Accepted to IWST’16

Pillar: A Versatile and Extensible
Lightweight Markup Language

Thibault Arloing Yann Dubois Damien Cassou

thibault.arloing@etudiant.univ-lillel.fr

Stéphane Ducasse

yannl.dubois@etudiant.univ-lillel.fr damien.cassou@inria.fr

stephane.ducasse@inria.fr
RMod team, Inria Lille Nord Europe, University of Lille, CRIStAL, UMR 9189, 59650 Villeneuve d'Ascq, France

Abstract

There is a plethora of languages to write documentation
and documents. From extremely powerful and complex
such as ITEX to extremely simple such as Markdown. In
this technical article we present Pillar a versatile and ex-
tensible lightweight markup language. Pillar’s document
model and open architecture support exporting from
Pillar to various formats such as ASCIIDoc, HTML,
I¥TEX and Markdown. Pillar is currently used to write
books, documentation, websites and slide decks (through
Beamer and DeckJS). Pillar specially shines when ad-
vanced features are needed such as multiple exports (e.g.,
a printed book and web pages), internal references (e.g.,
links to figures with captions) and content generation
(e.g., to give an up-to-date code size of a documented
software).

Keywords Pillar, Markup, Markdown, ASCIIDoc, La-
TeX, Documents, Open-Architecture, Pharo

1. Introduction

There are many different markup languages to describe
documents. ITEX (Goossens et al. 2007) is extremely
powerful and can even be extended directly inside ITEX
documents. One downside of this power is that ITEX
takes time to learn: we have seen much more contribu-
tions from the community to our technical books when
we switched their language from ITEX to Pillar. Another
downside of BTEX’s power is that it is difficult for tools
to generate something else (e.g., HTML) than what is na-
tively supported by BTEX engines. Simpler alternatives

[Copyright notice will appear here once 'preprint’ option is removed.]

Headers

Tables

Header 1 || Centered Cell |!| Centered Title

IHeader eft-Aligned Cel ight-Aligned Ce
IHeader 2 Left-Aligned Cell Right-Aligned Cell

Header 3

Links

Special Paragraphs Anchor @anchor

Annotation @@note this is a note Internal Link *@anchor*

Todo @@todo this is todo External Link *Google>www.google.fr*

Lists Figures

- Unordered List # Ordered List +Caption>file://pic.png|width=50| label=Fig+

; Description Term : Description Definition

Scripts

[[Mabel=hello]language=Smalltalk
Transcript show: "Hello World".

m

Text Formats

""bold™

“italic"

--strikethrough--
__underscore__ {{{latex:

injects raw \LaTeX in your output file

m

==monospace==
@@subscript@@

~Msuperscript™ {htm!:

injects raw html in your output file
Comment m

% each line starting with % is ignored

Figure 1. Main syntax of Pillar

to IMTEX emerged over the years such as Markdown.!
Markdown is a lightweight markup language with many
implementations in many tools. This strength is also a
weakness because each implementation has features not
available in other implementations or available with a
different syntax.

In this technical article we present Pillar, an extensi-
ble and versatile lightweight markup language.? Pillar
history started in 2000 with SmallWiki, a predecessor
of the Pier Content Management System.? Pillar has a
lightweight markup syntax similar to the one of Mark-
down. Beyond what is available in Mardown, Pillar has
advanced features such as:

Thttps://daringfireball.net/projects/markdown
2http://www.smalltalkhub.com/#!/~Pier/Pillar
Shttp://piercms.com/

2016/8/15

156 | (166 of 284 <|>||a||®w| Ert- 100 v

D
n
x

1.4 Setup

Load Voyage

To install Voyage, including support for the MongoDB database, go to the Con-
figurations Browser (in the World Menu/Tools) and load Configuration0fvoy-
or al ly execute in a workspace:

Gofer it
url: ‘http://smalltalkhub. con/mc/estebanln/Voyage/main';
configuration0f: ‘VayageMongo';
loadStable.

This willload all that is needed to persist objects into a Mongo database.

Install MongoDB

Next is to install the MongoDB database. How to do this depends on the oper-
ating system, and is outside of the scope of this text. We refer to the MongoDB
website for more information.

Create a repository

In Voyage, all persistent objects are stored in a repository. The kind of reposi-
tory that is used determines the storage backend for the chjects.

To use the in-memory layer for Voyage, an instance of VOMemor yReposi tory
needs to be created, as follows:

[repository := YOMemoryRepository new

In this text, we shall however use the MongoDB backend. To start a new
MongoDB repository or connect to an existing repository create an instance
of VOMongoRepository, givingas parameters the hostname and database
name. For example, to connect to the database databaseName on the host
mongo.db.urlexecute the following code:
repository := VOMangeRepository

host: ‘mongo.db.url’

database: *databaseName’ .

Persisting Objects with Voyage ~ Nightly x

) Persisting Objects wi.. x | &

€ a inria.fr; E1| c »

87. Setup
87.1. Load Voyage

To install Voyage, including support for the MongoDB database, go to the Configurations Browser (in the World
Menu/Tools) and load Config geMongo. Or execute in a workspace:

This wil load all that is needed to persist objects into a Mongo database.
87.2. Install MongoDB

Next is to install the MongoDB database. How to do this depends on the operating system, and is outside of the scope

of this text. We refer to the IMongoDB website for more information.

87.3. Create a repository

In Voyage, all persistent objects are stored in a repostory. The KInd of repository that is used determines the storage
backend for the objects

To use the in-memery layer for Voyage, an instance of mor yReF =y needs to be created, as follows:

In this text, we shall however use the MongoDB backend. To start a new MongoDB repository or connect to an existing
repository create an instance of = giving as parameters the hostame and database name. For

€xample, 10 CONNECE 10 the JAIADASE databazename ONINENOST mangs.db.url eXecute the following code:

Figure 2. Example of Book Generated with Pillar

e many export formats (e.g.,, HTML, Markdown,
ITEX, AsciiDoc, Beamer) (see Figure 2 and 3 for
example exports);

configuration of the export (e.g.,, titles can be auto-
matically numbered with Roman numerals);

templates with the Mustache template engine;

syntax-highlighting of code blocks;

lightweight markup syntax (see Figure 1) with sup-
port for tables, figures and scripts with labels and
captions, internal references to sections, figures and
scripts, and content generation;

configurable automatic capitalization and numbering
of titles;

text editor plugins (Emacs, Vim, TextMate, and
Atom).

Pillar is designed to be easily extensible by a Pharo
developer. This is another reason why Pillar is used to
write books (Cassou et al. 2015), booklets,* technical
documentation, websites® and lecture presentations.®

2. Extensibility Mechanisms

Contrary to IXTEXwhere extensions can be written in
the same language as the document, extending Pillar
requires writing Pharo code. We wanted to make Pillar
extensible to handle several use cases (e.g.,, book writing
and slide-based teaching) without overwhelming the
users with complex syntax.

4http://books.pharo.org
Shttp://guillep.github.io/ecstatic/
Shttp://mooc.pharo.org/

Figure 3. Example of HTML Generated with Pillar

In this section, we first discuss environments, i.e.,
how to identify a portion of the document to handle
differently (e.g., code blocks are not parsed). Then we
present how annotations were introduced to permit the
addition of new constructs (e.g.,, footnotes) without
adding new syntax. We cover implementation of such
extensions in the next section.

2.1 Supporting Environments

Some portions of a document must be handled differ-
ently from the rest. Code blocks, for example, must be
analyzed by the Pillar parser in a different way than
paragraphs. There is thus a need to delimit regions of
text: Pillar uses the syntactic constructs [[[and 1]]
as in:

[[[language=smalltalk|caption="hello world"
Transcript show: ’hello World’

111

An environment can have arguments (specified after
[[[and separated by pipes |) as is exemplified here
with language and caption.

Environments can be used beyond code blocks. Often
repeating structures emerge in documents. For example,
every Wikipedia article about a city has a table summa-
rizing the city characteristics (e.g.,, coordinates, country
and population). Such structures, called Infoboxes” in
Wikipedia, have the same visual appearance to facilitate
identification. Structures separate data from appearance
to allow semantic analyses and other manipulations.

"https://en.wikipedia.org/wiki/Help: Infobox

2016/8/15

Such structures are often expressed with a JSON-like®
language as follows:

{
"name" : "Bordeaux",
"latitude" : 44.84,
"longitude" : -0.58,
"country" : "France",
"population" : 241287

X

Letting users write JSON directly between two para-
graphs is not desired as this would require adding new
syntax to the parser which might break existing docu-
ments and add more restricted characters users must
protect. We needed a way to have a JSON structure
in a Pillar file without interpreting the JSON as Pillar
syntax. To do this, we used environments whose contents
is JSON:

[[[structure=city

{
"name" "Bordeaux",
"latitude" 1 44.84, [...]
}
111

Environments are the only Pillar elements which keep
their contents unparsed. This solution encapsulates new
syntax within an existing one thus avoiding problems
with existing documents.

2.2 Annotations and Arguments

Beyond delimiting regions of text between paragraphs,
it is sometimes useful to delimit regions of text inside a
paragraph. This is for example useful for footnotes and
citations. The cornerstone of this extension mechanism
of Pillar is the support for annotations whose syntax is
the following;:

${myAnnotation|argl=true|arg2=Hello world}$

An annotation is specified between ${ and }$. After
the opening brace, a keyword identifies the annotation
type (here myAnnotation). An annotation may take
arguments which are specified the same way as for
environments. Using the same syntax to mean the
same thing over and over again gives an impression
of coherence to the user and helps memorization. The
syntax is the same for all element declarations with
arguments such as figures:

+A Legend>file://fig.pnglwidth=50]|label=myFig+

Each annotation has a particular behavior that
is defined by a plugin within the Pillar architec-
ture. For example, citing a research work is done

8http://json.org/

through ${cite:CitationReference}$ and the class
PRCitationAnnotation while showing a footnote is
done through the annotation ${footnote:Some textl}$
and PRFootnoteAnnotation.

3. Open Architecture

Pillar open-architecture is based on a document model
with many visitors forming a pipeline. After discussing
the Pillar document model with its AST, visitors and
tests (see Section 3.1), we discuss the implementation
of structures (see Section 3.2). To facilitate extension,
Pillar extensions are covered by a test framework which
makes it easy to check if a new extension follows the
extension protocol. All in all, unit tests cover 90% of
the Pillar source code.

3.1 The Pillar Document Model

Care has been put to ease Pillar extension. There are a
lot of helpers which makes sure adding a new feature is
easy.

After parsing the Pillar file, the document is repre-
sented by an AST (instance of PRDocument). 52 classes
(subclasses of PRDocumentItem) are responsible for mod-
eling every piece of a Pillar document (e.g.,, bold text,
links, figures, list items, table rows and cells). The gen-
erated AST can then be visited by several visitors (in-
stances of PRVisitor’s 59 subclasses).

3.1.1 AST

The AST can be edited and enhanced with informa-
tion such as properties for each node it contains. These
properties can be easily exploited by visitors. For exam-
ple, code blocks can have properties such as language
(for syntax highlighting), caption (for a legend) and
hideable (to hide some scripts when students should
not be shown solutions exercises).

3.1.2 Visitors

A document writer (subclass of PRDocumentWriter) is
responsible for exporting an AST in a dedicated output
format. Document writers are implemented as visitors.
Here is how, for example, bold is handled in both HTML
and LaTeX exports:

PRHTMLWriter>>visitBoldFormat: aFormat
canvas tag
name: ‘strong’;
with: [super visitBoldFormat: aFormat]

PRLaTeXWriter>>visitBoldFormat: aFormat
canvas command
name: ‘textbf’;

parameter: [super visitBoldFormat: aFormat]

For a Pillar input of ""Pharo"", the HTML writer
would write Pharo whereas the

2016/8/15

ETEX writer would write \textbf{Pharo}. Implement-
ing a new document writer is then easy and can be
done step by step while being guided by the Pillar test
framework.

Visitors are used for many other tasks beyond export.
For example, visitors are also used to transform ASTs.
Each such visitor is then responsible for a simple trans-
formation. For example, PRRemoveHideableScripts is
responsible for removing some code blocks from the AST
(so that teachers can have solutions in their document
but not students):

PRRemoveHideableScripts>>visitScript: aScript
aScript isHideable
ifTrue: [self replace: #()]

When a script is hideable, this visitor will replace its
node by nothing, thus removing it from the AST.

Parsing, transforming and exporting form a pipeline
of phases. Each phase has a small responsibility. Phases
are ordered according to a notion of priority and category
(among init, parse, check, transform and export).

About Visitors. The visitor design pattern (Alpert
et al. 1998) is particularly suited when the model
does not change often as each change in the model
requires updating every visitor. This seems to contradict
the extensibility philosophy behind Pillar. Neverthe-
less, this is not a problem in practice for two main rea-
sons. The first reason is that Pillar is organized around
a huge set of very specific visitors which are not af-
fected by most changes to the model. For example, the
class PRRemoveHideableScripts only contains a 2-line
method (see above). Second, using inheritance of visi-
tors and AST nodes, when an element is not explicitly
handled by a visitor, a default implementation is of-
ten acceptable. For example, if a document writer does
not implement visitBoldFormat:, the text will still be
rendered, ignoring the bold markup.

3.1.3 Tests

Automated tests guide the extension of Pillar by vali-
dating the visitors behavior. In the context of document
writers, unit tests automatically verify the generation of
documents. For example, testing that both the HTML
and ITEX writers correctly export bold texts is done
with the implementation of these two methods only:

PRHTMLWriterTest>>boldFoo
~ ‘foo’

PRLaTeXWriterTest>>boldFoo
=~ ‘\textbf{foo}’

As a result of the Pillar test framework, testing
a new document writer is just a matter of provided
example outputs: the test framework takes care of

Artefacts Phases
file
[[[structure=city
"name" : "Bordeaux",
}"Iatitude" :44.84,[...]
1 \
PRScript
object StructureTransformer
PRStructure /
tag = "city"
values = a Dictionary(
'latitude'->44.84
'name'->'Bordeaux')
PRStructure
Transformer

object

PRTable

children = an Array(
a PRTableRow
a PRTableRow)

\

Figure 4. Pipeline transforming a city structure into a
table through an instance of the class PRStructure.

instantiating the document writer, creating the example
ASTs, executing the necessary parts of the pipeline, and
comparing the result with the provided example output.

3.2 Open Architecture at Work: Structures

In Section 2.1 we introduced the notion of environments
and explained how we used them to design the new
structure construct. We designed structures so that new
ones can easily be used without requiring new Pharo
code. Figure 4 represents the pipeline to transform
a city structure in a Pillar document into a table.
The PRScriptStructureTransformer is a visitor which
takes care of replacing each structure environment by
an instance of PRStructure. In essence, this visitor is
implemented like this:

PRScriptStructureTransformer>>visitScript: aScript

(aScript parameters includesKey: ’structure’)
ifTrue: [
self replace: {
PRStructure new
tag: aScript structureName;
values: (Json readFrom: aScript text);
yourself }]

When a script has a parameter named structure,
this visitor replaces it by an instance of PRStructure.

The class PRStructureTransformer is responsible
for transforming a structure into an appropriate represen-
tation through a structure renderer. There are currently

2016/8/15

two renderers (subclasses of PRStructureRenderer):
one which represents a structure as a table and one
as a definition list. Here is the essence of the table ren-
derer implementation:

PRTableRenderer>>renderFor: aStructure
| table |
table := PRTable new.
aStructure keys do: [:each |
table add: (
PRTableRow new
add: (PRTableCell with: (
PRText content: each));
add: (PRTableCell with: (

PRText content: (aStructure at: each)));

yourself) J.
~ table

Adding a new renderer is just a matter of creating a
new class and implementing a the method renderFor:.
The decision to use a particular renderer for a particular
kind of structure is currently hard-coded but is supposed
to be done through the Pillar configuration file.

4. Conclusion

In this paper we presented Pillar and its capacity to
be easily extended by a Pharo developer. This paper
rapidly compares Pillar with other markup languages
and shows that Pillar is a good compromise between
power and simplicity.

Acknowledgements

This work was supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Council,
CPER Nord-Pas de Calais/FEDER DATA Advanced
data science and technologies 2015-2020.

References

Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The
Design Patterns Smalltalk Companion. Addison Wesley,
Boston, MA, USA, 1998. ISBN 0-201-18462-1.

Damien Cassou, Stéphane Ducasse, Luc Fabresse, Johan
Fabry, and Sven Van Caekenberghe. Enterprise Pharo: a
Web Perspective. Square Bracket Associates, 2015.

Michael Goossens, Frank Mittelbach, and Alexander Samarin.
The Latex Companion. Addison Wesley, 1994. ISBN 0-201-
54199-8. ordered but not received.

Michel Goossens, Sebastian Rahtz, and Frank Mittelbach.
The LaTeX Graphics Companion: Illustrating Documents
with TeX and Postscript(R) (Tools and Techniques for
Computer Typesetting). Addison-Wesley, 2007. ISBN
0321508920 978-0321508928. ordered but not received.

JSON. Json (javascript object notation). http://www. json.

org. URL http://www.json.org.

2016/8/15

