
Generating a Catalog of Unanticipated Schemas in Class Hierarchies
using Formal Concept Analysis**

Gabriela Arévaloa,f,∗, Stéphane Ducassec, Silvia Gordillob,e, Oscar Nierstraszd

aFI - Universidad Austral, Avda. Juan de Garay 125, AR-1063, Buenos Aires (Argentina)
bLIFIA - UNLP, 50 y 115, AR-1900, La Plata (Argentina)

cINRIA Lille - Nord Europe- ADAM Team, Parc Scientifique de la Haute Borne,
40, avenue Halley, FR-59650, Villeneuve d’Ascq (France)

dSCG - IAM, Universitaet Bern, Neubrückstrasse 10, CH-3012, Bern (Switzerland)
eCICPBA, 526 between 10 and 11, AR-1900, La Plata (Argentina)

fCONICET, Av. Rivadavia 1917, AR-1033, Buenos Aires (Argentina)

Abstract

Context: Inheritance is the cornerstone of object-oriented development, supporting conceptual modeling,
subtype polymorphism and software reuse. But inheritance can be used in subtle ways that make complex
systems hard to understand and extend, due to the presence of implicit dependencies in the inheritance
hierarchy.

Objective: Although these dependencies often specify well-known schemas (i.e., recurrent design or coding
patterns, such as hook and template methods), new unanticipated dependency schemas arise in practice, and
can consequently be hard to recognize and detect. Thus, a developer making changes or extensions to an
object-oriented system needs to understand these implicit contracts defined by the dependencies between a
class and its subclasses, or risk that seemingly innocuous changes break them.

Method: To tackle this problem, we have developed an approach based on Formal Concept Analysis. Our
FoCARE methodology (Formal Concept Analysis based-Reverse Engineering) identifies undocumented hi-
erarchical dependencies in a hierarchy by taking into account the existing structure and behavior of classes
and subclasses.

Results: We validate our approach by applying it to a large and non-trivial case study, yielding a catalog
of Hierarchy Schemas, each one composed of a set of dependencies over methods and attributes in a class
hierarchy. We show how the discovered dependency schemas can be used not only to identify good design
practices, but also to expose bad smells in design, thereby helping developers in initial reengineering phases
to develop a first mental model of a system. Although some of the identified schemas are already documented
in existing literature, with our approach based on Formal Concept Analysis (FCA), we are also able to
identify previously unidentified schemas.

∗Principal corresponding author
Email addresses: garevalo@sol.info.unlp.edu.ar (Gabriela Arévalo), ducasse@inria.fr (Stéphane Ducasse),

gordillo@sol.info.unlp.edu.ar (Silvia Gordillo), oscar@iam.unibe.ch (Oscar Nierstrasz)
** Information and Software Technology 52 (2010) 1167–1187. doi:10.1016/j.infsof.2010.05.010

Preprint submitted to Elsevier November 2, 2010

http://dx.doi.org/10.1016/j.infsof.2010.05.010

Conclusions: FCA is an effective tool because it is an ideal classification mining tool to identify commonal-
ities between software artifacts, and usually these commonalities reveal known and unknown characteristics
of the software artifacts. We also show that once a catalog of useful schemas stabilizes after several runs of
FoCARE, the added cost of FCA is no longer needed.

Key words: Object-Oriented Development, Class Hierarchy Schemas, Source Code Analysis, Formal
Concept Analysis

1. Introduction

Inheritance is the cornerstone of object-oriented development, supporting conceptual modeling, subtype
polymorphism and software reuse [75]. There is often a tension between these three uses of inheritance.
During analysis, inheritance is used to model specialization of domain concepts; during design, generic
components are specified by exploiting polymorphism; and during implementation, inheritance is often used
as a pure reuse mechanism to define new classes from existing ones [29, 46].

The different uses of inheritance in large class hierarchies result in explicit and implicit dependencies within
such class hierarchies. Explicit dependencies are clearly identifiable from source code, such as the definitions
of subclasses. On the other hand, implicit dependencies are induced by uses of self and super sends, method
cancellations in subclasses, method redefinitions in subclasses, or state access from subclasses.

In general, inheritance is not a simple incremental definition mechanism, but it usually works in strong
interaction with other object-oriented mechanisms [75], such as overriding, method cancellations and en-
capsulation.

Inheritance combined with these object-oriented mechanisms can make class hierarchies difficult to under-
stand, because unexpected and implicit behavior based-dependencies can appear. Here are some illustrations
of the possible difficulties a reengineer may face when he has to modify an existing and often unknown hi-
erarchy.

• Template Method in superclasses. When defining a class, the developer has to understand if the
superclass imposes restrictions regarding the behavior of subclasses. This is the case of Template
Method, which defines a skeleton of an algorithm in a method in a class, deferring the implementation
of the algorithm steps to its subclasses [2, 13, 65]. For example, Figure 1 (a) shows Template Method
between the superclass KeyedCollection and the subclasses RBSmallDictionary and MethodDictionary.
The method atIfAbsentPut calls the methods atIfAbsent and atPut which are abstract in the class itself,
but concrete in the subclasses. This is a classical use of subtyping. This restriction is implicit and
the developer can only detect the presence of this design pattern by attentively reading the code.
Although modern development environments are capable of automatically generating stub methods
for subclasses of abstract classes, the general problem of detecting and enforcing implicit constraints
between classes and subclasses is unsolved.

• Inheritance for implementation reuse. The use of inheritance for implementation reuse (subclass-
ing) can violate subclassing contracts from structural and behavioral viewpoints. For example, in
Figure 1 (b) the class Dictionary is a subclass of the class Set. Dictionary elements can only be re-
moved by their key values, so the method removeIfAbsent inherited from class Set is overridden to
raise an error. From a structural viewpoint inheritance is used for mere implementation purposes, and

2

it forces the developer to cancel inherited methods or to override superclass behavior with error mes-
sages. From the behavioral viewpoint, they are incompatible because this hierarchy does not respect
the Liskov Substitution Principle [52].

• Yo-yo problem. The behavior of a class is specified by its methods and the reuse of its superclass
behavior via self and super sends. The fact that self is dynamic (i.e., self sends are resolved only
at run time to the appropriate receiver method) while super is static (i.e., methods are looked up
statically in the superclass of class containing the method issuing the super call), can make it difficult
to understand the run-time behaviour of a given class [77, 27]. When a class hierarchy is deep, the
flow is implicit and is difficult to follow since the programmer has to keep flipping between different
class definition. This phenomenon is known as the yoyo effect [74].

• Inappropriate state usage. Object-oriented languages support various visibility mechanisms for in-
stance variables defined in classes. In languages where instance variables are “protected” by default,
such as Smalltalk, it is not possible to prevent subclasses from inappropriately accessing inherited
state. While a class often hides its state from its clients, supporting a good encapsulation of inter-
nal representation, subclasses can directly access superclass state creating unexpected dependencies.
Classes such as OrderedCollection (in Figure 1 (c)) do not expose their state to client classes, since
there are no accessors. However, this does not prevent subclasses from accessing directly (without
accessors) the state defined by the class. Subclasses can therefore violate the encapsulation of the
class. A class should ideally act as a provider of (inherited) services for its subclasses [71]. For
example, Figure 1 (c) shows that class SortedCollection accesses the attribute lastIndex of the class
OrderedCollection without using accessors. This happens because the attributes in OrderedCollection
are used internally in the class itself, and they are not public to its clients. The only way that the class
SortedCollection can access superclass state is by violating the encapsulation of the superclass.

removeIfAbsent()

Set

removeIfAbsent()

Dictionary

lastIndex
 OrderedCollection

resort()

 SortedCollection

(a) (c)

atIfAbsentPut()
atIfAbsent()
atPut()

«Abstract»
KeyedCollection

atIfAbsent()
atPut()

Method Dictionary

atIfAbsent()
atPut()

RBSmallDictionary

….
self.atIfAbsent();
self.atPut()
….

self.error() ….
lastIndex
…...

(b)

Figure 1: Schemas in Class Hierarchies (a) Template Method. (b) Cancelled Behavior. (c) Access to Superclass State

During initial maintenance phases, when the developer needs to develop a first mental model of an object-
oriented system, he should understand the contracts implicitly defined by the dependencies between a class
and its subclasses to avoid introducing changes that break these contracts, or to eventually fix existing prob-
lems before modifying the system [19, 72].

A key issue for our analysis is that the contracts can be defined by a simple dependency, such as the reuse
of behavior via a self call from one subclass and engaging its superclass, or by a combination of certain

3

dependencies, as we have seen in the description of a Template Method. The contract defined with a simple
dependency can be easily detected using a query-based tool, because we know exactly how the contract
is defined [78]. But the contracts defined by a combination of (explicit and implicit) dependencies cannot
easily be detected like that, because we do not know a priori which are the contracts, how they are defined in
terms of sets of dependencies between classes and if there are relationships between them. Without Formal
Concept Analysis (FCA), we would need to generate all the possible combinations of (explicit and implicit)
dependencies between classes, resulting an exponential number of candidate contracts. Each combination
can define an unexpected contract, which should be identified and verified if it appears in the class hierarchy.
Thus, the process can be expensive in terms of performance and processing, and FCA is a better choice in
our context.

We have developed an approach called FoCARE (Formal Concept Analysis based-Reverse Engineering) to
detect dependencies in a class hierarchy using FCA [4]. While our original approach focused purely on
the behaviour of classes, the work presented in this paper also takes state into account. FoCARE adopts
a pipeline architecture with a set of processing steps that transforms source code in terms of useful high-
level entities for reengineering purposes. In our specific case, we identify Hierarchy Schemas to obtain a
first mental map for initial reengineering phases. One of the main features of this methodology is that it is
language independent because it uses a model of the source code as input instead of the source code itself.
Language independence is achieved by using Moose2 reengineering platform, a research vehicle for reverse
and reengineering object-oriented software [61] in the methodology. We use FCA to identify recurring,
unanticipated and undocumented patterns revealing the way classes use local (or superclass) behavior and
state. The patterns revealed by our analysis, called Hierarchy Schemas, are composed of a set of dependen-
cies over methods and attributes in a class hierarchy. These schemas correspond not only to known contracts
defining best practices but also to hidden contracts, bad smells and questionable or irregular practices.

We validate our approach with an extensive case study: the Smalltalk Collection hierarchy, which we se-
lected because (i) it is a complex and essential part of the Smalltalk system, (ii) it combines subtyping and
subclassing, (iii) it is an industrial quality class hierarchy that has evolved over 20 years, and (iv) it has been
studied by other researchers [11, 17, 35, 46].

The case study reveals non-trivial Hierarchy Schemas in industrial software systems, which we categorize
as follows:

• Classical Schemas represent common styles that are used to build and extend a class hierarchy,

• Irregular Schemas represent questionable practices which can lead to difficulties when understanding
the hierarchy,

• “Bad Smell” Schemas indicate the presence of likely design defects that should be corrected.

The identified Hierarchy Schemas help us to answer such questions as:

• Which classes define and use (or not) their own state and behavior?

• Which classes use the state defined in their superclasses?

• Which classes use template and hook methods and define behavior for their subclasses [65]?

2http://www.moosetechnology.org

4

• Which classes reuse or extend (or not) the behavior of their superclasses?

• Which subclasses redefine or cancel the behavior of their superclasses?

Our methodology also helps us to evaluate FCA itself, and answer such questions as:

• How useful is FCA for software analysis?

• Does FCA scale when applied in practice?

• Considering that there is an algorithm involved in the methodology, how does the performance affect
the results?

The two main contributions of this paper are:

A catalog of hidden class dependencies. The catalog of Hierarchy Schemas provides a good basis for
identifying which parts of a system are well-designed and which ones need to be fixed. The approach
provides two analysis viewpoints: a global view of the system which identifies which kinds of depen-
dencies and practices are present, and a partial view of how specific classes are related to others in
their hierarchy and how that hierarchy can be modified and extended. Although the catalog is built us-
ing FCA, once the catalog reaches a fixed point, the engineer can identify the schemas using a simple
query engine with the definitions provided by the presented approach.

FCA as a query-engine The FoCARE methodology demonstrates how FCA can be an effective tool to
reveal implicit patterns in complex software systems. We show the main difference between the use of
FCA and a query-based engine. If we knew in advance how the Hierarchy Schemas should be defined,
we could use a query-based tool to identify their occurrences, but it is not the case in our approach. We
use FCA because we do not know in advance which are the possible schemas occurring in the class
hierarchies, and consequently we do not know the combination of dependencies that characterize these
schemas. FCA helps us mainly to discover implicit and unanticipated schemas introduced in a class
hierarchy, and that the patterns may or may not correspond to expected practices.

There are two main differences as compared to our previous work [4]. First, in the current approach we in-
clude dependencies that consider access to object state, whereas our earlier work considered only behaviour.
Thus, we yield more concepts, and hence more schemas of interest than when only behaviour is considered.
Secondly, we categorize schemas into those that represent good, irregular and bad design decisions in the
class hierarchies.

The paper is structured as follows: Section 2 briefly describes Formal Concept Analysis. Section 3 details
the methodology FoCARE and Section 4 presents our mapping of object-oriented dependencies in class
hierarchies using FoCARE, and the catalog of Hierarchy Schemas. Section 5 provides an overview of
the results obtained by applying our approach to the Smalltalk Collection hierarchy and by showing how
SortedCollection fits into this hierarchy. Section 6 analyzes several issues related to the application of the
FoCARE approach to class hierarchies and the threats to validity of the developed approach. Section 7
compares our approach to related work. Finally, Section 8 concludes and outlines future work.

5

2. Formal Concept Analysis (FCA) in a Nutshell

Formal Concept Analysis (FCA) [30] is a branch of lattice theory that allows us to identify meaningful
groupings of elements that have common properties.3

Let us consider a small example about animals and how we categorize them using FCA. The elements are
a group of animals Lion, Finch, Eagle, Hare and Ostrich; and the properties are Preying, Flying, Bird and
Mammal. Table ?? shows us an incidence table indicating which animal has which properties.

Preying Flying Bird Mammal
Lion X X
Finch X X
Eagle X X X
Hare X
Ostrich X

Table 1: Incidence Table of the Animals Example

Based on these sets, a context is defined as a triple C = (E,P,R), where E and P are finite sets of elements
and properties respectively, and R is a binary relation between E and P represented in the incidence table.
In the example, the elements are the animals, the properties are its features, and the binary relation is a is
defined by Table ??. For example, the tuple (Lion, Preying) is in R, but (Finch, Mammal) is not.

Let X ⊆ E, Y ⊆ P , and X ′ = {p ∈ P |∀e ∈ X : (e, p) ∈ R} and Y ′ = {e ∈ E|∀p ∈ Y : (e, p) ∈ R}, then
X ′ gives us all the common properties of the elements contained in X, and Y ′ gives us the common elements
of the properties contained in Y , e.g., {Lion, Eagle}′ = {Preying}.
A concept is a pair of sets — a set of elements (the extent) and a set of properties (the intent) (X,Y) — such
that Y = X ′ and X = Y ′. In other words, a concept is a maximal collection of elements sharing common
properties. In Table ??, a concept is a maximal rectangle (up to permutation of rows and columns of the
table) we can obtain with relations between animals and its features. For example, ({Finch, Eagle}, {Flying,
Bird}) is a concept, whereas ({Lion}, {Mammal}) is not, since {Lion}′ = {Mammal}, but {Mammal}′ =
{Lion, Hare}.
The set of all the concepts of a given context forms a complete partial order shown in Figure 2 (a). We
define that a concept (X0, Y0) is a subconcept of concept (X1, Y1), denoted by (X0, Y0) ≤ (X1, Y1), if
X0 ⊆ X1 (or, equivalently, Y1 ⊆ Y0). Inversely we define that the concept (X1, Y1) is a superconcept
of concept (X0, Y0). For example, the concept ({Eagle}, {Preying, F lying,Bird}) is a subconcept of
the concept ({Eagle, Lion}, {Preying}). The set of concepts constitutes a concept lattice and there are
several algorithms for computing the concepts and the concept lattice for a given context.

There are two alternatives for labeling the concepts. Given a concept c = (E,P), the label l(c) can be
defined as:

• l(c) = (extent(c), intent(c)) = (E,P). This means that we label concepts with all the elements and
properties calculated for the concept. Figure 2 (a) shows the lattice of the example with this notation.

3In standard FCA literature these are referred to, respectively, as objects and attributes. We use the terms element and property to
avoid the unfortunate clash with object-oriented terminology.

6

For example, the concept c5 has {Eagle, Finch} as extent and {Bird, Flying} as intent.

• l(c) = (En, Pm), if c is the largest concept (w.r.t. ≤) with p (∈ Pm) in its intent, and c is the smallest
concept (w.r.t ≤) with e (∈ En) in its extent. The reading rule is as follows: An element e has a
property p if and only if there is an upwards leading path from the circle named e to the circle named
p. Hence, Lion has exactly the properties Mammal and Preying. We can easily read the extent (and the
intent) of each concept by collecting all elements below (respectively all properties above) the given
concept. Figure 2 (b) shows the lattice of the example with this notation. For example, the concept c5
has {Finch} as reduced extent and {Flying} as reduced intent.

C5

C6

C7

C4

C0

C2C1

C3

Bird

Eagle, Finch, Ostrich

Bird, Flying

Eagle, Finch

Bird, Flying, Preying

Eagle

Mammal, Preying

Lion

Mammal

Lion, Hare

Preying

Lion, Eagle C5

C6

C7

C4

C0

C2C1

C3

Bird

Ostrich

Flying

Finch

EagleLion

PreyingMammal

Hare

(a) (b)

Figure 2: Lattices of the Animal example with (a) complete labelling (b) reduced labelling

From the conceptual viewpoint, each concept represents a category of elements described by a set of prop-
erties. In the animals example, c3 represents the mammals, c4, the preying ones and c6, the birds. They
correspond to natural concepts in our restrictive domain of animals. We will use FCA in a similar way to
identify recurring concepts by analyzing software artifacts and the dependencies between them.

3. FoCARE: Architecture of the Implementation

The approach to detect Hierarchy Schemas presented in this paper is based on the FoCARE methodology.
FoCARE is language independent and its goal is to use FCA to build tools that identify recurring sets of
dependencies in the context of object-oriented software reengineering. It conforms to a pipeline architecture
in which the analysis is carried out by a sequence of five processing steps with different input and output
artifacts, and two iterative phases, and the output of each step provides the input to the next step.

Figure ?? shows the different parts of FoCARE detailed as follows.

The processing steps are Model Import, FCA Mapping, ConAn Engine, Post-Filtering, Analysis, and the
iterative phases are Modelling and Interpretation. First, we explain the processing steps as iterative phases
work with them. We describe each step listing the goal of each step and indicating Input and Output models.

• Model Import: Our first step is to build a model of the application from the source code. For this
purpose we use the Moose reengineering platform, a collaborative research platform for software
reengineering and visualization [61, 26, 32, 36].

7

Interpretation

Modelling

Post-Filtering

Analysis

ConAn Engine

FCA Mapping

Model Import

Magnitude Integer

Inheritance

Magnitude isAbstract
<self send = ….. >

=

Magnitude

<
=

= =

Source Code

Lattice

FCA Context

Moose model

Meaningful
Concepts

Patterns

Iterative Phases Processing Steps Input/Output Artifacts

Figure 3: The overall approach

Moose models the software artifacts of the target system as language independent source code level
entities. This allows entities to be directly queried and interacted with, consequently providing a
convenient way to query and navigate the model with metadescriptions [24]. Software models in
Moose conform to the FAMIX family of language-independent metamodels for reengineering [20].
FAMIX is customized for various aspects of code representation (static, dynamic, history). FAMIX
core, the metamodel we used in this paper, describes the static structure of software systems in terms
of packages, classes, method, attribute, variable and their associated relationships (inheritance, access,
and invocation).
Input: Source code of the application to analyze.
Output: Moose model of the source code.

• FCA Mapping: An FCA Context (Elements, Properties, Incidence Table) is built, mapping from
Moose model entities to FCA elements and properties.
Input: Moose model of source code.
Output: An FCA context (Elements, Properties, Incidence Table).

• ConAn Engine: Once the FCA elements and properties are defined, we run the ConAn engine. The

8

ConAn engine is a black-box component implemented in VisualWorks 7 which runs the FCA algo-
rithms to build the concepts and the lattice. ConAn applies the Ganter algorithm [30] to build the
concepts and our own implementation of the algorithm [5] to build the lattice.
Input: FCA Context (Elements, Properties, Incidence Table).
Output: Lattice with Concepts.

• Post-Filtering: Once the concepts and the lattice are built, each concept constitutes a potential candi-
date for analysis. But not all the concepts are relevant. We have a post-filtering process, which is the
last step performed by the tool. In this way we filter out meaningless concepts.
Input: Lattice with Concepts.
Output: Candidate Concepts.

• Analysis: In this step, the software engineer examines the candidate concepts resulting from the
previous steps and uses them to explore the different implicit dependencies between the software
entities and how they determine or affect the behavior of the system.
Input: Candidate Concepts.
Output: Patterns (in our specific case, Hierarchy Schemas).

A key aspect of FoCARE is that the engineer has to iterate over the modeling and the interpretation phases
(see Figure ??) in order to find Hierarchy Schemas of interest for analyzing a class hierarchy. The modeling
phase entails a process of experimentation with smaller case studies to find a suitable mapping from the
source code model to FCA elements and properties. A particular challenge is to find a mapping that is
efficient in terms of identifying meaningful concepts while minimizing the quantity of data to be processed.

In the interpretation phase, the output of the modeling phase is analyzed in order to interpret the resulting
concepts in the context of the application domain. The useful concepts can then be flagged so that future
occurrences can be automatically detected. As more case studies are analyzed, the set of identifiably useful
concepts typically increases up to a certain point, and then stabilizes.

In Section 4 we show how we instantiate our architecture to analyze class hierarchies and outline the key
issues that must be addressed to use FoCARE in analyzing class hierarchies. Model Import is not described
in Section 4 because it is performed by MOOSE, a tool that supports automatically this phase in FoCARE.
Thus, we only describe the FCA Mapping, ConAn Engine, Post-Filtering and Analysis.

4. Analyzing Class Hierarchies

If we knew which contracts between classes to expect in a given application (and how they are defined), we
could use a query-based tool to identify their presence in the software. Unfortunately this is not possible
since the range of possible contracts is completely open and therefore we cannot know their definitions
(See Section 6). For this reason, we need a technique that detects the presence of implicit patterns in the
dependencies between classes.

The analysis of class hierarchies using FCA helps us to identify Hierarchy Schemas that will show us how
the class hierarchies are designed and specifically how classes define their state and methods on their own
and in terms of superclasses and subclasses. To detect these schemas, we must model class hierarchies in
terms of FCA elements and their properties. Note that FCA is perfectly neutral in terms of what elements
and properties represent. As a consequence we can choose how we model class hierarchies and the contracts
(i.e., concepts) we are looking for.

9

We first describe how we build the corresponding elements and properties (Section 4.1), the incidence table
and the lattice (Section 4.2). Then we show which conditions a candidate concept should fulfil to (Sec-
tion 4.3) and how recurring combinations of properties lead to the dependency schemas of interest (Sec-
tion 4.4). Figure 3 shows a part of the Smalltalk Collection that we use as an example to show how we
analyze a class hierarchy with our approach.

remove()
removeIfAbsent()

«Abstract»
Collection

atIfAbsentPut()
atIfAbsent()
atPut()
postCopy()
iincludesKey()
keysDo()

«Abstract»
KeyedCollection

atIfAbsent()
atPut()
findIndexOfKey()
findIndexToInsert()
removeIfAbsent()

Method Dictionary

atIfAbsent()
atPut()
removeIfAbsent()
growKeysAndValues()
growTo()
postCopy()
keysDo()

RBSmallDictionary

….
self.removeIfAbsent()
….

….
self.atIfAbsent();
self.atPut()
….

….
self. growTo()
 ….

….
super.postCopy()
….

….
self.findIndexOfKey();
self.findIndexToInsert()
….

<< cancelled >>

….
self.keysDo()….

Figure 4: Example of a Class Hierarchy.

4.1. FCA Mapping: Elements and Properties of Classes

Let us analyze our goal illustrating what information we need. We use FCA to identify implicit contracts
such as usage of the Template Method Design Pattern. In a Template Method, the elements of interest are
methods of a class and its subclasses, and the properties we are interested in are the facts that the template
method calls its hook method, that the hook method may be abstract in the superclass, and that the hook
method is overridden in subclasses. We are also interested if methods access attributes in idiomatic ways,
for example, if a subclass accesses an attribute defined in a superclass. In general we do not know what
kinds of combinations of dependencies will be present, so we use FCA to detect which contracts are present
as concepts, i.e., as sets of elements with similar sets of properties.

FCA Elements. Since we want to analyze the inheritance dependencies within a class hierarchy, we build
FCA elements using self and super invocations of methods and accesses to the attributes of the classes. We
build the FCA elements as pairs of (Invoking Class C, invoked method m) and (Accessing Class C, accessed
attribute a). The pairs are interpreted as the method m is invoked in the class C, and the attribute a is accessed
in the class C respectively. For example, the element (Col, removeIfAbsent) (shown in Table 1) represents

10

that the method removeIfAbsent is called in the class Collection. We abbreviate the names of the classes
in the incidence table and in the lattice (as explained in Section 4.2). The abbreviated names are Col, for
Collection, KC, for KeyedCollection, MD, for MethodDictionary, and RBD, for RBSmallDictionary.

Table 1 shows the elements in our sample class hierarchy (shown in Figure 3). They are (Col, removeIfAb-
sent), (KC, atIfAbsent), (KC, atPut), (MD, findIndexOfKey), (MD, findIndexToInsert), (RBD, growTo), (RBD,
postCopy) and (KC, keysDo).

From FCA representation viewpoint, we do not consider the name of the caller or accessor method as a part
of the FCA elements representing invocations or accesses. For example, the FCA element (Col, removeIfAb-
sent) should be (Collection, remove, removeIfAbsent) if we kept the caller method. Instead we just keep (Col,
removeIfAbsent). This decision is made to reduce the number of generated FCA elements (hence, noise) in
the results. Let us imagine that there is another method m that also calls removeIfAbsent in Collection, then
we would have (Collection, remove, removeIfAbsent) and (Collection, m, removeIfAbsent) as FCA elements.
The explosion in the number of FCA elements can also generate problems in lattice computation time. As
we are interested in the hierarchy dependencies between classes, we just keep one representative in these
specific cases. We select (Col, removeIfAbsent), which represents all the calls made to removeIfAbsent in the
class Collection.

FCA Properties. In order to define specific properties for each type of element: invocations and accesses,
first we extract some facts regarding the code but obtained from Moose model. These facts characterize the
dependencies between the class that defines a method based on method invocation or an attribute based on
its access within a class. Let us see which are the mentioned facts.

Consider the elements (C,m) and (C,a) that represent an invocation or an access in class C, and the classes
C1 related to C, then the facts are:

Applied to attribute and accesses:

• C accesses a via accessors

• C accesses a without accessors

• C defines a

Applied to methods and invocations:

• C invokes m via self

• C invokes m via super

• C delegates m via super (This case is a specific case of the invokes via super. It happens when
the called message has the same name as the invoker method, in this case m).

• m is abstract in C

• m is concrete in C

• m is cancelled 4 in C

Applied to both types of elements:

4In Smalltalk it is possible to “cancel” a method inherited from a superclass by causing it to raise an exception, effectively undefining
it. In languages where this is not possible, this property can simply be ignored.

11

• C1 is ancestor of C

• C1 is descendant of C

Let us enumerate some facts that we identify in the example of Figure 3:

• RBSmallDictionary invokes growTo,

• postCopy is concrete in RBSmallDictionary,

• atPut is abstract in KeyedCollection,

• removeIfAbsent is cancelled in MethodDictionary,

• Collection is ancestor of KeyedCollection,

• KeyedCollection is ancestor of RBSmallDictionary,

• MethodDictionary is descendant of KeyedCollection,

• RBSmallDictionary invokes postCopy via super,

• KeyedCollection invokes atPut via self .

We directly adopt some of these facts as properties, and we also combine some of them to obtain the final
set of FCA properties. When building FCA elements, we restrict our analysis to self and super invocations
of methods because we want to analyze inheritance dependencies within a class hierarchy. Therefore, the
following facts are amongst those that we adopt directly:

• C invokes m via self

• C invokes m via super

• C delegates m via super

For example, Figure 3 shows that KeyedCollection invokes atPut via self and that RBSmallDictionary invokes
postCopy via super.

The remaining facts are combined to generate the following FCA properties. The left part of the assertion
corresponds to FCA property and the right part corresponds to the definition based on the combination of
the facts. For example, the property m is concrete in ancestor C1 of C is defined by the combination of the
facts C invokes m, C1 defines m, m is concrete in C1 and C1 is ancestor of C.

• C accesses local state (via accessors or without accessors) = C accesses a and C defines a

• C accesses state in Ancestor C1 (via accessors or without accessors) = C accesses a, C1 is ancestor
of C and C1 defines a

• m is concrete locally = C invokes m and m is concrete in C (Two more properties can be built using
is abstract or is cancelled instead of is concrete)

12

• m is concrete in ancestor C1 of C = C invokes m, m is concrete in C1 and C1 is ancestor of C (Two
more properties can be built using is abstract or is cancelled instead of is concrete)

• m is concrete in descendant C1 of C = C invokes m, m is concrete in C1 and C1 is descendant of C
(Two more properties can be built using is abstract or is cancelled instead of is concrete)

We have 14 FCA properties in total in our approach.

Let us consider the properties identified in the example of Figure 3.

• removeIfAbsent is cancelled in descendant MethodDictionary of Collection = Collection invokes re-
moveIfAbsent, removeIfAbsent is cancelled in MethodDictionary and MethodDictionary is descendant
of Collection

• postCopy is concrete in ancestor KeyedCollection of RBSmallDictionary = RBSmallDictionary invokes
postCopy, postCopy is concrete in KeyedCollection and KeyedCollection is ancestor of RBSmallDic-
tionary

• atPut is abstract locally = KeyedCollection invokes atPut and atPut is abstract in KeyedCollection

From the FCA representation viewpoint, the format of the some properties will change compared to the
format used in our previous explanation. When building the incidence table, the main idea is to check if the
element e fulfils (or not) a property p, such as p(e).

• The properties involving self, super and delegates sends are formulated similarly to invoked via self,
invoked via super and delegated via super as presented previously.

• The property involving local state or behavior (for example, accesses local state) will not denote any
explicit class because in our interpretation the class in the property is the same as mentioned in the
element. For example, atPut is abstract locally means that the element (KeyedCollection, atPut) fulfills
the property is abstract locally if KeyedCollection invokes atPut, KeyedCollection defines atPut
and atPut is abstract in KeyedCollection.

• However, when the property involves an ancestor or descendant class, the property is slightly different.
For example, if we see the expression postCopy is concrete in ancestor KeyedCollection of RBSmall-
Dictionary, we observe that the class RBSmallDictionary of the element (RBD, postCopy) seems to be
part of the property, but in fact the expression mixes the information regarding the element (RBD,
postCopy) and the property is concrete in ancestor KeyedCollection. Thus, when the property involves
an ancestor or a descendant related to an element (C,m) or (C,a), the property keeps the ancestor or
descendant classname.

Thus, the properties in our sample example (shown in Table 1) are invoked via self, invoked via super,
is abstract locally, is concrete locally, is concrete in descendant RBD, is concrete in descendant MD, is
cancelled in descendant MD and is concrete in ancestor KC. The first four properties do not have an explicit
class, and the other three involve an ancestor or descendant class of the elements.

13

4.2. Incidence Table and Lattice Construction

Once the elements and properties are chosen, we build the corresponding incidence table (shown in Table 1)
and calculate the lattice (shown in Figure ??).

In our specific approach, the FCA elements are self and super invocations of methods and accesses to
attributes of the classes in a class hierarchy expressed as pairs of (Invoking Class C, invoked method m) and
(Accessing Class C, accessed attribute a). And the FCA properties identify dependencies between the class
that defines a method based on method invocation or an attribute based on its access within a class.

in
vo

ke
d

vi
a

se
lf

in
vo

ke
d

vi
a

su
pe

r

is
ab

st
ra

ct
lo

ca
lly

is
co

nc
re

te
lo

ca
lly

is
co

nc
re

te
in

de
sc

en
da

nt
R

B
D

is
co

nc
re

te
in

de
sc

en
da

nt
M

D

is
ca

nc
el

le
d

in
de

sc
en

da
nt

M
D

is
co

nc
re

te
in

an
ce

st
or

K
C

(Col, removeIfAbsent) x x x x
(KC, atIfAbsent) x x x x
(KC, atPut) x x x x
(MD, findIndexOfKey) x x
(MD, findIndexToInsert) x x
(RBD, growTo) x x
(RBD, postCopy) x x
(KC, keysDo) x x x

Table 2: Incidence relation of Class Hierarchy Example

Regarding the elements, as explained previously, we just keep one representative of each call/access in a
class (the first one that we found when analyzing the subject system). This means that if we have several
calls to the method m or accesses to the attribute a in several methods of the class C, we just keep one
representative of m or a related to the class C. This way, we avoid repeated information in the incidence
table, and reduce the amount of data to deal with in the lattice.

Regarding the properties, if they do not have a corresponding invoked method or an accessed attribute that
fulfils them, we do not use them in the incidence table. In our case, we do not have the property is cancelled
locally because there is no invoked method in one class that has a cancelled definition in the same class.
Neither we have, for example, the property is concrete in ancestor Collection, because there is no invoked
method in one subclass of Collection that has the respective concrete definition in Collection.

From the viewpoint of FCA, we ease the lattice understanding using a combined labelling of the concepts in
the lattice. We use a complete label in the intent, and a reduced label in the extent of the concepts, because we
are interested in identifying the set of most restrictive properties that characterizes each invocation or each
access. For example, Figure 5 shows the concepts c5, c6 and c7 with complete and reduced labelling. If we
used the complete label in the extent of the concepts and we analyzed c5, we could say a candidate schema

14

invoked via super,
is concrete in ancestor KC

RBD: postCopy()

invoked via self,
is concrete locally

MD: findIndexOfKey()
MD: findIndexToInsert()
RBD: growTo()

invoked via self

invoked via self,
is abstract locally,
is cancelled in descendant MD,
is concrete in descendant in RBD

Col: removeIfAbsent()

invoked via self,
is abstract locally,

is concrete in descendant RBD,
is concrete in descendant MD

KC: atIfAbsent()
KC: atPut()

invoked via self,
is concrete in descendant RBD,

is abstract locally

KC: keysDo()

C8

C3

C4

C6C7

C5

C2

C1

C5

Figure 5: Lattice calculated from the incidence table (shown in Table 1) of Class Hierarchy Example

(described by c5) contains (Col, removeIfAbsent), (KC, atIfAbsent), (KC, atPut)and (KC, keysDo) because
they fulfill the set of properties {invoked via self, is concrete in descendant RBD, is abstract locally}. But
in fact, the elements (Col, removeIfAbsent)and (KC, atIfAbsent) are also contained in the candidate schema
(described by c7), and (KC, atPut) is contained in one described by c6. We need every element to be an
instance of only one schema with most of the properties that characterizes it. The reduced labelling of the
extent reveals this specific information. On the other hand, if we kept the reduced labelling in the intent, we
would have that navigate through all the parent chain of concepts to recover the information. For example,
identifying the properties of concept c6 with reduced labelling implies to recover also the properties of c5.
As we are interested in the complete definition of candidate schema, the complete labelling reveals this
information. With this combined labelling, we make sure that an invocation or an access is involved in only
one candidate schema (that means that only one is contained in one Hierarchy Schema), and that we contain
the definition of each potential schema in the concept itself.

4.3. Identifying Meaningful Concepts

Once the lattice is computed, we apply specific filtering criteria to identify the candidate concepts for de-
scribing Hierarchy Schemas. The applied criteria comprises the following rules:

• Regarding the concepts, we keep only those concepts with a non-empty extent in the combined la-
belling. This means that if an invocation is contained in more than one concept, we will just keep the
concept that identifies the most restrictive schema.

• Regarding the invocations in a class hierarchy, and the dependencies between the different classes,
all the meaningful concepts must show information about at least one of the 3 dependencies: local,
ancestor and descendant, and have at least one property of the set {invoked via self, invoked via
super, delegated via super}. Thus, the minimal information shown by a concept is how the methods
are invoked and where they are implemented. Most schemas show several properties of the first set
{local, ancestor, descendant}, generating interesting schemas that show how different classes in the
hierarchy are related.

15

invoked via self,
is abstract locally,
is cancelled in descendant MD,
is concrete in descendant in RBD

Col: removeIfAbsent()

invoked via self,
is abstract locally,

is concrete in descendant RBD,
is concrete in descendant MD

KC: atIfAbsent()
KC: atPut()

invoked via self,
is concrete in descendant RBD,

is abstract locally

KC: keysDo()
KC: atIfAbsent()

KC: atPut()
Col: removeIfAbsent()

C8

C6

C7

C5C5

is cancelled in descendant MD

Col: removeIfAbsent()

is concrete in descendant MD

KC: atIfAbsent()
KC: atPut()

invoked via self,
is concrete in descendant RBD,

is abstract locally

KC: keysDo()

C8

C6
C7

C5C5

Figure 6: Complete and Reduced labelling of concepts c5, c6 and c7

• Regarding the accesses to attributes in a class hierarchy, the meaningful concepts must show at least
one of the following dependencies: {accesses local state without accessors, accesses local state with
accessors, accesses state without accessors in ancestor }, and can show some dependencies of the
complete set of {local, ancestor, descendant, invoked via self, invoked via super, delegated via super}.

The rest of the concepts are discarded. Thus, from our concepts in Figure ??, we keep the concepts c3, c4,
c5, c6, and c7 which fulfil the conditions described previously, and we discard the concepts c1, c2 and c8.

4.4. Hierarchy Schemas

Hierarchy Schemas are built using the set of properties of the filtered concepts of the previous step. Let us
see two examples

• The set of properties {invoked via self, is abstract locally, is concrete in descendant C1} which ele-
ment (C,m) fulfils, shows that the class C invokes methods m via self that is defined as abstract in
the class C, and that is implemented as concrete ones in the descendant C1. This concept reveals a
good practice using a Template Method showing that the superclass defines the behavior skeleton of
the subclasses. Figure 6 shows this schema in our example represented in the concept c7.

• The set of properties {invoked via self, is abstract locally, is concrete in descendant C1, m is can-
celled in descendant C2} which element (C,m) fulfils, shows that the class C defines a protocol that
subclasses should implement, but the subclass C2 cancels partially the inherited protocol. This set
shows a bad coding practice, because it is based on an inappropriate use of subclassing. Figure 7
shows this schema in our example represented in the concept c6.

Based on the interpretation of the set of properties contained in the concepts, we have named each Hierarchy
Schema and we have categorized these into three groups: Classical, Irregular and “Bad Smell”. In the
following we describe each category and we detail each specific schema with a description and the set of
dependencies that define them as concepts in the lattice. In some cases, we observe that several sets of
dependencies can define the same schema. Note that we use the notation Cn or Cn (n: 1 ..m) to indicate the

16

(ancestor or descendant) class(es) related to the invoker class of the invocations or accesses. Unless stated
explicitly, ancestor or descendant classes are not necessary direct ones.

• Classical Schemas represent common idioms/styles that are used to build and extend a class hierarchy,
i.e., best practices identified by existing literature [8, 43, 67].

Name Description

Classical
Local Direct State Access Identifies methods that directly access instance variables. Vari-

ations: using or not using accessors.
Properties: (1) accesses local state without accessors, (2) ac-
cesses local state with accessors.

Local Behavior Identifies methods defined and used in the class that are not
overridden in subclasses. Often represent internal class behav-
ior.
Properties: invoked via self, is concrete locally

Template And Hook Identifies methods that define template and hook methods. Vari-
ations: default hooks are abstract or represent a default behav-
ior.
Properties: invoked via self, is abstract locally, is concrete in
descendant Cn.

Redefined Concrete Behavior Identifies concrete inherited methods that are redefined in the
class or in the subclasses.
Properties: invoked via self, is concrete locally, is concrete in
ancestor Cm, (2) invoked via self, is concrete in descendant Cn,
is concrete in ancestor Cm.

Extended Concrete Behavior Identifies concrete inherited methods that are extended in the
class (only super send).
Properties: delegated via super, is concrete locally, is concrete
in ancestor Cn.

Reuse of Superclass/State Be-
havior

Identifies concrete methods that invoke superclass methods by
self or super sends. Variation: Extended Concrete Behavior.
Properties: (1) invoked via self, is concrete in ancestor Cn, (2)
invoked via super, is concrete in ancestor Cn, (3) accesses state
with accessors in Cn (n: 1 ..m).

Local Behavior overridden in
Subclasses

Identifies methods that are overridden in subclasses.

Properties: invoked via self, is concrete locally, is concrete in
descendant Cn.

• “Bad Smell” Schemas represent doubtful designs decisions used to build a hierarchy. They are fre-
quently a sign that some parts should be completely changed or even rewritten from scratch.

17

Name Description

Bad Smells
Ancestor Direct State Access Identifies methods that directly access the instance variable of

an ancestor, bypassing any accessors. This schema is the con-
sequence of bad use of Reuse of Superclass/State Behavior re-
garding the ancestor state.
Properties: accesses state without accessors in ancestor Cn (n:
1 ..m)

Cancelled Local Behavior but
Superclass Reuse

Identifies concrete inherited methods whose behavior is can-
celled in the class but whose corresponding superclass behavior
is invoked i.e., via a super send from a different method. This
workaround is a common sign of difficulty improperly factoring
out common behaviour.
Properties: invoked via super, is cancelled locally, is concrete in
ancestor Cn (n: 1 ..m)

Abstracting Concrete Methods Identifies abstract methods overriding concrete ones.
Properties: (1) invoked via self, is concrete locally, is abstract
in descendant Cn (n: 1 ..m) (2) invoked via super, is abstract
locally, is concrete in ancestor Cn (n: 1 ..m)

Cancelled Local or Inherited
Behavior

Identifies concrete local or inherited methods that are invoked
i.e., via self send in a class or its superclasses, but are cancelled
in subclasses. Method cancellation is a sign of inheritance for
code reuse without regard for subtyping.
Properties: (1) invoked via self, is cancelled locally, is concrete
in ancestor Cn, (2) invoked via self, is concrete locally, is can-
celled in descendant Cn

Broken super send Chain Identifies methods that are extended (i.e., via a super send) at
some point in the hierarchy, but are then simply overridden
lower in the hierarchy. This can be the sign of a broken sub-
classing contract.
Properties: delegated via super, is concrete locally, is concrete
in ancestor Cn.

• Irregular Schemas represent irregular situations used to build the hierarchy. Often the implementation
can be improved using minimal changes. They are less serious than “Bad Smell” schemas.

18

Name Description

Irregularities
Inherited and Local Invocations Identifies methods that are invoked by both self and super sends

within the same class. This may be a problem if the super sends
are invoked from a method with a different name.
Properties: (1) invoked via self, invoked via super, is concrete
locally, is concrete in ancestor Cn, (2) invoked via self, invoked
via super, delegated via super, is concrete locally, is concrete in
ancestor Cn.

Unused Local Behavior but Su-
perclass Reuse

Identifies concrete inherited methods whose behavior is over-
ridden but unused in the class, and whose corresponding super-
class behavior is invoked i.e., via a super send from a different
method.
Properties: invoked via super, is concrete locally, is concrete in
ancestor Cn.

Accessor Redefinition Identifies methods that are accessors in a class but are redefined
in the subclass as non-accessor methods.
Properties: invoked via self, is concrete locally, accesses state
with accessors in ancestor Cn.

atIfAbsentPut()
atIfAbsent()
atPut()

«Abstract»
KeyedCollection

atIfAbsent()
atPut()

Method Dictionary

atIfAbsent()
atPut()

RBSmallDictionary

….
self.atIfAbsent();
self.atPut()
….

Figure 7: Template Method represented in concept c7
of the class hierarchy example

remove()
removeIfAbsent()

«Abstract»
Collection

«Abstract»
KeyedCollection

removeIfAbsent()

Method Dictionary

removeIfAbsent()

RBSmallDictionary

….
self.removeIfAbsent()
….

<<cancelled>>

Figure 8: Cancelled Local or Inherited Behavior represented in concept c6
of the class hierarchy example

Remarks. From the FCA viewpoint, it is important to remark that:

• We can have Equivalent Concepts. Although each concept is a candidate to be a schema, several
concepts represent the same schema. This happens in two different situations. The first one is that
one schema can have equivalent concepts if we have several concepts with the same set of properties,
except that the superclass and subclasses names of the properties change. For example, the concept
c7 represents an instance of the schema Template Method, described by the set of properties invoked
via self, is abstract locally, is concrete in descendant RBD and is concrete in descendant MD. If we do
not consider the classes that are the parameters of the properties, we obtain the set {invoked via self,
is abstract locally, is concrete in descendant} that describes the mentioned schema. In this way, any
concept that contains the same set of properties but not with the same parameters, is considered an

19

equivalent concept of c7. The second situation is that one schema can have different set of properties
as its definition. For example, the schema Cancelled Local or Inherited Behavior can be defined with
two following intents: (1) invoked via self, is cancelled locally, is concrete in ancestor Cn, (2) invoked
via self, is concrete locally, is cancelled in descendant Cn. Both definitions are valid, because they
represent the same schema where the method cancellation varies if it is implemented locally or in a
descendant.

• A concept with the intent containing the properties is concrete locally, is cancelled locally or is ab-
stract locally, and without those ones that describe a dependency with other superclass(es) or sub-
class(es) (for example, is concrete in descendant RBD) can represent a schema that is present in
several classes, though the classes in the extent of that concept have no relation to each other. For
example, the concept c4 represents the schema Local Behavior, but this schema appears in the classes
MethodDictionary and RBSmallDictionary (according to our example). MethodDictionary and RBSmall-
Dictionary are not related based on the properties of the concept. This happens because the methods
findIndexOfKey and findIndexToInsert are defined in MethodDictionary and the method growTo is de-
fined in RBSmallDictionary, and they do not have a property in common in terms of a superclass or
subclass of MethodDictionary or RBSmallDictionary respectively. This happens because when using is
concrete|abstract|cancelled locally, these properties do not specify any explicit class in their parame-
ters, because the relation of the property with the element is implicit.

FoCARE’s architecture is implemented as a tool to make it easier to analyze the results regarding a class
hierarchy. Figure 8 shows a screenshot of the tool, in which we see the Hierarchy Schemas in the left pane.
Clicking on a particular instance of a schema will cause its classes to be displayed in the right pane.

5. Detected Hierarchy Schemas in the Collection Hierarchy

We present here the results of our analysis of the Smalltalk Collection hierarchy. This hierarchy is especially
interesting because (i) it is part of the core of Smalltalk system, (ii) it makes heavy use of subclassing as
well as subtyping, (iii) it is an industrial quality class hierarchy that has evolved over more than 20 years,
and (iv) has been studied by other researchers [35, 17, 11, 46]. It has also influenced the design of current
C++ and Java collection hierarchies. In VisualWorks, the Smalltalk Collection hierarchy is composed of 104
classes distributed over 8 levels of inheritance. There are 2162 defined methods in all the classes, with 3117
invocations of these methods within the hierarchy and 1146 accesses to the state of the classes defined in the
hierarchy.

This case study shows that the approach can effectively identify non-trival schemas in professional software
system. We first provide a global overview of the identified schemas, and then we focus on the role of the
class SortedCollection within the collection. We chose this class because it is a good example where several
schemas are overlapped in the same class, and this fact helps the developer to understand how it was built
and how it works.

5.1. Global View on Collection Hierarchy

Analyzing Collection hierarchy, we discovered 451 instances of 16 different identified Hierarchy Schemas.
Table 2 shows the number of detected instances of each schema.

20

Figure 9: Main window of the FoCARE methodology implemented in Smalltalk

Name Nr. Name Nr.

Classical Bad Smells
Local Direct State Access 72 Ancestor Direct State Access 19
Local Behavior 69 Cancelled Local Behavior but Superclass Reuse 1
Template And Hook 17 Abstracting Concrete Methods 8
Redefined Concrete Behavior 43 Cancelled Local or Inherited Behavior 6
Extended Concrete Behavior 37 Broken super send Chain 7
Reuse of Superclass/State Behavior 111 Irregularities
Local Behavior overridden in Subclasses 29 Inherited and Local Invocations 15
Abstract and Concrete Chain 10 Unused Local Behavior but Superclass Reuse 3

Accessor Redefinition 4

Table 3: Left: Commonly Identified Classical Schemas — Right: Commonly Identified Bad Smell and Irregularities Schemas.

21

The descriptions of Hierarchy Schemas provided in Section 4.4 are generic. In what follows we provide
detailed analysis of specific instances of some Hierarchy Schemas, that we consider the most interesting
ones.

Classical: Local Direct State Access. This schema identifies classes that define and use their own state di-
rectly (using or not the accessors). In the Collection hierarchy, there are 55 classes contained in this schema.
Most of the classes are leaves of the hierarchy. This shows that the hierarchy is built using subclassing, since
each class extends inherited behavior from the superclasses and provides specific functionality of its own.
Only the subhierarchies starting from String and WeakDictionary have no leaf classes that match this pattern,
meaning that eventually these classes either use state of the superclasses or only extend the behavior of the
superclasses without extending the state of the superclasses. This schema helps us identify which parts of
the hierarchy have behavior oriented or state oriented classes [7].

“Bad Smell”: Ancestor Direct State Access. This schema identifies classes that access (read or modify
the values of) the state of an ancestor class without using the accessors defined in the ancestor classes.
We identified 19 classes that are part of the subhierarchies determined by GeneralNameSpace, Dictionary,
OrderedCollection and LinkedList. In most of the cases, the classes are accessing state of the immediate
superclass, but in the subhierarchy of OrderedCollection we detected several classes that access state of an-
cestors higher up in the chain of their superclasses. This is a not good coding practice since it introduces an
unnecessary dependency on the internal representation of ancestor classes, and thereby violates encapsula-
tion. Note that this happens in particular in our case study, because there are no protected visibility modifiers
in Smalltalk. Figure 9 illustrates this schema.

noCheckAtPut()

WeakDIctionary

 tally:Integer
Set

….
tally
….

Figure 10: Ancestor Direct State Access.

add()
addLast()

OrderedCollection

addLast()

MethodDictionary

addLast()

RBSmallDictionary

….
self.addLast()
….

<< cancelled >>

Figure 11: Cancelled Inherited Behavior.

“Bad Smell”: Cancelled Local or Inherited Behavior. This schema identifies concrete local or inherited
methods that are invoked via a self send in a class or its superclasses but are then cancelled in subclasses.
Method cancellation is a sign that inheritance is being applied purely for code reuse purposes, without
regard for subtyping. Since methods of the superclass calling the cancelled methods can still be called on
the cancelling class, this may lead to runtime errors. In the Collection hierarchy it occurs in the subhierarchies
of SequenceableCollection and OrderedCollection. Figure 10 illustrates this schema.

Irregular: Inherited and Local Invocations. This schema shows methods that are invoked by both self and
super sends within the same class. In certain cases, this schema can be a good practice coding (as shown
in Figure 11), but a problem occurs when the super sends are invoked from a method with a different name.
This special case of the schema occurs in the classes LinkedOrderedCollection, LinkedWeakAssociationDic-
tionary and XMainChangeSet. All these classes have a special form: the class overrides a method m, and m
invokes a method named own-m via self send, and this last method calls m via a super send implemented

22

in the superclass. Figure 12 illustrates this schema. This is an irregular case of the schema Redefined Con-
crete Behavior because the class is overriding the superclass behavior but is indirectly using the superclass
behavior.

matchAtIfAbsent()

ColorPreferencesCollection

bindConstantCodeArray()

matchAtIfAbsent()

ColorPreferencesDictionary

….
self.removeIfAbsent()
….

….
self.matchAtIfAbsent()
….

….
super.matchAtIfAbsent()
….

Figure 12: Inherited and Local Invocations - Case 1

isEmpty()

OrderedCollection

ownIsEmpty()

isEmpty()

notEmpty()

LinkedOrderedCollection

….
self.isEmpty().not()
….

….
self.ownIsEmpty()
….

….
super.isEmpty()
….

Figure 13: Inherited and Local Invocations - Case 2

5.2. “Class-Based” View on SortedCollection

With the global view we analyze a class hierarchy, but our approach also helps us to analyze how a class is
built in the context of its superclasses and subclasses.

We chose to analyze the class SortedCollection (a subclass of OrderedCollection), because it is a good exam-
ple where several schemas are overlapped in the same class, and this fact helps the developer to understand
how it was built and how it works. A SortedCollection is an ordered collection of elements, using a sorting
function for the elements order. The class has one attribute sortBlock which holds the sorting function; it has
one class variable DefaultSortBlock that holds the default sorting function. As a subclass of OrderedCollec-
tion, it inherits two instance variables firstIndex and lastIndex and an indexed variable objects. Regarding its
methods, it defines 10 methods and overrides 19 methods from the 403 inherited.

In this class we identify twelve different instances that correspond to four different schemas that involve this
class.

Within the Classical category we report one case.

• Reuse of Superclass/State Behavior: This schema shows us that the class SortedCollection calls via
self the methods copyEmpty, insertBefore, reverseDo, asArray, isEmpty and that these methods are not
defined in the class itself but in different superclasses. Specifically, we see that the methods copy-
Empty, insertBefore and isEmpty are defined in the class OrderedCollection, reverseDo and asArray
are defined in the class SequenceableCollection. We see which are the superclasses that determine the
behavior of the class. Figure 13 illustrates this schema.

Within “Bad Smell” category, we report two cases:

23

isEmpty()

OrderedCollection

add()

reverse()

SortedCollection
….
self.isEmpty()
….

reverseDo()

«Abstract»
SequenceableCollection

….
self.reverseDo()
….

Figure 14: Reuse of Superclass Behavior.

representBinaryOn()

SortedCollection

….
super.representBinaryOn()
….

representBinaryOn()

«Abstract»
SequenceableCollection

representBinaryOn()

SortedCollectionWithPolicy

Figure 15: Broken super send Chain

• Broken super send Chain: This schema identifies methods that are extended (i.e., performing a super
send) in a class but redefined in their subclasses without calling the overridden behavior. SortedCollec-
tion has an extension contract with its direct superclass calling the methods = and representBinaryOn:
via a super send from the methods with the same name. But the methods in the subclass SortedCol-
lectionWithPolicy do not invoke the corresponding inherited method defined in SortedCollection via a
super send. This means that the subclass is overriding the method and is defining its own behavior but
it is not respecting the behavior predefined by its superclass. Such a behavior can lead to unexpected
results when the classes are extended without a deep knowledge of the implementation. Figure 14
illustrates this schema.

• Cancelled Local Behavior but Superclass Reuse: This schema shows that the method addAll is
called via a super send and this method is defined in the immediate superclass OrderedCollection,
meaning that the class is reusing the behavior of the superclass. But this method is also implemented
in the class SortedCollection but the behavior is cancelled. Although it is not a good practice, it
seems a normal situation because the elements in a sorted collection cannot be added to the end of
the collection, but only in a predefined position defined by the sorting function of the class. As we
said previously, this is a case where the inheritance is used as code reuse without regarding subtyping.
Specifically, this means that SortedCollection is a kind of OrderedCollection but not all the inherited
methods can be applied. Figure 15 illustrates this schema.

Within the Irregular category, we only found one case:

• Inherited and Local Invocations: This schema shows that the method copyEmpty is invoked with
self sends and super sends in the class SortedCollection. It is implemented in the class itself, has an
implementation in the superclass Collection and an implementation in the subclass SortedCollection-
WithPolicy. When checking the code, we see that only copyFromTo calls copyEmpty within Sorted-
Collection, and that the method copyEmpty has only one line of code, which makes only a super call
to its overriden superclass method. From the viewpoint of internal behavior within SortedCollection,
copyEmpty (with only one codeline) adds a level of indirection to the call flow considering that the

24

addAll()

OrderedCollection

addAllWithoutSorting()

addAll()

SortedCollection

<< cancelled >>

….
super.addAll()
….

Figure 16: Cancelled Local Behavior and Behavior
Reuse of Superclasses

copyEmpty()

copyFromTo()

SortedCollection

….
self.copyEmpty()
….

copyEmpty()

<<Abstract>>
Collection

super.copyEmpty()

copyEmpty()

SortedCollectionWithPolicy

….
super.copyEmpty()
….

Figure 17: Inherited and Local Invocations.

behavior of this method is determined by the superclasses. A further analysis can help us to determine
if copyEmpty in SortedCollection could be deleted and how we should adapt the behavior of copy-
Empty in SortedCollectionWithPolicy and copyFromTo in SortedCollection to call directly the method
copyEmpty defined in Collection. Figure 16 illustrates this schema.

The identified schemas in our approach provide another view on the class. They present some unanticipated
dependencies between the methods of the classes and their relationships in the hierarchy. Summarizing,
our analysis confirms that although the Collection hierarchy offers many of the most powerful classes in
Smalltalk, it is a rich and complex case study. However, it is not easy to modify or extend it, because our
schemas show that the main used building mechanisms are subclassing and code sharing. Inheritance used
for implementation reuse can lead to fragility in the design of the class hierarchies [56]. An analysis of rele-
vant refactorings can be proposed to improve how the classes should be defined in this class hierarchy. The
case study shows that our approach helps in identifying unanticipated contracts and relationships between
classes within an inheritance hierarchy. It reveals patterns that are otherwise complex to spot due to method
cancellations, local redefinitions and the yoyo effect.

6. Discussion and threats to validity

In this section, we discuss some issues related specifically to the use of FCA and we analyze some threats to
validity of the current approach.

6.1. Discussion

Partial Usage of Lattice: We pointed out that once the concepts and the corresponding lattice are built,
each concept represents a group of invocations and accesses that relate a group of classes. But not all the

25

concepts are relevant, and we keep only the meaningful concepts. There are mainly three points to take
into account. First, if we analyze the position of those concepts in the lattice, we see that most of them
are located in the lower part of the lattice, and we filter out the concepts located in the middle and upper
part of the lattice. This is because the concepts in the lower part of the lattice contain more properties
(inversely, few elements with those commonalities) than concepts higher up in the lattice (inversely, more
elements with fewer commonalities). The lower concepts provide more “interesting” information (based on
the combination of properties) and allow us to map them to non-trivial schemas of classes in a hierarchy.
Secondly, we only use 64 of 174 concepts in total, meaning that just 1/3 of the lattice is used. Finally, we
note that, in this particular application of FCA, we do not exploit the possible relationships (defined by the
partial order) between the schemas (mapped from the concepts) because to our knowledge so far, there is
no corresponding relationship between our Hierarchy Schemas in terms of software engineering concepts.
However, we build the lattice because we need to calculate the reduced extent of the concepts to be sure that
the invocations and accesses appear in only one concept, and participates in the most restrictive schema in
the class hierarchy.

Compact number of elements and properties: In Section 3, we saw that we need to map the model entities
(in our specific case, the invocations and accesses) to FCA elements and build different properties based on
them. Due to a performance limitation imposed by the FCA algorithm [45], we reduce dramatically the
number of FCA elements keeping only one representative of an invoked method and accessed attribute in a
class. We compute the concepts and the lattice without losing information about the class hierarchies, and
we reduce also the computing time from around 1 hour to 10 minutes compared to the approach presented
in previous work [4].

FCA as a classification mining tool: As expressed previously, we focus on analyzing (groups of) related
dependencies between classes in a hierarchy based on self and super invocations. Without FCA, we should
generate all the possible combinations of (explicit and implicit) dependencies between classes, resulting an
exponential number of candidates contracts. Each combination can define a known or an unexpected contract
that should be identified and verified if it occurs in the class hierarchy. For example, if we had three properties
P1, P2 and P3, without FCA we should generate the following sets {P1}, {P2}, {P3}, {P1, P2}, {P1, P3},
{P1, P4}, {P2, P3}, {P2, P4}, {P3, P4} and {P1, P2, P3, P4}. Once the sets are generated, we should test
if every invocation to a method and access to an attribute fulfills or not any set of properties. We should also
check if we can group elements with same set of properties, and also if there is any relationship between
the different identified sets. Clearly, we see that the process can be expensive in terms of performance and
processing, and FCA seems a better choice in our context to avoid these difficulties.

FCA vs. Query Engine: One of the main results of this approach is a catalog of schemas to characterize a
class hierarchy. As we see in Section 4, each schema is the interpretation of a conjunction of properties in the
concepts. Each schema can be expressed as a logic predicate (mapped from the properties) and a query en-
gine can be run in a class hierarchy to identify the occurrences of the different schemas. The main difference
between the use of FCA and a query engine is that FCA helps us mainly to discover previously unknown
schemas introduced in a class hierarchy, because we do not know in advance which are the properties that
define them. In the case of the use of a query approach, we need to know which are the different properties
that characterize a schema. We consider that the two approaches are complementary, because the catalog of
schemas can be complete after the analysis of several class hierarchies, and in that case, the application of
query engine is more suitable than FCA. We can have an adapted architecture where the step FCA Mapping
is converted into Query-based Mapping, and the steps ConAn Engine and Post-Filtering are not present any
more.

26

6.2. Threats to Internal Validity

Use of language-dependent properties: In spite of the fact that our approach is language independent,
how the properties are extracted from source code depends on language-specific mechanisms or idioms. Let
us enumerate some of them in the analysis of class hierarchies in Smalltalk code (presented in this paper)
compared to some initial experiments in Java [14].

• The property m is cancelled in C is used to indicate that a subclass cancels a method defined in a super-
class. It can be detected when the method body contains only the call self shouldNotImplement,
which generates a runtime error in execution time. The property m is abstract in C is detected when
the method body contains only the call self subclassResponsibility. When applying the
approach to another object-oriented language, we have to adapt the extraction of properties, and should
consider specific properties regarding the chosen language. In Java, we have seen that the properties
m is cancelled in C, m is abstract in C, C accesses a and invoked via self have the same meaning as
in Smalltalk code analysis but are extracted in a different way [14]. We chose to define the property m
is cancelled in C when the method body only raises an exception. The property m is abstract in C is
detected using the abstract modifier of the method declaration. The property C accesses a can be set
up with and without accessors as in Smalltalk code, except that in Java we can have the direct access
to the state with the expression this.<variable name>. Finally, the property invoked via self
can be extracted by looking for the call where the receiver is the keyword this, but also for calls
where there is no explicit receiver. In this case, it is implicit that the receiver is this.

• There are several properties specific to Java that are worth mentioning. Firstly, we have to build
properties to represent the restrictive visibility of the methods (public, private, protected). We also
have to map interfaces and anonymous classes to our FCA approach.

• The added properties increase the catalog of possible Hierarchy Schemas detected in Java code, and
helped us to identify which Hierarchy Schemas are common to several object-oriented languages,
and which ones are specific to a particular object-oriented language. For example, in Smalltalk all
methods are public (there being no visibility modifiers). The schema called Cancelled Local Behavior
but Superclass Reuse is defined with the set of properties invoked via super, is cancelled locally, is
concrete in ancestor Cn (n: 1 ..m). If we consider Java code, the same schema is represented with
the set of properties is public, invoked via super, is cancelled locally, is concrete in ancestor Cn (n:
1..m). As we see, the only different property between both definitions is is public, and this property
is needed in Java code due to the presence of visibility modifiers, and we need them to identify this
characteristic in the methods. However, this property is implicit in the detected schema in Smalltalk
code. In spite of this slight difference, we can infer that Cancelled Local Behavior but Superclass
Reuse is a common schema in both Java and Smalltalk code. However, any schema that contains any
property such as is protected or is private clearly is specific to Java or C++ code. Busch et al., present
some preliminary results [14].

Table 3 shows some initial results from analyzing the Java Collection Package with 162 classes. From our
initial analysis, the use of interfaces and anonymous classes hides the occurrences of other schemas in this
case study. We have to deepen our analysis including Java building mechanisms.

Mapping from Concepts to Schemas: Of the 64 concepts we identified as “interesting”, we derived 15
dependency schemas. This means that in most cases, a schema is represented by several concepts, meaning
that a schema can be described by different combinations of properties. The mapping policy is decided by the

27

Name Nr. Name Nr.

Classical Bad Smells
Redefined Concrete Behavior 3 Ancestor Direct State Access 2
Extended Concrete Behavior 1 Cancelled Local Behavior but Superclass Reuse 3
Reuse of Superclass/State Behavior 45

Table 4: Results in Java Collection Package. Left: Commonly Identified Classical Schemas — Right: Commonly Identified Bad Smell
Schemas.

reengineer, meaning that when we interpret the contents of the concepts, we must decide which are concepts
corresponding to the different schemas. For example, the schema Reuse of Superclass/State Behavior is
represented by 3 types of concepts because there are three different combinations of properties to describe
the mentioned schema (as shown in the table of Hierarchy Schemas). On the other hand, the schema Local
Behavior is represented by just one concept. In other cases, one schema could represent a good or an
irregular design practice. In this specific case, we see that the schema Inherited and Local Invocations is
irregular only when the super sends are invoked from a method with a different name.

Building Elements and Properties. We map the attributes accesses and methods calls directly from the
metamodel FAMIX [60]. The choice of properties requires some analysis (done in the iterative phase Mod-
elling of FoCARE), because we need to cover the different possible inheritance dependencies of the ele-
ments. The properties invoked via self and invoked via super are mapped directly from the metamodel. The
rest of the properties are calculated based on the dependencies expressed in the metamodel.

Number of Concepts: The policy of mapping from concepts to schemas is manual in initial experiments,
until their identification can be automatized. To determine the correct mapping, we have to go through some
cycles of Interpretation using only parts of the case study. The main drawback in this phase is the number
of generated concepts in the lattice, especially when there are not so many elements that share common
properties and this can generate an explosion in the number of concepts. This happens because in the first
experimental Interpretation, we have to analyze the concepts manually until we get the right definition of
each schema, and this is not trivial when the number of concepts is large.

6.3. Threats to External validity

We note that the approach can succeed or fail depending on several factors.

“Non-invoked” Methods: Our approach is limited to analyzing methods and attributes that are effectively
used in the context of the class hierarchy. If there are methods that are defined in some class but are not
invoked in the class itself or in any subclasses or in any superclasses, those methods are not included in our
analysis. Clearly, we lose some information about the classes in the hierarchy, because we only concentrate
on usage of behavior and state of the class.

Incrementing the catalog of schemas: Although we consider our approach to be mature enough to detect
interesting Hierarchy Schemas, during new applications of the approach to other Smalltalk class hierarchies
or to other object-oriented languages, we may discover new schemas to augment the Hierarchy Schemas
catalog. Note that this threat is not negative since we identify them and simply build incrementally our
catalog. This illustrates the usefulness of FCA as a classification mining tool. When we reach a fix point
for given schema catalog (meaning that when running the approach there are no new identified Hierarchy
Schemas), FCA ceases to be useful as a mining tool and can be replaced by a query-based engine. This

28

replacement implies only to change a layer in the our architecture. Thus, we show that the architecture is
adaptable to changes like this one.

Choice of properties and elements: The choice of properties and elements is critical in this approach.
Without adequate elements and properties, the approach cannot produce meaningful concepts, and therefore
we cannot detect any practical schema. Therefore, it is crucial to test them in parts of the case studies going
through several cycles of Modelling and Interpretation of the phases of the FoCARE architecture. The
reengineer can decide if the conceptual mapping the useful for analyzing a piece of software (in our specific
case, class hierarchies).

Good programming style: When applying this approach, we focus on detecting not only good practices in
coding, but also bad smells and irregularities in class hierarchies, and we propose refactorings to improve
the code. If the class hierarchy is well designed, this approach only shows good practices in coding. We
consider that applying this approach is too expensive to use merely to confirm that the class hierarchy is
well-designed.

Small hierarchies: Similarly, in the case of small hierarchies, applying this approach is too expensive
compared to analyzing it manually. In this paper, we have shown how useful is FoCARE in Collection class
hierarchy, which has around 100 classes.

Exponential number of concepts and schemas: Another critical issue from the FCA viewpoint is the
large (eventually, exponential) number of concepts that FCA can generate. This situation can arise if the
properties are too specific for a small set of elements and/or the incidence table density is low, meaning that
there are only few pairs of (element,property) that are valid. From a coding perspective, this means that
the dependencies are dispersed and do not recur in the class hierarchy. With too many results, it is hard to
analyze new schemas because they are interpreted manually (before including them in the catalog), and the
results depend on the knowledge of the reengineer.

Performance of FCA algorithm: As mentioned previously, the algorithm is also an essential factor in this
approach. The performance can be affected by two circumstances. The first one is related to implementation
issues. It is known the performance limitation analyzed by Kuznetsov [45], so the reengineer should be
careful when implementing it, or should use an existing implementation that exhibits good performance.
The second circumstance is when the incidence table has low density, and this can generate an exponential
number of concepts, and the calculation of partial order can be time-consuming.

Biased evaluation: As we have developed the approach and carried out the experiment ourselves, the results
may be biased. This effect is mitigated by the fact that we have chosen to analyze the Smalltalk Collection
hierarchy as a case study which has previously been studied by several other researchers [11, 17, 35, 46].

7. Related Work

Within the related approaches, we identify three main fields: Understanding (and evolution of) class hierar-
chies, Query-based engines to understand object-oriented applications and Detection of design patterns.

7.1. Understanding (and evolution) of class hierarchies

Various existing approaches have explored techniques to support the understanding (and evolution of) class
hierarchies. We survey them according whether or not they use Formal Concept Analysis (or related struc-
tures) in their approaches.

29

Cook [17] proposes to reorganize the Smalltalk-80 collection class library based on the hierarchy of inter-
faces, which is independent of inheritance. With this approach, he can identify several problems such as
inherited methods that violate the subclass invariant; methods that have the same name but unrelated behav-
iors; methods that have the same (or related) behavior but different names. Once the problems are identified,
he can suggest improvements to the analyzed class hierarchy.

Black et al., [11] report on their experience refactoring the Smalltalk Collection classes using traits [64].
After manually identifying duplication of code and lack of uniformity in the protocols of the classes, they
could refactor the hierarchy with traits and reduce the number of methods by approximately 10 per cent. The
new hierarchy improves maintainability and reuse of the code base.

Based on the lack of adequate documentation and the absence of mechanisms to manage the propagation
of changes of evolving class hierarchies, Steyaert et al., [72] introduce the concept of reuse contracts. The
goal is to separate a particular kind of design information from the implementation. This is achieved by
recording the protocol (specialization interface) between classes and its subclasses. When classes change,
this (explicit) documentation allows one to identify which contracts are no longer valid and what part of (an-
alyzed) class hierarchy should no longer be trusted. Focusing also the class evolution, Casais [15] analyzes
class hierarchies and extracts design flaws when a (new) class may refine or override the properties inherited
from its ancestors. With an incorrect use of inheritance mechanisms, some defective structures can appear in
the class hierarchy. To avoid them, the redefinitions are analyzed and are adapted (if necessary) to improve
subclassing patterns using decomposition or refactoring. The approach has been validated in Eiffel systems.

The following four approaches use visualization techniques. Program Explorer [47] proposes to query
and visualize both dynamic and static information of classes via simple graphs to understand and verify
hypotheses about function invocations, object instantiation and attribute accesses. This approach is validated
in C++ applications. Using basic graph visualizations to represent various relationships and navigation
features, Mendelzon and Sametinger [53] show that they can express metrics, constraints verification, and
design schema identification in large scale software systems. Ducasse and Lanza [48] introduce the notion
of a Class Blueprint, a semantically enriched visualization of the internal structure of classes, which allows a
software engineer to develop a mental model of the classes, and offers support for reconstructing the logical
flow of method calls. Identifying visual patterns, the engineer can identify not only good hierarchy practices,
such as classes that add, extend, or override inherited behavior of superclasses, but also bad smells, such as
duplicated code between classes. With this approach, the engineer can perform the analysis and browse the
code to validate his hypotheses. Focusing on class hierarchy understanding, Denier et al., [21] propose a
similar approach. They provide a compact view of class hierarchies using a custom Sunburst layout. Then,
they map class properties to graphical attributes of a 3D visualization, and using metrics to characterize
similar children classes, they derive a set of visual patterns. These patterns can identify good and bad
practices introduced in the analyzed class hierarchy.

Considering the useful potential specialization/generalization of the lattices, several researchers have also
applied FCA to the problem of understanding (and reengineering) class hierarchies.

In reengineering class hierarchies, Godin et al., [33] categorize the existing work according to the structure
of the output hierarchy of the approaches. Snelting et al., [70][69] use a (concept) lattice as a final result of
their analysis. Godin et. al. [34] [35], Dicky et al., [22] [23], Huchard et al., [41] and Moore [57] use Galois
sub-hierarchy5 as a final results of their hierarchy. To this classification, we added the approach of Falleri et

5By analogy with normalization for database design, the concept lattice can be considered as a kind of normal form for the design
of class hierarchies. Some of the generalizations of the concept lattice are empty in that they do not possess their own attributes

30

al., [28], based on a derived structure named RCA.

Snelting et al., [70, 69] presented a methodology to find design problems in a class hierarchy by analyzing the
usage of the hierarchy by a set of C++ applications. They analyzed a class hierarchy making the relationship
between class members and variables explicit. They were able to detect design anomalies such as class
members that are redundant or that can be moved into a derived class or where a splitting of a class is
needed. As a result, they propose a new class hierarchy that is behaviorally equivalent to the original one.
The implementation of this approach for refactoring Java class hierarchies is proposed by Streckenback
et al., [73] using KABA. Additionally, the transformed hierarchy can then be subject to further manual
refactorings, while the semantics are guaranteed to be preserved. The new code contains the same statements
as the original code, except that the hierarchy has changed and for all variables a new type (i.e., class) has
been computed.

Godin et al., [34] [35] proposes an approach to build an initial class hierarchy from a set of class specifica-
tions, or reorganize an existing one or detect inconsistencies following class updates using concept lattices
and related structures. They show how Cook’s [17] earlier manual attempt to build a better interface hi-
erarchy for this class hierarchy (based on interface conformance) could be automated. Their approach has
added a set of metrics to measure redundancy, specialization and aggregation complexity and deviation from
specialization. Therefore, they could compare variants of concept lattices among themselves, and to other
manually or automatically-built class hierarchies. They have applied their approach to the Smalltalk Collec-
tion hierarchy, and also to a set of class specifications pertaining to telecommunication network management
functionalities.

The GURU approach developed by Moore [57] analyzes classes (eventually without inheritance links) in
Self and infers a hierarchy with no duplication of features (instance variables and methods). The new hier-
archy includes replacement classes defining or inheriting exactly the same sets of features as defined by the
original classes. Thus, the hierarchies are produced and based only on maximizing sharing and minimizing
duplication of features (mostly methods) of classes.

Preserving a “maximal factorizing” of class properties, Huchard et al., [41], Dicky et al., [23] and Leblanc
[50] focus on the automatic insertion of classes into inheritance hierarchies. They use two incremental
algorithms (ARES in first two cases and CERES in last case) to factor out features using overloading and
overriding. They guarantee an optimal refactoring of features of classes by using a Galois subhierarchy,
which also provides a partial order on attributes and methods (signatures). To measure the quality of the
generalization/specialization in the new class hierarchy, Roume [63] and Dao et al., [18] introduce a set
of metrics that measures refactoring at the level of classes and features. With this set of metrics, they can
quantify the improvements carried out by a reconstruction tool and highlight design defects connected with
feature refactoring, such as features that are obviously redundant or classes that are useless.

Using Relational Context Analysis (RCA), a derived structure from FCA, Falleri et al., [28] propose a
generic approach for normalizing class hierarchies that follows the work of Huchard et al., [41], Dicky et
al., [23] and Leblanc [50]. This approach can be applied to any class model that can be described by a meta-
model. Some previous work [6] showed that FCA was able to deal with only specialization/generalization
of classes. Falleri et al., [28] use RCA in this approach in order to deal with entities described by binary

or objects: all their attributes appear in at least one super-concept (inheritance) and dually, all their objects appear in a sub-concept
(extension inclusion). These concepts could be eliminated without loss of information thus leading to a structure called a Galois sub-
hierarchy. This structure is not necessarily a lattice but, when interpreting its nodes as classes, it is optimally factored, consistent with
specialization, while defining a minimal number of classes.

31

attributes and by relations with other entities. RCA will allow to support constructions, such as invariant or
covariant method redefinition and covariant attribute redefinition. This approach is validated in applications
based on Ecore and Java.

Within the context of traits [64], Lienhard et al., [51] propose a semiautomatic approach to identify traits
in an existing class hierarchy using FCA. Their tool proposes a refactoring of the class hierarchy with traits
that preserves the original behavior of each of the classes. Their approach is carried out in two main steps.
First, they analyze the protocol of classes to identify the potential traits, and then they analyze the invocation
relationships between methods to detect fine-grained traits. The case study shows that they obtain similar
results to those obtained manually by Black et al., [11].

7.2. Query-based engines to understand object-oriented applications

Using the notion of Micro Patterns in Java code, Gil et al., [31] extract the various kinds of features that
a Java class may have, and how they can be related. Then, the relationships are translated into a condition
on the code, and classes are inspected to match those conditions. Manual inspection of the code of these
classes leads to refinement, removal, merging or splitting of the definitions until an acceptable catalog of
micropatterns is built.

Using queries that define Inheritance or Composition Template Methods, Schauer et al., [65] focus on iden-
tifying hook and template methods, which capture the flexible parts of an application domain. With tool
support named SPOOL, they provide a visualization of the hotspots, so it helps the programmers to identify
key design abstractions as well as their implementation style, based on inheritance or composition.

Analyzing class hierarchies with criteria of code or interface reuse, Mihancea et al., [54, 55] introduce
the concept of comprehension pitfall as a design situation in which the polymorphic manipulation of a
design entity (e.g., method) can be easily misunderstood. The pitfalls are defined using metric-based rules to
support their automatic detection. They applied their approach to three medium-sized Java programs, using
an iterative approach where the manual analysis has helped to maximize the precision of detection rules, to
be able to detect meaningful pitfalls.

Focused on testing of object-oriented applications, Ducasse et al., [25] propose the logic representation of
program execution and the specification of tests as logic queries using SOUL (Smalltalk Open Unification
Language), a logic engine implemented in Smalltalk. Thus, complex sequences of message exchanges,
sequence matching, or expression of negative information are expressed in compact form. Although the
implementation is in Smalltalk, the approach itself is not specific for Smalltalk but can be applied to other
languages as well, such as Java.

Analyzing software evolution, Lanza et al., [49] propose a flexible query engine to perform queries on
different versions of a system. The queries make the inheritance operations explicit, such as introducing a
class on top of a large hierarchy, classes that have been merged, renamed or pushed up one hierarchy level,
or any entity which has been added to or removed from software at a certain point.

Ciupke [16] presents a technique for analyzing legacy code, specifying frequent design problems as queries
and locating the occurrences of these problems in a model derived from source code. He can check violations
of a number of well-known design rules in existing source code taken from several case studies, showing
that the task of problem detection in reengineering can be automated to a large degree, and that the technique
presented can be efficiently applied to real-world code.

In Krämer and Prechtel’s approach[44], the patterns are stored as Prolog rules. Their Pat tool takes the meta-
information directly from the C++ header files and queries them. Similarly, Wuyts [78] reasons about and

32

extracts a system’s structure using SOUL, and by developing a declarative framework aimed at reasoning
about Smalltalk code.

Focusing on understanding how a framework works, Lange et al., use an interactive visualization of design
patterns to understand the underlying the software architecture [47]. They represent both static and dynamic
information as logic facts to generate interactive design views.

7.3. Detection of Design Patterns

Design patterns are used as ways of communicating design information. Beck et al., [9] show that patterns
can be used to derive an architecture, and the resulting description makes it easier to understand the purpose
of the various architectural features.

Gueheneuc, Mens and Wuyts propose a framework to compare design recovery tools [38], to understand
their differences, to ease replication studies, and to discover what tools are lacking.

Shull et al., propose a method to manually identify workable domain-specific design patterns and create
customized catalogs of the identified patterns [68]. Brown [12] presents a tool to detect design patterns in
Smalltalk environments. He explains how to deal with the typeless language Smalltalk. Keller et al., [42]
present an environment for the reverse engineering of design components based on the structural descrip-
tions of design patterns. Their validation is made with SPOOL on three large-scale C++ software systems.
Bergenti and Poggi provide critiques about the design patterns identified in UML documents [10]. Philippow
et al., promote a design pattern-based approach to reconstruct the reference architecture of a product line
[62].

Seemann et al., [66] use a compiler to generate graphs from the source code. This graph acts as the initial
graph of a graph grammar that describes the design recovery process. The validation is made with respect to
well-known design patterns such as Composite and Strategy in the Java AWT package.

Niere et al., [58] provide a method and a corresponding tool which assist in design recovery and program
understanding by recognizing instances of design patterns semi-automatically. The algorithm works incre-
mentally and needs the domain and context knowledge given by a reverse engineer. An evaluation of the
approach is made with the Java AWT and JGL libraries.

Albin-Amiot et al., [1] show how to automate the instantiation and detection of design patterns. To cope
with these objectives, they define a Pattern Description Language to describe design patterns as first-class
entities. Thus they can manipulate and adapt design patterns models to generate source code.

One of the main problems in pattern identification is the size of the search space. To reduce it, Wendehals
[76] and Heuzeroth et al., [40] combine static and dynamic analysis, the first one reducing the search space
of the second one: the static analysis searches for sets of candidates that respect the static structure of the
design pattern, while the dynamic analysis monitors candidates and checks whether the observed interactions
satisfy the behavioral rules of the design patterns. Gueheneuc et al., used explanation-based constraint
programming to report problems when failing to identify design patterns [37]. Antoniol et al., propose
a multi stage reduction strategy: software metrics and structural properties computed on design patterns
become constraints that design pattern candidates must satisfy [3]. Guenehec [39] reduces the search space
using metrics to define design pattern fingerprints of the design pattern participants. A design pattern has
several design variants and can be implemented in different ways; Niere [59] overcomes both problems with
fuzzy logic, and Wendehals [76] rates instance candidates with fuzzy values to support inexact mismatch.

33

Differences with existing approaches. Our approach exhibits two main differences compared to existing
approaches: (1) input information and (2) discovery of new patterns (in our case called schemas).

Regarding the input information, most of the approaches (related to understanding class hierarchies) take
into account which selectors are implemented by which classes (interface). They do not consider behavioral
information (i.e., based on self and super sends) or usage of the state defined in the classes. As shown in this
paper, such information helps us to identify different behavioral and state dependency schemas. With these
schemas, we evaluate the reuse of methods and state defined in classes, and we discover different design
decisions used in building the class hierarchies. Black et al., [11], Steyaert [72] and Lienhard et al., [51]
have similarities to our approach because they use behavioral information of the class hierarchies. In the
case of Black et al., [11] and Steayaert [72], the information is extracted manually and does not depend on
the language. In Lienhard et al., [51], the behavioral information is focused specifically on classes where
potential traits can be extracted; it is not a global analysis as in our approach.

Regarding the discovery of new patterns, the main difference with the existing approaches related to query-
based methodologies and detection of design patterns is that in all the approaches the user must know in
advance which is the definition of the relationships or the software artifacts one is looking for in the target
system. For example, to detect design patterns, one needs to know how the design pattern is defined struc-
turally to express it as a query (e.g., as rules in Prolog). In our approach, we work with simple relationships
and properties of the source code, and we infer the definition of the schemas or patterns using FCA.

8. Conclusion and Future Work

In this paper, we show how the automatic generation of schemas using FCA helps us to discover different
implicit and undocumented dependencies in class hierarchies in terms of the behavior and state usage. The
categorization of these schemas into good, irregular and bad design decisions helps us to:

• Generate the first conceptual model of a hierarchy.

• Localize where different irregularities or problems occur in the implementation of a class hierarchy.

• Identify which are the main constraints that a specific class has in the context of a hierarchy. When a
developer wants to use or extend a class, he needs to understand which are the different dependencies
a class has regarding its subclasses and superclasses. These dependencies include if the class is over-
riding or reusing the behavior inherited from the superclasses or if the class has template methods and
hooks that its subclasses should implement.

As a summary, we conclude that specific object-oriented reengineering tasks (such as understanding how a
system is built) can be solved using techniques coming from graph theory (such as Formal Concept Analy-
sis), and this technique gives the possibility of discovering (un)expected contracts between the classes. This
FCA-based approach can be complemented with existing approaches (such as metrics) to enrich our analysis
and our results.

As future work we plan the following next steps:

• Application of the approach to other class hierarchies to check if the catalog of schemas identified so
far covers all the interesting possible cases or if we discover new cases of implicit contracts.

34

• Extended analysis comprising methods that are invoked and those that are not invoked but are declared
in the classes. This kind of approach can measure how much information defined in the class hierarchy
is used or not.

• Refinement of properties to obtain a bijective mapping from concepts to schemas, and thus, reduce the
complexity of the lattice in terms of number of concepts.

• Analysis of relationships given by the partial order between the different schemas — mapped from
the concepts in the lattice — to find a possible mapping in terms of software reengineering.

• Deep analysis of some initial experiments to other object-oriented languages, such as Java [14], where
we have other building mechanisms, such as interfaces, inner classes and anonymous classes, and
see how the approach can be adapted or modified to consider new properties. Surely, adding new
properties will generate new schemas in our catalog.

Acknowledgements. We thank Simon Denier, Andres Fortier, Alejandra Garrido, Jannik Laval and Lukas
Renggli for useful comments that helped us to improve this paper. The last author gratefully acknowledges
the financial support of the Swiss National Science Foundation for the project “Bringing Models Closer to
Code” (SNF Project No. 200020-121594, Oct. 2008 - Sept. 2010).

References

[1] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and N. Jussien. Instantiating and detecting design pat-
terns: Putting bits and pieces together. In D. Richardson, M. Feather, and M. Goedicke, editors,
Proceedings of ASE ’01 (16th Conference on Automated Software Engineering), pages 166–173. IEEE
Computer Society Press, Nov. 2001.

[2] S. R. Alpert, K. Brown, and B. Woolf. The Design Patterns Smalltalk Companion. Addison Wesley,
1998.

[3] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-oriented software. In
6th International Workshop on Program Comprehension (Ischia, Italy), pages 153–160, 1998.

[4] G. Arévalo. Understanding behavioral dependencies in class hierarchies using concept analysis. In
Proceedings of Langages et Modeles à Objets (LMO’03), pages 47–59. Hermes, Paris, Jan. 2003.

[5] G. Arévalo. High Level Views in Object-Oriented Systems using Formal Concept Analysis. PhD thesis,
University of Bern, Bern, Jan. 2005.

[6] G. Arévalo, J.-R. Falleri, M. Huchard, and C. Nebut. Building abstractions in class models: Formal
concept analysis in a model-driven approach. In O. N. J. W. D. H. G. Reggio, editor, MoDELS 2006,
volume 4199 of LNCS (Lecture Notes in Computer Science), pages 513–527. Springer Verlag, Oct.
2006.

[7] K. Auer. Reusability through self-encapsulation. In Pattern languages of program design, pages 505–
516. ACM Press/Addison-Wesley Publishing Co., 1995.

[8] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

35

[9] K. Beck and R. Johnson. Patterns generate architectures. In M. Tokoro and R. Pareschi, editors,
Proceedings ECOOP ’94, volume 821 of LNCS, pages 139–149, Bologna, Italy, July 1994. Springer-
Verlag.

[10] F. Bergenti and A. Poggi. Improving UML designs using automatic design pattern detection. In 12th
International Conference on Software Engineering and Knowledge Engineering (SEKE), pages 336–
343, 2000.

[11] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk collection hierarchy. In
Proceedings of 17th International Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’03), volume 38, pages 47–64, Oct. 2003.

[12] K. Brown. Design reverse-engineering and automated design pattern detection in Smalltalk. Master’s
thesis, North Carolina State University, 1996.

[13] T. A. Budd. An Introduction to Object-Oriented Programming. Addison Wesley, 1991.

[14] P. F. Busch and M. Pasqualino. Coding patterns in class hierarchies in object-oriented applications (in
spanish). Master’s thesis, Universidad Austral, Buenos Aires, Argentina, 2008.

[15] E. Casais. Managing class evolution in object-oriented systems. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition, pages 201–244. Prentice-Hall, 1995.

[16] O. Ciupke. Automatic detection of design problems in object-oriented reengineering. In Proceedings
of TOOLS 30 (USA), pages 18–32, 1999.

[17] W. R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. In Proceedings
of OOPSLA ’92 (7th Conference on Object-Oriented Programming Systems, Languages and Applica-
tions), volume 27, pages 1–15. ACM Press, Oct. 1992.

[18] M. Dao, M. Huchard, T. Libourel, C. Roume, and H. Leblanc. A New Approach to Factorization:
Introducing Metrics. In Proceedings of METRICS ’02 (8th IEEE International Symposium on Software
Metrics, pages 227–236. IEEE Computer Society, 2002.

[19] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns. Morgan Kauf-
mann, 2002.

[20] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The FAMOOS Information Exchange Model.
Technical report, University of Bern, 2001.

[21] S. Denier and H. A. Sahraoui. Understanding the use of inheritance with visual patterns. In roceedings
of the Third International Symposium on Empirical Software Engineering and Measurement, ESEM
2009, USA, pages 79–88, oct 2009.

[22] H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, Adding a class and REStructuring Inhertitance
Hierarchy. In BDA: 11èmes Journées Bases de Données Avancées, pages 25–42, 1995.

[23] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On Automatic Class Insertion with Overloading.
In Proceedings of OOPSLA ’96 (11th ACM SIGPLAN conference on Object-oriented Programming,
Systems, Languages, and Applications), pages 251–267. ACM Press, 1996.

36

[24] S. Ducasse, T. Gı̂rba, A. Kuhn, and L. Renggli. Meta-environment and executable meta-language using
Smalltalk: an experience report. Journal of Software and Systems Modeling (SOSYM), 8(1):5–19, Feb.
2009.

[25] S. Ducasse, T. Gı̂rba, and R. Wuyts. Object-oriented legacy system trace-based logic testing. In
Proceedings of 10th European Conference on Software Maintenance and Reengineering (CSMR’06),
pages 35–44. IEEE Computer Society Press, 2006.

[26] S. Ducasse and M. Lanza. The Class Blueprint: Visually supporting the understanding of classes.
Transactions on Software Engineering (TSE), 31(1):75–90, Jan. 2005.

[27] A. Dunsmore, M. Roper, and M. Wood. Object-oriented inspection in the face of delocalisation. In
Proceedings of ICSE ’00 (22nd International Conference on Software Engineering), pages 467–476.
ACM Press, 2000.

[28] J.-R. Falleri, M. Huchard, and C. Nebut. A generic approach for class model normalization. In 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2008), Italy, pages
431–434. IEEE, sep 2008.

[29] M. Fowler. UML Distilled. Addison Wesley, 2003.

[30] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer Verlag, 1999.

[31] J. Gil and I. Maman. Micro patterns in java code. SIGPLAN Not., 40(10):97–116, 2005.

[32] T. Gı̂rba and S. Ducasse. Modeling history to analyze software evolution. Journal of Software Main-
tenance: Research and Practice (JSME), 18:207–236, 2006.

[33] R. Godin, M. Huchard, C. Roume, and P. Valtchev. Inheritance and Automation: Where Are We
Now? In A. Black, E. Ernst, P. Grogono, and M. Sakkinen, editors, ECOOP 2002: Proceedings of the
Inheritance Workshop, pages 58–64. University of Jyväskylä, June 2002.

[34] R. Godin and H. Mili. Building and Maintaining Analysis-Level Class Hierarchies using Galois Lat-
tices. In Proceedings OOPSLA ’93 (8th Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications), volume 28, pages 394–410, Oct. 1993.

[35] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T.-T. Chau. Design of Class Hierarchies
based on Concept (Galois) Lattices. Theory and Application of Object Systems, 4(2):117–134, 1998.

[36] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing software evolution through feature views. Journal of
Software Maintenance and Evolution: Research and Practice (JSME), 18(6):425–456, 2006.

[37] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and constraints to automate the detection
and correction of inter-class design defects. In Q. Li, R. Riehle, G. Pour, and B. Meyer, editors,
proceedings of the 39th conference on the Technology of Object-Oriented Languages and Systems,
pages 296–305. IEEE Computer Society Press, July 2001.

[38] Y.-G. Guéhéneuc, K. Mens, and R. Wuyts. A comparative framework for design recovery tools. In
Conference on Software Maintenance and Reengineering (CSMR 2006), Los Alamitos CA, 2006. IEEE
Computer Society Press.

37

[39] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi. Fingerprinting design patterns. In Working Conference on
Reverse Engineering (WCRE’04), pages 172–181, Los Alamitos CA, 2004. IEEE Computer Society
Press.

[40] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe. Automatic design pattern detection. In Interna-
tional Workshop on Program Comprehension, pages 94–104, 2003.

[41] M. Huchard, H. Dicky, and H. Leblanc. Galois Lattice as a Framework to specify Algorithms Building
Class Hierarchies. Theoretical Informatics and Applications, 34:521–548, 2000.

[42] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé. Pattern-Based Reverse Engineering of Design
Components. In Proceedings of ICSE ’99 (21st International Conference on Software Engineering),
pages 226–235. IEEE Computer Society Press / ACM Press, May 1999.

[43] E. J. Klimas, S. Skublics, and D. A. Thomas. Smalltalk with Style. Prentice-Hall, 1996.

[44] C. Kramer and L. Prechelt. Design Recovery by Automated Search for Structural Design Patterns in
Object-Oriented Software. In Proceedings of WCRE ’96 (3rd Working Conference on Reverse Engi-
neering), pages 208–216. IEEE Computer Society Press, Nov. 1996.

[45] S. Kuznetsov and S. Obëdkov. Comparing Performance of Algorithms for Generating Concept Lattices.
In Proceedings of International Workshop on Concept Lattice-based Theory, Methods and Tools for
Knowledge Discovery in Databases, 2001.

[46] W. LaLonde and J. Pugh. Subclassing 6= Subtyping 6= Is-a. Journal of Object-Oriented Programming,
3(5):57–62, Jan. 1991.

[47] D. Lange and Y. Nakamura. Interactive visualization of design patterns can help in framework under-
standing. In Proceedings ACM International Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’95), pages 342–357, New York NY, 1995. ACM Press.

[48] M. Lanza and S. Ducasse. A Categorization of Classes based on the Visualization of their Internal
Structure: the Class Blueprint. In Proceedings of 16th International Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA ’01), pages 300–311. ACM Press,
2001.

[49] M. Lanza, S. Ducasse, and L. Steiger. Understanding software evolution using a flexible query engine.
In Proceedings of the Workshop on Formal Foundations of Software Evolution, 2001.

[50] H. Leblanc. Sous-hiérarchies de Galois: un Modèle pour la Construction et L’évolution des
Hiérarchies d’objets (Galois Sub-hierarchies: a Model for Construction and Evolution of Object Hi-
erarchies). PhD thesis, Université Montpellier 2, 2000.

[51] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept analysis. In Proceed-
ings of 20th Conference on Automated Software Engineering (ASE’05), pages 66–75. IEEE Computer
Society, Nov. 2005.

[52] B. Liskov and J. M. Wing. A new definition of the subtype relation. In O. Nierstrasz, editor, Pro-
ceedings ECOOP ’93, volume 707 of LNCS, pages 118–141, Kaiserslautern, Germany, July 1993.
Springer-Verlag.

38

[53] A. Mendelzon and J. Sametinger. Reverse engineering by visualizing and querying. Software —
Concepts and Tools, 16:170–182, 1995.

[54] P. F. Mihancea. Towards a client driven characterization of class hierarchies. In Proceedings of In-
ternational Conference on Program Comprehension (ICPC 2006), pages 285–294, Los Alamitos CA,
2006. IEEE Computer Society Press.

[55] P. F. Mihancea and R. Marinescu. Discovering comprehension pitfalls in class hierarchies. In CSMR
’09: Proceedings of the 2009 European Conference on Software Maintenance and Reengineering,
pages 7–16, Washington, DC, USA, 2009. IEEE Computer Society.

[56] L. Mikhajlov and E. Sekerinski. A Study of the Fragile Base Class Problem. In Proceedings of
ECOOP’98 (European Conference on Object-Oriented Programming), number 1445 in Lecture Notes
in Computer Science, pages 355–383. Springer-Verlag, 1998.

[57] I. Moore. Automatic Inheritance Hierarchy Restructuring and Method Refactoring. In Proceedings
of OOPSLA ’96 (11th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications), pages 235–250. ACM Press, 1996.

[58] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh. Towards pattern-based design re-
covery. In Proceedings of ICSE ’02 (24th International Conference on Software Engineering), pages
338–348. ACM Press, 2002.

[59] J. Niere, J. P. Wadsack, and L. Wendehals. Design pattern recovery based on source code analysis with
fuzzy logic. tr-ri-01-222, Software Engineering Group, Department of Mathematics and Computer
Science, University of Paderborn, Paderborn, Germany, 2001.

[60] O. Nierstrasz and S. Ducasse. Moose–a language-independent reengineering environment. European
Research Consortium for Informatics and Mathematics (ERCIM) News, 58:24–25, July 2004.

[61] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose: an agile reengineering environment.
In Proceedings of the European Software Engineering Conference (ESEC/FSE’05), pages 1–10, New
York NY, 2005. ACM Press. Invited paper.

[62] I. Philippow, D. Streitferdt, and M. Riebisch. Design pattern recovery in architectures for supporting
product line development and application. In ECOOP workshop–Modeling Variability for Object-
Oriented Product Lines, pages 42–57. BoD GmbH, 2003.

[63] C. Roume. Évaluation Structurelle de la Factorisation et la Généralisation au sein des Hiérarchies de
Classes: Introduction de Métriques. L’Objet, 8(1-2):151–166, 2002.

[64] N. Schärli. Traits — Composing Classes from Behavioral Building Blocks. PhD thesis, University of
Bern, Feb. 2005.

[65] R. Schauer, S. Robitaille, F. Martel, and R. Keller. Hot-Spot Recovery in Object-Oriented Software
with Inheritance and Composition Template Methods. In Proceedings of ICSM ’99 (International
Conference on Software Maintenance). IEEE Computer Society Press, 1999.

[66] J. Seemann and J. W. von Gudenberg. Pattern-Based Design Recovery of JAVA Software. In Pro-
ceedings of the 6th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 10–16. ACM Press, 1998.

39

[67] A. Sharp. Smalltalk by Example. McGraw-Hill, 1997.

[68] F. Shull, W. L. Melo, and V. R. Basili. An inductive method for discovering design patterns from
object-oriented software systems. Technical Report CS-TR-3597, University of Maryland Computer
Science Department, 1996.

[69] G. Snelting. Concept Analysis — a New Framework for Program Understanding. In SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE), pages
1–10, Montreal, Canada, June 1998. ACM Press.

[70] G. Snelting and F. Tip. Reengineering Class Hierarchies using Concept Analysis. In ACM Trans.
Programming Languages and Systems, 1998.

[71] A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In Proceedings
OOPSLA ’86, ACM SIGPLAN Notices, volume 21, pages 38–45, Nov. 1986.

[72] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing the evolution of reusable
assets. In Proceedings of OOPSLA ’96 (International Conference on Object-Oriented Programming,
Systems, Languages, and Applications), pages 268–285. ACM Press, 1996.

[73] M. Streckenbach and G. Snelting. Refactoring class hierarchies with KABA. In OOPSLA ’04: Pro-
ceedings of the 19th annual ACM SIGPLAN Conference on Object-oriented programming, systems,
languages, and applications, pages 315–330, New York, NY, USA, 2004. ACM Press.

[74] D. Taenzer, M. Ganti, and S. Podar. Problems in object-oriented software reuse. In S. Cook, editor,
Proceedings ECOOP ’89, pages 25–38, Nottingham, July 1989. Cambridge University Press.

[75] A. Taivalsaari. On the notion of inheritance. ACM Computing Surveys, 28(3):438–479, Sept. 1996.

[76] L. Wendehals. Improving design pattern instance recognition by dynamic analysis. In Proc. of the
ICSE 2003 Workshop on Dynamic Analysis (WODA), May 2003.

[77] N. Wilde and R. Huitt. Maintenance support for object-oriented programs. IEEE Transactions on
Software Engineering, SE-18(12):1038–1044, Dec. 1992.

[78] R. Wuyts. Declarative reasoning about the structure object-oriented systems. In Proceedings of the
TOOLS USA ’98 Conference, pages 112–124. IEEE Computer Society Press, 1998.

40

	Introduction
	Formal Concept Analysis (FCA) in a Nutshell
	FoCARE: Architecture of the Implementation
	Analyzing Class Hierarchies
	FCA Mapping: Elements and Properties of Classes
	Incidence Table and Lattice Construction
	Identifying Meaningful Concepts
	Hierarchy Schemas

	Detected Hierarchy Schemas in the Collection Hierarchy
	Global View on Collection Hierarchy
	``Class-Based'' View on SortedCollection

	Discussion and threats to validity
	Discussion
	Threats to Internal Validity
	Threats to External validity

	Related Work
	Understanding (and evolution) of class hierarchies
	Query-based engines to understand object-oriented applications
	Detection of Design Patterns

	Conclusion and Future Work

