanism is applied except that the receiver is bound to the handle. By con-
struction if we are in a case of [handled super-send] that mean we are already in a shadow
behavior execution and the static binding is correct.

P ` 〈E[hop.m(v∗)],S〉 ↪→ 〈E[hop[[e[v
∗/x∗]]]c′′ ],S〉 [handled send]

Where 〈c′,m, x∗, e〉 ∈∗P c′′

And c′ = p(c)
And c is the class of the object o

P ` 〈E[super〈hop, c′〉.m(v∗)],S〉 ↪→ 〈E[hop[[e[v
∗/x∗]]]c′′′ ],S〉 [handled super-send]

Where c′ ≺P c′′

And 〈c′′,m, x∗, e〉 ∈∗P c′′′

And c′′ ≤P c′′′

And c′ is the class containing the method using super
And c′ = p(c)

where ∈∗P Method lookup starting from c
〈c,m, x∗, e〉 ∈∗P c′ ⇐⇒ c′ = min{c′′ | 〈m, x∗, e〉 ∈P c′′, c ≤P c′′}

Figure 8: Behavior related reductions for HANDLELITE

Using the rules [handled send] and [handled super-send] we enforce shadow behavior at
reference-level because the behavior is changed when the messages are received by the handle
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(using the property p). In addition, when a message is received by a handle, self is bound to the
handle.

4.2. Transparent proxies
Handles are transparent proxies, so when the identity of a Handle is requested, it should

answer the identity of the target object. In SMALLTALKLITE, identity is a value embedded in
the object. This can raise an issue for Handles, as reading the identity value is fixed:

o = [...] | oid

In our model, we treat identity as a function, so when we request the identity of object, we return
the identity of the object:

oid(o) = oid

But when identity is requested for a handle, the identity of the target object is returned:

oid(hop) = oid(o) = oid

4.3. Property propagation
Handles propagate the properties that they provide. We add the Handle concept to reducible

expression that allows one to evaluate the expression hop.f and hop.f=ε on a handle and write a
handle into a field ε.f= hop. Handles are transparent proxies and require to manage propagation.
This implies to manage the state accesses in a different way when they are performed from a
handle. So as we see in Figure 9, we add the following two reductions:

[handled get] represents how fields are read from a handle. The [handled get] reduction first
fetches the state of the target object and then propagates the properties p. Thus, instead of
reducing 〈E[hop.f ],S〉 to 〈E[v],S〉, we wrap the return value 〈E[hvp],S〉 into a new handle
hvp respecting the same properties p.

[handled set] represents how fields are written from a handle. The [handled set] reduction
shows that handles do not keep their own state and that the state is stored in target ob-
ject instead.

P ` 〈E[hop.f ],S〉 ↪→ 〈E[hvp],S〉 [handled get]
Where S(o) = 〈c,F〉
And F(f) = v

P ` 〈E[hop.f=v],S〉 ↪→ 〈E[v],S[o 7→ 〈c,F [f 7→ v]〉]〉 [handled set]
Where S(o) = 〈c,F〉

Figure 9: State related reductions for HANDLELITE

Using [handled get] and [handled set] we enforce the propagation of the properties held by
handles. Moreover, we use [handled get] and [handled set] to update the state of the target object.
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4.4. Example
We illustrate the formalism with an example of code to show that an execution of the handle

propagates correctly the property and that it does not leak references to the target object.
In the following example, we have a shadow class that implements the tracing property that

a handle applies and propagates on the target subgraph. The tracing property registers all the
message sends on handles and is denoted TP .

To illustrate the handle mechanism, we have a BankAccount object with an instance variable
user.

BankAccount>>user
^ user

BankAccount>>applyMonthlyCharges
... "Some messages that apply monthly charges"
^ self

The class defines two methods: user that returns user and applyMonthlyCharges that com-
putes all the charges performed during the month and then return self. In our context, the impor-
tant point is that such method leaks a reference to self.

1 | hba ba |
2 ba := BankAccount new.
3 hba := TracingHandle for: ba.
4 hba applyMonthlyCharges.
5 hba user.

We create a BankAccount (line 2), then we create a tracing handle on it (line 3). Finally we
execute applyMonthlyCharges and user methods.

We apply now each rule and the example shows that given a handle we cannot leak references
to the target object. First, in applyMonthlyCharges we see that self returns the handle and not the
target (see below the line 4 and the rule application). Second, accessing instance variables when
executing the user method, we get a handle on the value (potentially other objects not shown in
the example). Now we show the formal execution of this code.

Line 2 create a bank account ba and line 3 creates a handle hba = hbaTP for ba. Line 4 is
evaluated according to the given semantics as follow:

a
[[
hbaTP .applyMonthlyCharges()

]]
[handled send]

b ⇒ [...]
c ⇒ hbaTP [[self]]TPBankAccount

d ⇒ hbaTP

In the previous listing, we send a message applyMonthlyCharges() to hba and fetch the self
value. The method is looked-up in the class TPBankAccount = TP (BankAccount) (see line
c). The message returns self (line c) that is bound to the handle hbaTP (line d). Line 5 is evaluated
according to the given semantics as follow:

a
[[
hbaTP .user()

]]
[handle send]

b ⇒ hbaTP [[self.user]]TPBankAccount

c ⇒ hbaTP

[[
hbaTP .user

]]
TPBankAccount

[handle get]
d ⇒ hbaTP [[h

user
TP ]]TPBankAccount

e ⇒ huserTP
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In the previous listing, we send a message user to hba and get the instance variable user
(lines a b c). The message is looked-up in the class TPBankAccount. In this specific case, the
message send is equivalent to the original send (because it is a read access). Second, the user
value is fetched via hbaTP .user (line d). The value of the field user is obtained in the target object
and we create a new handle for this reference, huserTP (line e). This example shows how instance
variables are wrapped on access.

This example shows that:

• Handles ensure that the tracing property is propagated to the object ba and all its subgraph
from the handle point of view.

• ba does not leak any references to the original object, even if methods in the target object
return references to self (applyMonthlyCharges in the example).

5. Uses Cases for Handles

In this section we describe some use-cases for Handles. First we present several approaches
implemented using handles. Second we detail two well-known approaches, Read-only and Re-
vocable references.

ProfilingReferences define references that are able to instrument all the message sends and in-
stance variable accesses performed through a specific reference and notify another object.
This property propagates through the graph.

MirroredReferences is an implementation of Mirrors [BU04] using handles. Mirrors provide
access to reflective features by inversion of control: this is not an object that accesses
its meta-object, but the meta-object (called a mirror) that provides access to its subject.
Mirror-based architecture follow the principle of stratification that stipulates that base-level
facilities should be separated from meta-level facilities. Classical mirror-based architec-
ture follow this principle because a mirror and its target are two different objects. Handles
offer another way to follow this principle by providing two different kinds of reference on
a same object. A mirror reference embeds meta-level facilities while normal references
do not. This solution ensures that a mirror reference and its target object share the same
identity. Ambiguous methods that could belong to both base-level and meta-level (such as
printString) become less verbose because no mirror instantiation is needed.

RestrictedMethodScope proposes an approach to restrict the methods accessible from a specific
reference. The user can specify a filter to exclude methods of the API of the target object
class.

AuthentifiedReferences proposes an approach to change the API of group of objects based on
an authentification process.

All these approaches have been implemented and are functional. In the following subsection
we will present the implementations of two security properties using handles.
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5.1. Read-only References with Handles
Now we present how handles allows one to implement the read-only behavior and its propa-

gation3. Figure 10 shows that the read-only handle shadow class contains rewritten methods of
the target class so that they raise error.

The framework provides two entry points to the language designer:

• He should define the behavior of the handle creation method named for: aTarget. This class
method takes as argument a target object.

• He should specify how a handle is created during the object graph propagation by defining
the method propagateTo: aTarget. This method expects again a target object.

a ReadOnlyHandle

Client

 

ReadOnly
Handle

<<instance>>

a TextMorph

<<instance>>

text
textStyle

TextMorph

newContents:
contents

newContents:
contents

ReadOnlyTextMorph'

<<shadow class>>

newContents: stringOrText
    ...   
    text := stringOrText.
    ...

newContents: stringOrText
    ...
    Error signal: 'Store is not allowed'.
    ...

position:
ReadOnlyMorph'

bounds
Morph

position:

Figure 10: Read-only handles: handle shadow classes contain rewritten methods so that they throw exception on state
write.

Handle creation. Practically, we create a specific handle class ReadOnlyHandle subclass of Han-
dle. We specify the handle creation as follows:

1 ReadOnlyHandle class>>for: aTarget
2 | handle aROShadowClass |
3 aROShadowClass := self createROShadowFor: aTarget.
4 handle := self initializeFor: aTarget to: aROShadowClass.
5 handle activateHandle.
6 ^ handle

3A previous article shows a first specific version of Handles [ADD+10]. In this first version, there was no metahandle,
the handle propagation was done by on-the-fly bytecode rewriting and was only supporting read-only behavior.
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At line 3, a class is obtained as a transformed (read-only) version of the target object class –
all store accesses to instance variables will raise an exception. Such behavior is not the concern
of the handle framework but of the language designer that should provide it. Line 4 create a
deactivated handle associated with the read-only class. Line 5 activates the handle. From then on
we cannot send messages to the handle itself anymore, all messages are forwarded to the target
object. Line 6 returns the handle.

Propagation. In addition, the framework asks the language designer to define the creation of
handles during the propagation by defining the class method propagateTo: which is invoked by
the virtual machine. Here we simply create a read-only handle on the argument.

1 ReadOnlyHandle class>>propagateTo: anObject
2 ^ ReadOnlyHandle for: anObject.

This method is invoked when an instance variable is accessed. The value returned by this method
is returned in place of the instance variable value. This mechanism dynamically propagates the
read-only behavior to the object graph.

5.2. Revocable References with Handles

The idea behind a revocable reference is to create a reference to an object that can be con-
trolled and revoked [MYS03]. Our revocable reference implementation uses handles and meta-
handles (as shown in Figure 11). A revocable reference named doc’ with a handle on Doc is
created. A controller reference named c-doc’, a metahandle on the handle doc’, is created. Alice
gives to Bob doc’ (the revocable reference). When Alice wants to revoke this reference it uses
the controller reference. Our implementation is based on the possibility to toggle the shadow
behavior using a metahandle. When on (i.e., reference is revoked) the shadow class will raise
errors, when off the messages are handled normally.

Bob
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Doc

G
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reference
controller

revocable
reference

doc

c-doc'
doc'

an
Object

grant
revoke
uninstall

 

Revocable
Controller

revocable 
reference

reference 
controller
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handle

doesNotUnderstand:
 
RevokedBehavior     

using
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Figure 11: Right: Revocable References using Handles. Left: Revoked references have as a shadow classes that does
nothing but raising errors.
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5.3. Revocable References Implementation

We implement the Revocable References using Handles in three steps.

Step one: Error raising behavior. Sending messages to an object via a revoked reference should
raise errors. To implement such revoked behavior, we create a class named RevokedBehavior
which inherits from nil. This class does not define any method besides the doesNotUnderstand:
method which raises an error [Pas86, Duc99]. Any message send will then raise the exception
AccessRevoked. RevokedBehavior will play the role of a shadow class for all the revoked refer-
ences. Again such behavior is part of the language designer task. He has to design the semantics
that he wants for his language constructs.

RevokedBehavior>>doesNotUnderstand: aMessage
^ AccessRevoked signal.

Step two: RevocableReference. Second we define a new subclass of Handle named RevocableRef-
erence.

1 RevocableReference class>>for: aTarget
2 | revocableHandle controller |
3 revocableHandle := self initializeFor: aTarget to: RevokedBehavior.
4 controller := RevocableReferenceController for: revocableHandle.
5 controller grant.
6 revocableHandle activate.
7 ^ {revocableHandle . controller}

At line 3, a new handle is created and associated with the revoking behavior created in Step
1. We do not need to get a shadow class per target class since we want to always raise errors and
RevokedBehavior is playing this role for all the target object classes. Line 4 creates a metahandle
on the handle. Line 5 configures the handle to not apply the revoking behavior. Line 6 activates
the handle. Line 7 returns an array with the handle and its controller (the metahandle).

Step three: RevocableControllerReference. To control the handle (the revocable reference), we
define a new metahandle class named RevocableReferenceController. This class implements two
methods revoke and grant.

RevocableReferenceController>>revoke
shadowBehavior := nil.

RevocableReferenceController>>grant
shadowBehavior := target class

When Alice sends the message revoke to the controller, this message applies the method revoke
on the revokedRef (doc’) handle. The revocable reference then uses the shadow class behavior
which throw exceptions for any messages.

The rest of this section shows how we can use the natural propagation of properties inside
the object subgraph to enhance revocable references.

17



5.4. Propagation of Revocable References
Revocability of references should propagate to a graph of used objects. Since SubDoc is

reachable from Doc it may leak a reference of SubDoc to Bob. Such a reference should not
break the fact that Doc reference to Bob is revocable. Therefore, all references accessed by Bob
from its revocable reference should be revocable too. In our example, the reference to SubDoc
obtained by Bob via its revocable reference should be revocable. All the references reachable
from Doc subgraph should also be revocable when accessed from the handle on Doc (Figure 12).
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controller
reference

revocable
reference

doc

c-doc'
doc'

SubDoc

SubDoc
2

revocable
reference propagation

SubDoc'

Figure 12: Propagation of revocable references: When Bob accesses SubDoc via Doc, SubDoc should be revocable too.

Revocable reference propagation is a bit more complex than the one of the read-only prop-
erty, because one should only revoke the references coming from a specific graph. The basic idea
behind the solution is that:

• All the handles in a revocable reference graph coming from the same original handle have
the same identifier.

• We introduce a factory that creates metahandles, and keep a list of reference controllers
(metahandles) per graph to be able to revoke references. It offers the API to revoke refer-
ences.

5.5. Using Revocable References
Now that the core model has been explained, we present an example. The following code

illustrates the behavior of the system. Alice asks the Factory to provide a revocable reference
on Doc (Line 1). She obtains a pair of an instance provided by the factory and a revocable
reference on Doc (named Doc’). The instance contains only the reference controllers for the
specific references created by this invocation. Later it may contain different reference controllers
gathered during the propagation which occurs during Doc’ doSomething execution (Line 4) but all
the references will have the same identifier. Alice can pass Doc’ to anybody. Later, Alice asks
the factory to revoke the references (Line 6). Now references Doc’ raise exceptions when used.

1 pair := ControllerFactory for: Doc.
2 "pair is an array with aFactory and Doc’"
3 Doc’ := pair second.
4 Doc’ doSomething.
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5 Alice pass: Doc’ to: Bob.
6 pair first revoke.
7 "we ask the factory to revoke the references to Doc from this specific reference"
8 Doc’ open "raises an exception"

6. Virtual Machine Level Implementation

In this section, we present the virtual machine changes to the Pharo Virtual Machine [BDN+09]
needed to support Handles4.

Bytecodes. To ensure that a handle is transparent, we modify the identity primitive and asso-
ciated bytecode of the virtual machine. The primitiveIdentical method tests if two objects are
identical (if the pointer in memory is the same). We modified the primitive so that when invoked
on handles, it checks that their target objects are identical.

The Difficult Case of Primitives. At the language level, when a message is sent to a handle, the
found method (if any) is applied to the target object. In addition, it is not possible to distinguish
the handle and the target object. However, from the virtual machine point of view a handle
is an object, therefore we had to modify the virtual machine to take into account handles at
the level of primitives. A primitive is a functionality that is implemented at the VM level and
invoked from the language level. Primitives exist for low-level operations such as integer or float
manipulation, memory allocation, object offset access (basicAt:, basicAt:put:), method execution
(perform:, executeMethod, pointer swapping (become:),.... There are around 150 primitives. In the
Squeak/Pharo VM, primitives act as message sends but shortcut the normal bytecode dispatch
loop and invoke directly their associated VM C function.

The challenges we faced is that primitive invocations should not be freely executed as this
may lead to a leak of the target object. The key points are:

• A handle is in charge of deciding which methods can be executed when a message is sent
to it. If the shadow class hierarchy does not include a method, even for primitive methods,
this method cannot be accessed and executed. The handle designer is in charge of the
semantics and elements he wants to provide access to. Our design decision is that by
default nothing is possible.

• Primitive invocation on handle objects related to state access are executed as if they were
sent to the target object.

• Reflection cannot bypass handles. Our implementation takes care that reflective features
cannot bypass the handle semantics and propagation. All the primitives were rewritten to
take care of handles.

• Certain meta operations such as invoking directly methods or performing method lookup
(perform:) use the shadow class of the handle.

We adapted the virtual machine primitives to behave as described. Primitives have to be
analyzed case by case.

4The source code of the VM and the example given in this article are available at: http://jeanbaptiste-arnaud.eu/
phd/
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6.1. Controlling Behavior
By design, a handle controls object execution and dynamically changes target object behav-

ior. To implement this, we modified the method lookup location in the VM. If during a message
send the receiver is an activated handle, we modify where the lookup starts: the shadow class or
the class of the target object (when the option is to not use the shadow behavior).

Here is the normalSend method of the Squeak/Pharo VM implemented in SLang (A Smalltalk
subset which is transformed to C) [GR01]. A normal send is invoked for each method invocation
(except primitive ones). It is inlined.

Interpreter>>normalSend
"Send a message, starting lookup with the receiver’s class."
"Assume: messageSelector and argumentCount have been
set, and that the receiver and arguments have been pushed
on the stack,"
"Note: This method is inlined into the interpreter dispatch loop."
| rcvr |
...
(self activatedHandle: rcvr)
ifTrue: [ (self handleUseShadowBehavior: rcvr)

ifTrue: [ lkupCls := self handleClassLookupOf: rcvr]
ifFalse: [ lkupCls := self fetchClassOf:

(self handleTargetOf: rcvr)]].
self commonSend.

• The cost of adding a test in each message send is not marginal. We discuss this in Section 7.
We experimented with alternative designs such as changing the class of the Handle at
activation time but it leads to a more static solution and was not satisfactory.

• At this step we do not change the receiver of the message, it is still the handle.

6.2. Propagation
There are two aspects of propagation: (1) what is propagated and (2) at which moment the

propagation occurs.
The first aspect is defined by the class-side method propagateTo: of the Handle class that takes

an object as argument. This method can decide to return this object or to return an handle on
this object. The second aspect is handled by calling this method on each state read access. At
the VM level, we change the pushInstVarAt bytecode so that when the propagation is enabled, we
substitute on the stack the pushed instance variable by the corresponding result of propagateTo:
method. This is enough to implement the semantics described previously.

7. Evaluation and Discussion

To validate our approach, we present a short analysis of the performance and overhead. We
discuss various properties of handles and how they relate to our previous work.

7.1. Performance Analysis
For the Handle implementation, we need to analyze two different aspects: first, we modify

the virtual machine to support handle execution. This implies modifications to perform a check
for handles that slow down normal execution (i.e., code not using handles). Second, we analyze
the performance when using handles for different scenarios.
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Base Performance. We measure the performance of our modified VM compared to the normal
VM. For this we execute two examples: a binary tree and a simple n-body simulation5. We
execute it without actually using handles on both the normal virtual machine and on our Handle
virtual machine. The two virtual machines used are compiled from the Squeak/Pharo VM version
4.2.2b1. They are generated manually with the exact same build environment.

• The binary-trees benchmark. We build binary trees and then iteratively remove all nodes,
until a depth of 16. We execute this benchmark 50 times. In this benchmark we see an
overhead of 5.45% of execution for the Handle VM.

Mean Standard deviation
normal VM 21167.00ms 106.26ms
handle VM 22321.57ms 66.35ms

• The n-bodies is a model of the orbits of planets. This benchmark is interesting because it
stresses state access. In this benchmark we see an overhead of 7.36% of execution time
when using the Handle VM. We execute this benchmark with argument N=100000, 50
times to make this measurement.

Means Standard deviation
normal VM 4444.50ms 38.36ms
handle VM 4772.80ms 20.68ms

So we see a slowdown of less than 8% in both cases for executing code on our special handle
VM prototype. The reason for the slowdown is coming from the checks for handles vs. objects
when accessing state, message sends, and identity. Schaerli et al. [SBD04] reports an overhead of
15% for their implementation of encapsulation policies and they also modify a virtual machine
to introduce references. We used the same virtual machine but a more recent version. The
difference is probably due to the fact that we spent more time optimizing our implementation.
Note that using a more recent version is not really an advantage since introducing changes in a
more optimized system usually results in more overhead because the standard case to compare
against is better optimized.

Discussion. Handles require to modify and control message sends. In Smalltalk, message sends
are the most frequently used primitive instruction. Therefore an overhead in message sends will
induce a cost for all computation.

Cost of Handle Execution. In addition to the general slowdown of the VM, we are especially
interested in the overhead of actually using handles in a program. It is clear that the slowdown
depends on the behavior that the handles introduce as well as how the handles are used. The
slow-down will therefore be different for the kind of handle used (e.g., revocable references,
read-only) and in addition will depend on the scenario of actual use.

For revocable references, we perform the two previous benchmarks n-bodies and binarytrees.
These benchmarks are stressful to show the cost of some specific operations on objects via a
handle.

5http://shootout.alioth.debian.org/
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• In the n-bodies benchmark, we create a revocable reference and we have 24000000 access
to integers (in additions of the algorithm execution operation).

Mean Standard deviation
revocable nbody 8172.12ms 31.01ms
nbody 4772.80ms 20.68ms

We see an increase of 71%. This slowdown is substantial, but explained by an implemen-
tation detail of the virtual machine: integers are not objects, they are instead encoded in
the pointer and operations are optimized by special bytecodes. As soon as we use handles,
the execution uses normal objects and message sends for the handle object. Even for this
worse-case, the slow-down does not prohibit real world use.

• The binarytrees benchmark is performed to focus on the slow-down introduced by instance
variable propagation and RevocableReference initialization.

Mean Standard deviation
revocable binarytrees 68094.23ms 70.06ms
binarytrees 22321.57ms 66.35ms

We see a slowdown of 205%, the reason for the slowdown is the number of graphs managed
and their size (1747535 different object graphs with size between 4 and 65536 nodes). The
example is very extreme in the number of revocable data structures managed: even with a
very large number of revocable graphs managed, the mechanism stays usable in practice.

• The two previous benchmarks show a significant overhead. But these benchmarks focus
on showing that even in extreme cases, the system is practically usable. To measure the
usual cost of using a Revocable Reference, we take another benchmark regex-dna6. Here
we read as input a DNA sequence and match and translate into nucleotide code. We protect
the input value by a revocable references. We see a slowdown of 8.8%.

Mean Standard deviation
revocable regex-dna 1095.12ms 13.46ms
regex-dna 1006.32ms 11.44ms

In the current state the Handle prototype is implemented in a relatively naive way to explore
and validate the model. In the future we want to evaluate whether a VM dealing directly with
first class references provides better performance. Another possible improvement is to have a
fast bytecode rewriting engine at the VM level.

Memory Usage. The exact cost of using a handle can be calculated easily. A handle is allocated
as a normal but compact object in the system. In Squeak/Pharo a compact class is represented
differently than normal classes. A list of maximum 32 classes can be turned into compact class
to save space. The object header of their instances consists of only a single 32-bit word and

6http://shootout.alioth.debian.org/
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contains the index of their class in a compact classes array. This makes handles small, and more
importantly, it allows the virtual machine to check whether an object is a handle or a real object
by looking at the object header alone. In addition a handle object has three instance variables.
This means an instance of the handle has a size of 16 bytes (one word for the header, three words
for the instance variables). For each object that a handle is generated for, we pay 16 bytes. In
addition, we need to take into account the cost of the generated classes. This cost depends on
the behavioral change. For example, for read-only reference we have to copy the class hierarchy,
while revocable just needs one revoking behavior class.

7.2. Discussion

We discuss now some aspects of the handle design.

Differences with our previous work. The Handle model is a generalization and re-design of our
previous research about read-only execution [ADD+10]. The model developed here therefore is
different, the most important changes are:

• The new model is more general. The previous model was only designed to support read-
only references. Now a handle offers a more general mechanism that can be tailored to
different scenarios, but takes into account that handles should not leak references to the
target object.

• Metahandle. Having all the message sends to a handle offers the possibility to add the
metahandle protocol to control handles.

• Simple propagation implementation. In the previous version the propagation to an object
graph had to be generated by rewriting bytecode. Now the propagation is simpler, the lan-
guage designer just needs to specify only one method in the handle class. The propagation
is much more efficient, it does not need to visit all bytecodes to detect instance variable
accesses, and rewrite them. It is automatically done by the virtual machine.

• Handles can be stored in instance variables.

Handle Composition. Handles do not allow the possibility to create a handle to an already ac-
tivated handle. This means it is not possible to change the behavior of a handle by composing
handles. We limited the model explicitly at this state to enforce that it is not possible to change
the handle behavior if not planned (by using a metahandle before the handle activation). In addi-
tion, as we explained, our approach is to offer a reference mechanism that holds and propagates
properties, not to define the properties themselves. Therefore we cannot control if a given prop-
erty defined by the language designer can be composed with another one. One idea is to restrict
the expressivity of Handles. With this model, we can specify the changes produced and compose
them. We plan to explore the idea of chaining handles. As the designer has no way to figure out
if a handle is already installed, it should be possible to use another handle in addition.

Deactivating a Handle. Once activated a handle cannot be deactivated. It is a design choice to
ensure that handle behavior cannot be changed. We provide a way to control the handle via a
metahandle but a metahandle can only be activated on a non active handle. So handle control
should be planned in advance.
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Storing Handles. In the current model, we can store handles in instance variables. We do not de-
wrap handles on store. The reason is that the target where the handle is stored could be accessed
by a non restricted client and this would lead to a leak to the target object protected by the handle.
Imagine that we have a revocable reference to a document, storing such a document in an instance
variable should preserve the revocable property since this revocable reference could be stored on
an object accessed without a revocable property. We should be able to revoke the reference and
the store of instance variable should hold a revoked reference and raise the expected errors.

The Problem of Identity. The current model intentionally makes handles indistinguishable from
their target objects. In particular, the identity of a handle and its target are the same. The reason
for this is that handles on the same object represent the same object (not just a similar one).
In addition, handles are supposed to be as transparent as possible: only behavior makes them
different from the object represented. One possibility can be to introduce two kinds of identity:
being the same object and referencing the same object. We need to distinguish real identity and
referential identity as two concepts.

Handles and State. It is clear that shadowing state with handles would be interesting. Neverthe-
less, we think that presenting the model already in the current form is important. As shown in
this paper, handles are already useful without embedding their own state. A generalization of the
presented model that takes handle state into account is developed in [Arn13].

8. Related Work

The work presented in this paper takes place in the context of a large spectrum of other works
ranging from ownership control to capabilities, via controlling interfaces and context-oriented
programming. We present here the most significant work with a stress on dynamically-typed
solutions, but the list is not exhaustive.

Roles and Views on Objects. Applying different views on objects depending on a given context
has been the concern of many papers [CG90, Civ93, SU96, BD96, Her07, WOKK11]. Object-
Team [Her07] supports roles in a programming language. A Team is an object that defines the
scope of roles (multiple roles collaborating together). Roles are fields and methods which can be
dynamically bound to objects. A team defines how roles forward or delegate their roles to the
team participants.

The main difference between our work and ObjectTeam is the focus of our work on first-
class references and the propagation of behavior into the object graph. ObjectTeam focuses on
role introduction in a programming language. ObjectTeam proposes three semantics for views on
object: delegating as in prototype languages, traditional forwarding and method call interception.
Roles by definition do not automatically propagate through an object graph.

Smith and Ungar’s Us [SU96], a predecessor of today’s Context-Oriented Programming [CH05],
explored the idea that the state and behavior of an object should be a function of the perspec-
tive from which it is being accessed. Warth et al. [WOKK11] introduces Worlds, a language
construct that reifies the notion of program state and enables programmers to control the scope
of side effects. An object (with the same identity) can have different states in different worlds.
Worlds focus on providing control for state and do not provide a per-reference semantic. Us
layers are similar to Worlds without a commit operation.
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Subject-oriented programming is another attempt to control objects depending on execution
context [HO93]. Subject-oriented programming introduces Subjects. Subjects are objects that
regulate state and behavior accesses for each object. There are two differences with our work:
(1) Subject-oriented programming does not limit the activation of subjects. This point severely
limits the usage of subject-oriented programming in the context of security. (2) Subject-oriented
programming is not based on references.

Contextual values are one attempt to control object’s state depending on thread execution
context [Tan08]. Contextual values is a generalization of thread-local values implemented in
Scheme. There are two differences with our work: (1) the state of objects is contextualized and
not their behavior, (2) the solution is local to one thread execution. Our approach is not limited
to thread execution: we can have multiple handles on the same objects executed by the same
thread. In addition a handle can crosscut multiple thread executions.

Split objects [BD96] define a model using delegation to create points of views on objects.
Split objects consist of pieces, where a piece represents a property on the object. The pieces
are organized in a delegation hierarchy. There are several differences between our work and
split objects. First the Handle model does not manage state, it is only concerned with behavior.
In addition, Handles do not operate by delegation. A handle replaces the default behavior of the
object by the shadow behavior. Finally the treatment of self is different. The self pseudo-variable
is used to address the "target" in the split object. In addition, another pseudo-variable called
thisViewpoint allows one to refer to current point of view. In the Handle model, self represents
the handle.

Context-Oriented Programming. ContextL [CH05] provides a notion of layers, which define
context-dependent behavioral variations. Layers are dynamically enabled or disabled based
on the current execution context. To some extent, the work presented in this paper is related
to context-oriented programming: the behavior of an object is modified depending on a con-
text [HCN08]. But unlike prior work on context oriented programming, the context built by
the handle is not purely defined by the thread of execution. With Handles, the propagation of
changed behavior is dynamic and lazily follows the control flow of the application.

Proxies. A proxy is a well known technique in many object-oriented language. As a handle
is a reification of an object reference, it shares some similarities with a proxy. Java provides
support for dynamic proxies as a part of the Java reflection library. Java dynamic proxies are
limited because they do not forward all method calls but only those defined in specific interfaces.
For example, all methods defined in the root class Object cannot be intercepted as they are not
defined in an interface. Uniform proxies for Java [Eug06] is an approach to provide dynamic
proxies that work for the whole interface of arbitrary classes. Uniform proxies can thus mimic
arbitrary objects. However, there is no solution for intercepting operations that are not method
calls.

Stratified Proxies [VCM10] improve that point in the context of JavaScript. They can inter-
cept additional operations like object state accesses. Stratified Proxies are actually close in spirit
to our work. The difference of our approach is identity preservation and propagation. Stratified
Proxies do not manage the propagation natively and have therefore to use different means when
using proxies in the context of, for example, revocable references. For example, the concept ex-
plored to deal with complex object graphs is that of a membrane [Mil06, VCM13]. A membrane
is a way to dynamically isolate an object graph with a layer of proxies. These proxies wrap the
arguments the argument and the return value of messages they receive. A membrane starts with a
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single proxy whose target is the root of the object graph to isolate. The other proxies are created
on-demand as the application runs. In the context of revocable references, a membrane transi-
tively imposes revocability on all references exchanged via the membrane. Compared to Handles,
a membrane does not imply a notion of propagation over the dynamic extent of the program exe-
cution, it just ensures that objects are consistently wrapped on each side of the membrane. With
Handles, because of propagation, revoking an object graph takes effect immediately: any thread
that is currently in the dynamic extent of a message sent to a revocable reference will be stopped
immediately. With Membranes however, because only objects that pass through its boundary are
wrapped, such a thread could keep running forever even if the membrane is revoked: it would be
stopped by a thrown exception only if it sends a message to a revocable reference obtained from
the outside of the membrane.

Other variants of proxies have been proposed. Chaperones and impersonators [STHFF12] are
both kinds of proxies that are used to implement the contract system of Racket. Impersonators
can only wrap mutable data types, while chaperones can wrap both mutable and immutable data
types. Chaperones can only further constrain the behavior of the value that it wraps. When a
chaperone intercepts an operation, it must either raise an exception, return the same result that
the wrapped target would return, or return a chaperone for the original result. Impersonators, on
the other hand, are free to change the value returned from intercepted operations. There is no
notion of propagation of the wrapped behavior.

Delegating Proxies [WNTD14] are proxies that can be used to implement a notion of prop-
agation similar to the one proposed by Handles: Delegation Proxies scope behavioral changes
to dynamic extents. As of today, this is the closest work to Handles. It should be noted that the
original work on Handles [ADD+10] is prior to delegating proxies. One difference is that with
Handles it is not possible to unwrap a handle using a reflective API. Another difference is that
the Handles implementation is based on deep modifications of the underlying virtual machine
such as modified primitives and message passing while propagation is implemented reflectively
with Delegating Proxies.

Encapsulation Policies. Encapsulation policies restrict interfaces [SBD04]. Like Handles, en-
capsulation policies have per-reference semantics. An object can expose different interfaces
based on its different references. However, these approaches have two differences. First, there is
no propagation in encapsulation policies. Second, Handles are not limited to change the original
object interface. Changes can be done inside method body depending on the execution path,
while encapsulation policies just control a method as a whole.

Object Capability Model. In E [Mil06], capabilities are used to enforce security by not giving
the possibility for a client to by-pass the object interface. Contrary to Handles, here capabilities
are modeled as normal objects. They are not hidden or treated specially by the VM. Propagation
is not supported and the programmer needs to use security patterns to control access to objects.

Joe-E is a subset of Java based on an object-capability model supporting purely functional
methods and type checking [FMSW08]. In Joe-E, a purely functional method does not have
side-effects and its behavior only depends on its arguments. In our example of contracts, en-
suring functional purity would be too strong: a pre-condition can perfectly rely on internal
non state related side-effects. Functional purity is also difficult to ensure in the presence of
both late binding and imperative code, without resorting to an entirely different programming
style [FMSW08, MWC10].
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Stratified Reflection. Mirrors are a design principle for structuring the meta-level features of
object oriented languages [BU04]. The idea is to not have both reflective and non-reflective
functionality in all objects, but instead separate reflective functionalities from base-level func-
tionalities. A Mirror is simple meta-object: a second object that provides reflection on a normally
non-reflective base-level object. Interesting differences of handles to mirrors are that for one,
mirrors are normal objects (Mirrors do not apply their methods to their base-level objects), not
specially protected by VM-level changes and in addition, mirrors do not support propagation.

Alias Control and Dynamic Object Ownership. Dynamic object ownership [NCP99, GN07] is
one of the rare propositions to control aliasing in the context of dynamically-typed languages.
Dynamic object ownership implements Flexible Alias Ownership [NVP98]: every object which
is part of the representation of an aggregate object is owned by that object and should not be
visible outside the aggregate. The ownership of every object is stored into a dedicated field and it
is used to verify the validity of every message send. Dynamic ownership enforces representation
encapsulation, which states that an encapsulated object can only be accessed via its encapsulating
object, and external independence, which states that an object should not depend on the mutable
state of an object that is external to it. ConstrainedJava distinguishes two kinds of externally
independent messages: pure (that do not access state) and oneway message (that do not return
results). The problem solved by dynamic object ownership is different but related to the one
solved by the Handles. The goal of Handles is not to enforce encapsulation per se, but to change
interfaces of the same objects, dynamically and to different clients. We do not distinguish object
ownership or containment, nor do we enforce that components should be accessed through their
owner. The implementation reports up to 51% method execution slowdown due to the tests do
be done at run time.

Read-Only References. Hakonen et al. [HLR+99] propose the concept of deeply immutable ref-
erences; they only discuss possible implementation strategies without presenting a working im-
plementation. In Javari, Birka et al. [BE04] extend Java with a static type system of transitively
read-only references. These works are the most similar to our read-only references; the main
difference is that they are proposed for statically typed languages. In particular, Javari methods
have to be declared read-only à priori; unmodified Java code is conservatively considered to have
side-effects. In contrast, our example of read-only references does not require any modification
besides the initial creation of a read-only reference.

9. Conclusion and Future Work

To be able to build more secure systems, controlling references to single objects and to graphs
of objects is essential. In dynamically-typed languages we cannot rely on static type systems for
controlling references. In addition, dynamic code loading and reflective change makes it hard to
rely on any kind of static analysis.

In this paper we have presented Handles, an approach to support behavior-propagating first-
class reference as a language construct. We explored how handles are used to apply security
semantics dynamically to an object graph at run time. Handles allow several security related
language extensions to be implemented. We have presented an object-capability system, and
read-only references and validated our implementation with benchmarks.
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As future work, we will extend Handles to support state shadowing in addition to behav-
ior modifications. An open question is how to leverage modern VM technology (just in time
compilation) to speed up the execution in the presence of first class references.
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Appendix A. SMALLTALKLITE

The present appendix provides a description of SMALLTALKLITE [BDNW08]. This is not
a contribution of this article and we added here to help the reader. SMALLTALKLITE is based
on the object model used by Flatt et al. [FKF98]. SMALLTALKLITE is a Smalltalk-like dynamic
language featuring single inheritance, message-passing, field access and update, and self and
super-sends. SMALLTALKLITE is similar to CLASSICJAVA, but removes interfaces and static
types. Similarly it ignores features that are not relevant such as reflection or class-side methods.
Fields are private in SMALLTALKLITE, so only local or inherited fields may be accessed.

To simplify the reduction semantics, SMALLTALKLITE adopts an approach similar to that
used by Flatt et al. [FKF98]. It annotates field accesses and super-sends with additional static
information that is needed at “runtime”. The syntaxes of expressions (e) and extended reducible
expressions (ε) of SMALLTALKLITE are shown in Figure A.13. The figure also specifies the
evaluation order thanks to the evaluation contexts (E) in the style of Felleisen and Hieb [FH92].

P = defn∗e
defn = class c extends c { f∗meth∗ }
e = new c | x | self | nil
| f | f=e | e.m(e∗)
| super.m(e∗) | let x=e in e

meth = m(x∗) { e }
c = a class name | Object
f = a field name
m = a method name
x = a variable name

ε = v | new c | x | self | ε.f | ε.f=ε
| ε.m(ε∗) | super〈o, c〉.m(ε∗) | let x=ε in ε

E = [ ] | o.f=E | E.m(ε∗) | o.m(v∗ E ε∗)
| super〈o, c〉.m(v∗ E ε∗) | let x=E in ε

v, o = nil | oid

Figure A.13: SMALLTALKLITE syntax and reducible expression syntax

Translation from expressions to reducible expressions is specified out by the o[[e]]c function
(see Figure A.14). This binds fields to their enclosing object context and binds self to the oid
of the receiver. The initial object context for a program is nil. (i.e., there are no global fields
accessible to the main expression). If e is the main expression associated to a program P , then
nil[[e]]Object is the initial reducible expression.

Predicates and relations used by the semantic reductions are listed in Figure A.15. These
predicates are assumed to be preconditions for valid programs, and are not otherwise explicitly
mentioned in the reduction rules.

The reductions rules are summarized in Figure A.16. The notation P ` 〈ε,S〉 ↪→ 〈ε′,S ′〉
means that we reduce a reducible expression ε in the context of a (static) program P and a
(dynamic) store of objects S to a new reducible expression ε′ and (possibly) updated store S ′. The
store consists of a set of mappings from object identifiers oid ∈ dom(S) to tuples 〈c, {f 7→ v}〉
representing the class c of an object and the set of its field values. The initial value of the store is
S = {}.

The rule [new] reduces to a fresh oid, bound in the store to an object whose class is c and
whose fields are all nil. A (local) field access [get] reduces to the value of the field. Note
that it is syntactically impossible to access a field of another object. The reducible expression
notation o.f is only generated in the context of the object o. Field update [set] simply updates
the corresponding binding of the field in the store.
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o[[new c′]]c = new c′

o[[x]]c = x
o[[self]]c = o
o[[nil]]c = nil
o[[f ]]c = o.f

o[[f=e]]c = o.f=o[[e]]c
o[[e.m(e∗i )]]c = o[[e]]c.m(o[[ei]]

∗
c)

o[[super.m(e∗i )]]c = super〈o, c〉.m(o[[ei]]
∗
c)

o[[let x=e in e′]]c = let x=o[[e]]c in o[[e′]]c

new c [v/x] = new c
x [v/x] = v

x′ [v/x] = x′

self [v/x] = self
nil [v/x] = nil
f [v/x] = f

f=e [v/x] = f=e[v/x]
e.m(e∗i ) [v/x] = e[v/x].m(e∗i [v/x])

super.m(e∗i ) [v/x] = super.m(e∗i [v/x])
let x=e in e′ [v/x] = let x=e[v/x] in e′

let x′=e in e′ [v/x] = let x′=e[v/x] in e′[v/x]

Figure A.14: Translating expressions to reducible expressions (left) and variable substitution (right)

When we send a message [send], we must look up the corresponding method body e, starting
from the class c of the receiver o. The method body is then evaluated in the context of the
receiver o, binding self to the receiver’s oid. Formal parameters to the method are substituted by
the actual arguments (see Figure A.14). We also pass in the actual class in which the method is
found, so that super-sends have the right context to start their method lookup.

super-sends [super] are similar to regular message sends, except that the method lookup
must start in the superclass of class of the method in which the super-send was declared. When
we reduce the super-send, we must take care to pass on the class c′′ of the method in which the
super method was found, since that method may make further super-sends. let in expressions
[let] simply represent local variable bindings.

Errors occur if an expression gets “stuck” and does not reduce to an oid or to nil. This may
occur if a non-existent variable, field or method is referenced (for example, when sending any
message to nil). In this paper we are not concerned with errors, so we do not introduce any special
rules to generate an error value in these cases.
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≺P Direct subclass
c ≺P c′ ⇐⇒ class c extends c′ · · · {· · · } ∈ P

≤P Indirect subclass
c ≤P c′ ≡ transitive, reflexive closure of ≺P

∈P Field defined in class
f ∈P c ⇐⇒ class · · · {· · · f · · · } ∈ P

∈P Method defined in class
〈m, x∗, e〉 ∈P c ⇐⇒ class · · · {· · ·m(x∗){e} · · · } ∈ P

∈∗P Field defined in c
f ∈∗P c ⇐⇒ ∃c′, c ≤P c′, f ∈P c′

∈∗P Method lookup starting from c
〈c,m, x∗, e〉 ∈∗P c′ ⇐⇒ c′ = min{c′′ | 〈m, x∗, e〉 ∈P c′′, c ≤P c′′}

CLASSESONCE(P ) Each class name is declared only once
∀c, c′, class c · · · class c′ · · · is in P ⇒ c 6= c′

FIELDONCEPERCLASS(P ) Field names are unique within a class declaration
∀f, f ′, class c · · · {· · · f · · · f ′ · · · } is in P ⇒ f 6= f ′

FIELDSUNIQUELYDEFINED(P ) Fields cannot be overridden
f ∈P c, c ≤P c′ =⇒ f 6∈P c′

METHODONCEPERCLASS(P ) Method names are unique within a class declaration
∀m,m′, class c · · · {· · ·m(· · · ){· · · } · · ·m′(· · · ){· · · } · · · } is in P ⇒ m 6= m′

COMPLETECLASSES(P ) Classes that are extended are defined
range(≺P ) ⊆ dom(≺P ) ∪ {Object}

WELLFOUNDEDCLASSES(P ) Class hierarchy is an order
≤P is antisymmetric

CLASSMETHODSOK(P ) Method overriding preserves arity
∀m,m′, 〈m, x1 · · · xj , e〉 ∈P c, 〈m, x′1 · · · x

′
k, e
′〉 ∈P c′, c ≤P c′ =⇒ j = k

Figure A.15: Relations and predicates for SMALLTALKLITE

P ` 〈E[new c],S〉 ↪→ 〈E[oid],S[oid 7→ 〈c, {f 7→ nil | ∀f, f ∈∗P c}〉]〉 [new]
where oid 6∈ dom(S)

P ` 〈E[o.f ],S〉 ↪→ 〈E[v],S〉 [get]
where S(o) = 〈c,F〉 and F(f) = v

P ` 〈E[o.f=v],S〉 ↪→ 〈E[v],S[o 7→ 〈c,F [f 7→ v]〉]〉 [set]
where S(o) = 〈c,F〉

P ` 〈E[o.m(v∗)],S〉 ↪→ 〈E[o[[e[v∗/x∗]]]c′ ],S〉 [send]
where S[o] = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗P c′

P ` 〈E[super〈o, c〉.m(v∗)],S〉 ↪→ 〈E[o[[e[v∗/x∗]]]c′′ ],S〉 [super]
where c ≺P c′ and 〈c′,m, x∗, e〉 ∈∗P c′′ and c′ ≤P c′′

P ` 〈E[let x=v in ε],S〉 ↪→ 〈E[ε[v/x]],S〉 [let]

Figure A.16: Reductions for SMALLTALKLITE
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