
Discovering Unanticipated Dependency Schemas in Class Hierarchies ∗
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Abstract

Object-oriented applications are difficult to extend and
maintain, due to the presence of implicit dependencies in
the inheritance hierarchy. Although these dependencies of-
ten correspond to well-known schemas, such as hook and
template methods, new unanticipated dependency schemas
occur in practice, and can consequently be hard to recog-
nize and detect. To tackle this problem, we have applied
Concept Analysis to automatically detect recurring depen-
dency schemas in class hierarchies used in object-oriented
applications. In this paper we describe our mapping of OO
dependencies to the formal framework of Concept Analy-
sis, we apply our approach to a non-trivial case study, and
we report on the kinds of dependencies that are uncovered
with this technique. As a result, we show how the discov-
ered dependency schemas correspond not only to good de-
sign practices, but also to “bad smells” in design.

Keywords: Concept Analysis, Class Hierarchies,
Schemas.

1. Introduction

Inheritance is the cornerstone of object-oriented devel-
opment, enabling conceptual modeling, subtype polymor-
phism and software reuse. But inheritance can be used in
subtle ways that make complex systems hard to understand
and extend [16]. In particular, a developer making changes
or extensions to an object-oriented system must understand
the implicit contracts and dependencies between a class and
its subclasses, or risk that seemingly innocuous changes
break these contracts [13][12].

Many dependencies in well-designed object-oriented
systems are not ad hoc, but rather correspond to well-known
idioms, coding conventions and design patterns. Other de-
pendencies may be signs of weak programming prac-
tices. In either case, implicit, undocumented dependencies
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lead to fragile class hierarchies that are difficult to ex-
tend or modify correctly.

Although an experienced software developer may know
what to look for, it can be very tedious and time-consuming
to search for undocumented dependencies in a large and
complex software base. Automated tools can help to search
for certain expected types of dependencies, but unfortu-
nately the set of possibilities is open-ended.

Formal Concept Analysis (FCA) is a technique to iden-
tify recurring concepts amongst a set of elements with cer-
tain properties. A “concept” is a set of properties exhibited
by a given number of elements. These concepts are then
related to one another in the form of a lattice. We apply
FCA to the problem of uncovering implicit dependencies in
class hierarchies used in object-oriented software systems.
To apply this technique, we map method invocations and
attribute (i.e., instance variable) accesses to FCA elements,
and consider different predicates over invocations and ac-
cess as FCA properties. The concepts that are identified cor-
respond to a set of invocations and accesses whose proper-
ties characterize what we call dependency schemas — re-
curring sets of dependencies over methods and attributes in
a class hierarchy.

The identified dependency schemas help us to answer
such questions as:

• Which classes define and use (or not) their own state
and behavior?

• Which classes use the state defined in their super-
classes?

• Which classes use template and hook methods and de-
fine behavior for their subclasses?

• Which classes reuse or extend (or not) the behavior of
their superclasses?

• Which classes cancel the behavior of their super-
classes?

Uncovered identified dependency schemas may corre-
spond either to well-known best practice in object-oriented
design, or they may be signs of degenerated design. Once
dependency schemas are classified, they can be a good basis
for identifying which parts of a system are in need of repair.
The approach thus provides us not only with a global view



of the system and which kinds of dependencies and prac-
tices occur, but it also provides detailed information about
how specific classes are related to others in their hierarchy,
and how that hierarchy can be modified and extended.

The paper is structured as follows: Section 2 presents an
overview of the architecture of our approach. In Section 3
we provide a summary about the main definitions of FCA.
In Section 4 we present our mapping of object-oriented de-
pendencies to the framework of FCA. In Section 5 we pro-
vide an overview of the results obtained by applying our ap-
proach to the Smalltalk Collection hierarchy and by show-
ing how SortedCollection fits into this hierarchy. Section 6
provides a brief discussion of various technical issues. Sec-
tion 7 presents some related work. Finally, in Section 8 we
conclude with some remarks on future work.

2. Overview of the Approach

Our approach is based on a pipeline architecture in which
the analysis is carried out by a sequence of processing steps
(Figure 1). The output of each step provides the input to the
next stage. We have implemented the approach as an exten-
sion of MOOSE reengineering environment [6]. In this sec-
tion we give a brief overview of each step.
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Figure 1. The overall approach

Model Import. The first step is to build a model of
the application from the source code. For this pur-

pose we use the MOOSE reengineering platform
[6], a research vehicle for reverse and reengineer-
ing object-oriented software. Software models in
MOOSE conform to the FAMIX metamodel [14], a
language-independent metamodel for reengineer-
ing.

FCA Mapping. In the second step, we map the model en-
tities to elements and properties, and build a incidence
table, which shows which elements fullfil each prop-
erty, so that we can apply FCA. This mapping is de-
scribed in detail in Section 4.

ConAn Engine. ConAn is our implementation of an FCA
engine. Once the elements and properties are defined,
we run ConAn to build the concepts and the lattice.
ConAn applies the Ganter algorithm [7] to build the
concepts and our own algorithm to build the lattice [2].

Post-Filtering. After the concepts and the lattice are built,
each concept consists of a group of invocations and
accesses with commonalities representing a candidate
for a dependency schema. But not all the concepts are
relevant. Thus we have a post-filtering process, which
is the last step. Thus, we filter out meaningless or un-
interesting concepts.

Analysis We analyze candidate concepts representing the
detected dependency schemas –resulting from the pre-
vious steps – and we use them to explore how the hier-
archy has been built based on these schemas.

This approach is not specific to this case study. It was ap-
plied to case studies similar to detect unanticipated depen-
dencies between different software entities in an application
[4][3].

3. Formal Concept Analysis in a Nutshell

Formal concept analysis (FCA) [7] is a branch of lattice
theory that allows us to identify meaningful groupings of
“elements” that have common “properties” (referred to, re-
spectively, as objects and attributes in the standard FCA lit-
erature1).

To illustrate FCA, let us consider a toy example about
musical preferences. The elements are a group of people
Frank, Anne, Arthur, John, Thomas, and Michael; and the
properties are Rock, Pop, Jazz, Folk, and Tango2. Table 1
shows which people prefer which kind of music, and is
called the incidence table

A context is a triple C = (E,P, R), where E and P are
finite sets of elements and properties, respectively, and R is

1 We use the terms element and property instead to avoid the unfortu-
nate clash with object-oriented terminology.

2 The full property names are prefers Pop or prefers Folk. We abbreviate
these names for the sake of conciseness.



prefers Rock Pop Jazz Folk Tango
Frank True True True
Anne True True True
Arthur True True

Catherine True
Thomas True
Michael True True

Table 1. Incidence Table of the Music Exam-
ple

a binary relation between E and P represented in the in-
cidence table. In the musical preferences example, the ele-
ments are the people, the properties are the different kinds
of music they prefer, and the binary relation prefers is de-
fined by Table 1. For example, the tuple (Frank, Folk) is in
R, but (Anne, Jazz) is not.

Let X ⊆ E, Y ⊆ P , and σ(X) = {p ∈ P |∀e ∈
X : (e, p) ∈ R} and τ(Y ) = {e ∈ E|∀p ∈ Y :
(e, p) ∈ R}, then σ(X) gives us all the common prop-
erties of the elements contained in X, and τ(Y ) gives us
the common elements of the properties contained in Y , e.g.,
σ({Arthur, Catherine}) = {Jazz}.

A concept is a pair of sets — a set of elements (the ex-
tent) and a set of properties (the intent) (X, Y ) — such
that Y = σ(X) and X = τ(Y ). In other words, a con-
cept is a maximal collection of elements sharing common
properties. In Table 1, a concept is a maximal rectan-
gle we can obtain with relations between people and mu-
sical preferences. For example, ({Frank, Anne}, {Rock,
Pop}) is a concept, whereas ({Catherine}, {Jazz}) is
not, since σ({Catherine}) = {Jazz}, but τ({Jazz}) =
{Arthur, Catherine, Thomas, Michael}. The extent and in-
tent of each concept is shown in Table 2.

top ({ all elements },∅)
c7 ({Arthur, Catherine, Thomas, Michael},{Jazz})
c6 ({Frank, Arthur, Michael},{Folk})
c5 ({Frank, Anne},{Rock, Pop})
c4 ({Arthur, Michael},{Jazz, Folk})
c3 ({Frank},{Rock, Pop, Folk})
c2 ({Anne},{Rock, Pop, Tango})

bottom (∅,{ all properties })

Table 2. The set of concepts of the Music ex-
ample

The set of all the concepts of a given context forms

a complete partial order. Thus we define that a concept
(X0, Y0) is a subconcept of concept (X1, Y1), denoted
by (X0, Y0) ≤ (X1, Y1), if X0 ⊆ X1 (or, equivalently,
Y1 ⊆ Y0). Inversely we define that the concept (X1, Y1) is
a superconcept of concept (X0, Y0). For example, the con-
cept ({Anne}, {Rock, Pop, Tango}) is a subconcept of
the concept ({Frank,Anne}, {Rock, Pop}). Thus the set
of concepts constitutes a concept lattice L(T ) and there are
several algorithms for computing the concepts and the con-
cept lattice for a given context. For more details, the inter-
ested reader should consult Ganter and Wille [7].

4. FCA Mapping: Setup of Formal Context

To apply FCA to detect dependency schemas, we must
cast models of OO software systems in terms of an FCA
context, that is, we must define the elements and proper-
ties of interest. We first describe this context, and then show
how recurring combinations of properties appearing in the
concepts lead to the meaningful dependency schemas.

4.1. Elements and Properties of Classes

We choose as elements the invocations of methods via a
self or a super send and accesses to the attributes of a class.
We choose as properties of invocations whether the call is a
self or a super send and the relationships between the class
that defines and the one that invokes the methods. For ac-
cesses, we are interested in the relationship between the
class that defines the attribute and the one that accesses it.

To this end, we define the following predicates with the
obvious meanings, where m is a method, a an attribute, i is
an invoked method or accessed attribute, and C, C1, C2 are
classes:

• i is an invoked method in C 3

• i is an accessed attribute in C 4

• C invokes m via self
• C invokes m via super
• C defines m
• C defines a
• C1 is ancestor of C
• C1 is descendant of C
• m is abstract in C
• m is concrete in C
• m is cancelled in C 5

3 i is an invoked method in C means that there is a method in C that
calls method i

4 i is an accessed attribute in C means that there is a method in C that
accesses attribute i

5 A method m in class C is cancelled in Smalltalk when it calls the se-
lector shouldNotImplement to indicate that the class C wants to
undefine the method m defined in a superclass.



i is an accessed
attribute in C

C defines i

C1 defines i

C1 is ancestor of C

C1 is descendant of C

Figure 2. Possible combination of properties
applied to accessed attributes.

i is an invoked
method in C

C defines i

C1 defines i

C1 is ancestor of C

C1 is descendant of C

i is concrete in C (C1)
i is abstract in C (C1)

i is cancelled in C (C1)

Figure 3. Possible combination of properties
applied to invoked methods.

Firstly, we directly adopt the predicates C invokes m via
self and C invokes m via super as properties, then we com-
bine the rest of predicates to obtain the final list of prop-
erties. Not all the combinations are valid. Figures 2 and 3
show all the valid combinations to get the properties (‘→’
and ’[ ]’ represent the logical symbols and and or respec-
tively). The obtained properties are6:

• {i accesses } x {local state, state in Ancestor C1 of C
, state in Descendant C1 of C } (3 properties)

• {i is abstract, i is concrete, i is cancelled } x {locally,
in ancestor C1 of C , in descendant C1 of C } (3 ×
3 = 9 properties)

For example, if we take the first three properties we build
them in the following way:

• i accesses local state = i is an accessed attribute in C
and C defines i

• i accesses state in Ancestor C1 of C = i is an accessed
attribute in C and C1 is ancestor of C and C1 defines
i

• i accesses state in Descendant C1 of C = i is an ac-
cessed attribute in C and C1 is descendant of C and
C1 defines i

The rest of the properties are built in a similar way.

4.2. Interpretation of the Properties in Concepts

By applying FCA to this context, we obtain a set of con-
cepts and certain of them correspond to interesting depen-
dency schemas. In our analysis, the conjunction of prop-
erties of the intents of the concepts determines if we have

6 The notation used is the same as cartesian product, meaning that
{a,b}x{c,d} = {(ac),(ad),(bc),(bd)}

found a potential meaningful dependency schema. Let us
briefly consider two examples reported in Section 5: Reuse
of Superclass Behavior and Broken super send Chain . Just
to clarify how the concepts are interpreted we list in both
cases the set of elements and properties contained in each
concept. But to avoid figures with confusing information,
they illustrate some elements (as an example of all elements
contained in the concepts) participating in the schema.

The example of schema Reuse of Superclass Behavior
(shown in Figure 5) is interpreted with the following ele-
ments and properties:

• C invokes i via self : {copyEmpty, insert:before:, re-
verseDo:, asArray, isEmpty, notFoundError} are self-
called in SortedCollection

• i is concrete in ancestor C1 of C : {copyEmpty, in-
sert:before:, isEmpty} has concrete behavior in ances-
tor OrderedCollection; and {reverseDo:, asArray} has
concrete behavior in ancestor SequenceableCollection;
and {notFoundError} has concrete behavior in ances-
tor Collection. OrderedCollection, SequenceableCol-
lection and Collection are ancestor classes of Sorted-
Collection.

Another possible example is the schema Broken super
send Chain (shown in the Figure 7) and it is composed of
the following elements and properties:

• C invokes i via super: {representBinaryOn:, =} are
super-called in SortedCollection

• i is concrete locally: {representBinaryOn:, =} has con-
crete behavior in SortedCollection.

• i is concrete in ancestor C1 of C : {represent-
BinaryOn:, =} has concrete behavior in ancestor Se-
quenceableCollection of SortedCollection.

• i is concrete in descendant C1 of C : {represent-
BinaryOn:, =} has concrete behavior in descendant
SortedCollectionWithPolicy of SortedCollection.

5. Case Study Results

We present here the results of our analysis of the
Smalltalk Collection hierarchy. This hierarchy is espe-
cially interesting because (i) it is an essential part of the
Smalltalk system, and (ii) it makes heavy use of sub-
classing for a variety of purposes. It is an industrial qual-
ity class hierarchy that has evolved over 15 years, and
has been studied by other researchers [8]. It has also in-
fluenced the design of current C++ and Java collection
hierarchies. The Smalltalk Collection hierarchy is com-
posed of 104 classes distributed over 8 levels of inheri-
tance. There are 2162 defined methods in all the classes,
with 3117 invocations of these methods within the hierar-
chy and 1146 accesses to the state of the classes defined in
the hierarchy.



Name Description Nr.
Classical

Local Direct State Access Identifies methods that directly access the class state. Variations: using or not
the accessors.

72

Local Behavior Identifies methods defined and used in the class and that are not overridden in
the subclasses. Often represent internal class behavior.

69

Template And Hook Identifies methods that define template and hook methods. Variations: default
hooks are abstract or represent a default behavior.

17

Redefined Concrete Behavior Identifies concrete inherited methods that are redefined in the class or in the sub-
classes.

43

Extended Concrete Behavior Identifies concrete inherited methods that are extended in the class (only super
send).

37

Reuse of Superclass Behavior Identifies concrete methods that invoke superclass methods by self or super
sends. Variation: method that invokes super method of the same name.

111

Local Behavior overridden in
Subclasses

Identifies methods that are overridden in subclasses 29

Abstract and Concrete Chain Identifies an abstract method, and a chain of subclasses that override it with a
concrete implementation.

10

Bad Smells
Ancestor Direct State Access Identifies methods that directly access the state of an ancestor, bypassing any

accessors.
19

Cancelled Local Behavior but
Superclass Reuse

Identifies concrete inherited methods whose behavior is cancelled in the class
but whose corresponding superclass behavior is invoked i.e., via a super send
from a different method. This workaround is a common sign of difficulty im-
properly factoring out common behaviour.

1

Abstracting Concrete Methods Identifies abstract methods overriding concrete ones. 8
Cancelled Local or Inherited
Behavior

Identifies concrete or local inherited methods that are invoked i.e., via self send
in a class or its superclasses, but are cancelled in subclasses. Method cancella-
tion is a sign of inheritance for code reuse without regard for subtyping.

6

Broken super send Chain Identifies methods that are extended (i.e., via a super send) at some point in the
hierarchy, but are then simply overridden lower in the hierarchy. This can be the
sign of a broken subclassing contract.

7

Irregularities
Inherited and Local Invocations Identifies methods that are invoked by both self and super sends within the same

class. This may be a problem if the super sends are invoked from a method with
a different name.

15

Unused Local Behavior but Su-
perclass Reuse

Identifies concrete inherited methods whose behavior is overridden but unused
in the class, and whose corresponding superclass behavior is invoked i.e., via a
super send from a different method.

3

Accessor Redefinition Identifies methods that are accessors in a class but are redefined in the subclass
as non-accessor methods.

4

Table 3. Commonly Identified Schemas.

We first show our own categorization of detected
schemas, then provide a global overview of the schemas
discovered, and then we focus on the role of the class Sort-
edCollection within the collection.

5.1. Detected Dependency Schemas

By applying FCA to the Collection hierarchy, we dis-
covered 451 instances of 16 different dependency schemas.
We were then able to manually categorize these into three
groups: Classical, “Bad Smell” and Irregularities.

• Classical schemas represent common idioms/styles
that are used to build and extend a class hierar-
chy, i.e., best practices.

• “Bad Smell” schemas represent doubtful designs deci-
sions used to build the hierarchy. They are frequently a
sign that some parts should be completely changed or
even rewritten from scratch.

• Irregularities schemas represent irregular situations
used to build the hierarchy. Often the implementation
can be improved using minimal changes. They are less
serious than “Bad Smell” schemas.



Table 3 provides an overview of the three groups, to-
gether with the total number of detected instances of each
schema. Due to space limitations, we do not describe each
schema in detail. We only discuss a few examples of each
category. In each case, we show which are the set of prop-
erties that allows us to infer the schema.

5.2. Global View on Collection Hierarchy

As we said in the Section 1, the dependency schemas
provides us with a basis to understand a class hierarchy
identifying where the recurring kinds of dependencies re-
lating classes. In this section, we introduce some of the
schemas used in a global analysis of a class hierarchy.

Classical: Local Direct State Access.

Description: This schema identifies classes that define and
use their own state directly (using or not the accessors).
In Collection hierarchy, there are 55 classes contained
in this schema. Most of the classes are leaves in the
class hierarchy represented as a tree, and it shows that
this hierarchy is built based on the subclassing princi-
ple, because each class is extending behavior inherited
from the superclasses and providing specific function-
ality. Only in the subhierarchies starting from String
and WeakDictionary have no leaves classes that full-
fil this form, meaning that eventually these classes ei-
ther use state of the superclasses or only extend the be-
havior of the superclasses without extending the state
of the superclasses.

FCA Properties: {i accesses local state }.

“Bad Smell”: Ancestor Direct State Access.

Description: This schema identifies classes that ac-
cess (read or modify the values of) the state of
an ancestor class without using the accessors de-
fined in the ancestor classes. This is a not good
coding practice since it introduces an unnecessary de-
pendency on the internal representation of ancestor
classes, and thereby violates encapsulation. We iden-
tified 19 classes that are part of the subhierarchies
determined by GeneralNameSpace, Dictionary, Or-
deredCollection, LinkedList. In most of the cases,
the classes are accessing state of the immediate su-
perclass, but in the subhierarchy of OrderedCollec-
tion we detected several classes that access state
of ancestors higher up in the chain of their super-
classes.

FCA properties: {i accesses state in Ancestor C1 of C }

“Bad Smell”: Cancelled Local or Inherited Behavior.

Description: This schema identifies concrete or local in-
herited methods that are invoked via a self send in a

Ordered
Collection

isEmpty 
     { <concrete> }

LinkedOrdered
Collection

ownIsEmpty 
      { ... super isEmpty ... }

isEmpty
     { ... self ownIsEmpty ... }

notEmpty
     { self isEmpty not }

Figure 4. Inherited and Local Invocations

class or its superclasses but are then cancelled in sub-
classes. Method cancellation is a sign that inheritance
is being applied purely for purposes of code reuse,
without regard for subtyping. Since methods of the
superclass calling the cancelled methods can still be
called on the cancelling class, this may lead to run-
time errors. In the Collection hierarchy it occurs in
the subhierarchies of SequenceableCollection and Or-
deredCollection.

FCA properties: {C invokes i via self , i is concrete lo-
cally, i is cancelled in descendant C1 of C } or {C in-
vokes i via self , i is concrete in ancestor C1 of C , i is
cancelled in descendant C2 of C }

Irregularities: Inherited and Local Invocations.

Description: This schema shows methods that are invoked
by both self and super sends within the same class.
Initially this schema is a good practice coding, but
a problem occurs when the super sends are invoked
from a method with a different name. This special case
of the schema occurs in the classes LinkedOrderedCol-
lection, LinkedWeakAssociationDictionary and XMain-
ChangeSet. All these classes have a special form: the
class overrides a method m and m invokes a method
named own-m via self send, and this last method calls
m via a super send implemented in the superclass. Fig-
ure 4 illustrates this schema. This is an irregular case
of the schema Redefined Concrete Behavior because
the class is overriding the superclass behavior but is in-
directly using the superclass behavior.

FCA properties: {C invokes i via self , C invokes i via su-
per, i is concrete locally, i is concrete in ancestor C1

of C }



5.3. “Class-Based” View on SortedCollection

So far, we have introduced some schemas that help us
to analyze a class hierarchy from a global view, but our ap-
proach helps also us to analyze how a class is built in the
context of its superclasses and subclasses, meaning from lo-
cal view regarding a class.

We chose to analyze the class SortedCollection a sub-
class of OrderedCollection. A SortedCollection is an ordered
collection of elements, sorted using a function of two argu-
ments. The class has one attribute sortBlock which holds
the sorting function; has one class variable (static variable
in Java) DefaultSortBlock that holds the default sorting func-
tion. As a subclass of OrderedCollection and it inherits two
instance variables firstIndex and lastIndex and an indexed
variable objects. Regarding its methods, it adds 10 meth-
ods and overrides 19 methods from the 403 inherited.

In this class we identify 12 different schemas that in-
volves this class. Again for space reason, we present 4 of
them belonging to different categories:

Classical: Reuse of Superclass Behavior.

Description: This schema shows us that the class Sort-
edCollection calls via self the methods copyEmpty,
insert:before:, reverseDo:, asArray, isEmpty, not-
FoundError and they are not defined in the class but
different superclasses define their behavior. Specif-
ically, we see that the methods copyEmpty, in-
sert:before: and isEmpty are defined in the class Or-
deredCollection, reverseDo: and asArray are defined
in the class SequenceableCollection; and notFoundEr-
ror is captured in the class Collection. Thus, we see
which are the superclasses that determine the behav-
ior of the class. Figure 5 illustrates this schema.

“Bad Smell”: Broken super send Chain.

Description: This schema identifies methods that are ex-
tended (i.e., performing a super send) in a class but
redefined in their subclasses without calling the over-
ridden behavior, hence giving the impression to break
the original extension logic. In SortedCollection the
methods = and representBinaryOn: are invoking super-
class hidden methods. But the definition of these meth-
ods in the subclass SortedCollectionWithPolicy does
not invoke the method defined in SortedCollection.
Such a behavior can lead to unexpected results when
the classes are extended without a deep knowledge of
them. Figure 7 illustrates this schema.

FCA Properties: {C invokes i via super, i is concrete lo-
cally, i is concrete in descendant C1 of C , i is con-
crete in ancestor C1 of C }

Collection
notFoundError
   { <concrete> }

Sequenceable
Collection

reverseDo:
    { <concrete> }

Ordered
Collection

isEmpty
   { <concrete> }

Sorted
Collection

add:
     { ... self isEmpty ... }

reverse 
     { ... self reverseDo: ... }

copyFrom: to:
    { ... self notFoundError ... }

Figure 5. Reuse of Superclass Behavior.

“Bad Smell”: Cancelled Local Behavior but Superclass
Reuse.

Description: This schema shows that the method addLast:
is called via a super send and this method is defined
in the immediate superclass OrderedCollection, mean-
ing that the class is reusing the behavior of the su-
perclass. But this method is also implemented in the
class SortedCollection but the behavior is cancelled.
Although it is not a good practice, it seems a normal
situation because the elements in a sorted collection
cannot be added in the end of the collection, but in a
predefined position defined by the sorting function of
the class. As we said previously, this is a case where
the inheritance is used as code reuse without regard-
ing subtyping. Specifically, this means that SortedCol-
lection is a kind of OrderedCollection but not all the in-
herited methods can be applied. Figure 6 illustrates this
schema.

FCA properties: {C invokes i via super, i is concrete in
ancestor C1 of C , i is cancelled locally }

Irregularities: Inherited and Local Invocations.

Description: This schema shows that the method copy-
Empty is used with self sends and super sends in the
class SortedCollection. It is implemented in the class
itself, has an implementation in the superclass Collec-
tion and an implementation in the subclass SortedCol-



Ordered
Collection

addAll:
    { <concrete> }

Sorted
Collection

addAllWithoutSorting
    { ... super addAll: ... }

addAll: 
    { <cancelled> }

Figure 6. Cancelled Local Behavior and Be-
havior Reuse of Superclasses.

Sequenceable
Collection

representBinaryOn: 
     { <concrete> }

Sorted
Collection

representBinaryOn:
   { ... super representBinaryOn: ... }

SortedCollection
WithPolicy

representBinaryOn:
     { <concrete> }

Figure 7. Broken super send Chain.

lectionWithPolicy. When checking the code, we see that
the most of the calls are self sends and in the method
called copyEmpty, we have a super send to a method
with the same name. This means that, in spite of a lo-
cal implementation of copyEmpty, finally the behav-
ior of this method is determined by the superclasses,
showing a heavy reuse of the superclass code. Figure 8
illustrates this schema.

FCA properties: {C invokes i via self , C invokes i via su-
per, i is concrete locally, i is concrete in ancestor C1

of C }
The identified schemas in our approach provide another

view on the class. They present some anticipated dependen-
cies between the methods of the classes and their relation-
ships in the hierarchy. Our experience confirms to us that
the Collection hierarchy is a rich but difficult to extend hi-

Sorted
Collection

copyEmpty
     { ... super copyEmpty ... }

copyFrom: to: 
    { ... self copyEmpty ... }

SortedCollection
WithPolicy

copyEmpty 
      { ... super copyEmpty ... }

Collection
copyEmpty
    { <concrete> }

Figure 8. Inherited and Local Invocations.

erarchy since it is based on a heavy use of subclassing and
aggressive code sharing. It relies on some internal knowl-
edge and often contains coding manner that leads to fragile
design.

6. Discussion

Use of FCA: FCA offers the possibility of specifying
simple properties between the elements we need to analyze.
Based on these simple properties, as we have seen in the
Section 2, the FCA algorithm (to build the concepts) imple-
mented in ConAn provides us with all the possible combi-
nations of elements with a common set of properties. In this
way we “mine” the concepts we use to identify possible de-
pendency schemas in the class hierarchies. This approach
allows us to detect not only well-known, but also unantic-
ipated relationships between the different elements. Thus,
we are able to identify all possible combinations of proper-
ties that could characterize a schema actually used in a class
hierarchy.

Performance of the Algorithm: In Section 4 we saw
that we need to map the model entities (in our specific case,
the invocations and accesses) to CA elements and build dif-
ferent properties based on them. Due to a limitation im-
posed by FCA algorithm (to build the concepts) in perfor-
mance measurements [10], we reduce the amount of CA el-
ements to compute the concepts and the lattice without los-
ing information about the class hierarchies. Thus, if we have
several invocations of the same method or several accesses
to the same attribute in the same class, we keep only one in-
vocation or one access per class as a representative, and we
reduce dramatically the number of CA elements used by



ConAn, and improved the computing time from around 1
hour to 10 min compared to the approach presented in an
earlier paper [1].

Analysis of State and Behavior: There are two main
differences with regard to our previous work [1]. First, in
the current paper we take dependencies to state into ac-
count, whereas our earlier work considered only behaviour.
This yields more concepts, and hence more schemas of in-
terest than when only behaviour is considered. Secondly,
we are able to categorize schemas into those that represent
good, irregular and bad design decisions in the class hier-
archies.

Partial Usage of Lattice: In Section 4, we pointed out
that once the concepts and the corresponding lattice are
built, each concept represents a group of invocations and ac-
cesses that relate a group of classes. But not all the concepts
are relevant, and we keep only the meaningful concepts for
our analysis. There are main two points worth mentioning.
Firstly, we only use 64 of 174 concepts in total, meaning
that the 1/3 of the lattice represents meaningful information
in our approach from our analysis. Finally, we must note
that, in this particular application of FCA, we do not use
the partial order of the concepts in the lattice. This means
that we do not exploit the possible relationships between the
schemas (mapped from the concepts).

Mapping from Concepts to Schemas: Of the 64 con-
cepts we identify as “interesting”, we derive 16 dependency
schemas. This means that in most of cases, a schema is rep-
resented in several concepts, meaning that a schema can be
described by different combinations of properties. But the
policy of mapping is arbitrary so far, meaning that when we
interpret the contents of the concepts, we decide which are
concepts corresponding to the different schemas. For exam-
ple, the schema Local Direct State Access is represented
in 5 concepts because each concept shows different ways
that the state of the class is accessed. On the other hand, the
schema Local Behavior is represented by just one concept.
In other cases, one schema could represent a good or an ir-
regular design practice. In this specific case, we see that the
schema Inherited and Local Invocations is irregular only
when the super sends are invoked from a method with a dif-
ferent name.

“Non-invoked” Methods: Our approach is limited to
analyzing methods and attributes that are effectively used in
the context of the class hierarchy. If there are methods that
are defined in any class but are not invoked in the class it-
self or in any subclasses or in any superclasses, those meth-
ods are not included in our analysis. Clearly, we lose some
information about the classes in the hierarchy, because we
only concentrate on usage of behavior and state of the class.

FCA vs. Logic Engine: One of the main results of this
approach is a catalog of schemas to characterize a class hi-
erarchy. As we see in Section 4.2, each schema is the in-

terpretation of a conjunction of properties in the concepts.
Then, each schema can be expressed as a logic predicate
(mapped from the properties) and a logic engine can be run
in a class hierarchy to identify the occurrences of the dif-
ferent schemas. Thus, we must remark that the main differ-
ence between the use of FCA and a logic engine is that in
the first case, we do not know in advance which are the pos-
sible schemas occurring in the class hierarchies, and con-
sequently we do not know the combination of properties
that characterize them. FCA helps us mainly to discover un-
predictable schemas introduced in a class hierarchy. In the
case of the use of a logic approach, we must know which
are the different properties that characterize a schema. We
consider that both approaches are complementary ones, be-
cause the catalog of schemas can be complete after the anal-
ysis of several class hierarchies, and in that moment, the use
of logic engine is most suitable than FCA.

7. Related Work

Various researchers have explored techniques to support
the understanding and evolution of class hierarchies using
FCA. We briefly summarize their works.

Dekel uses CA to visualize the structure of the class in
Java and to select an effective order for reading the methods
and reveal the state usage [5]. Godin and Mili [8] uses con-
cept analysis to maintain, understand and detect inconsis-
tencies in the Smalltalk Collection hierarchy. In C++, Snelt-
ing and Tip [11] analysed a class hierarcy making the re-
lationship between class members and variables explicit.
They were able to detect design anomalies such as class
members that are redundant or that can be moved into a de-
rived class. As a result, they propose a new class hierarchy
that is behaviorally equivalent to the original one. Similarly,
Huchard [9] applied concept analysis to improve the gen-
eralization/specialization of classes in a hierarchy. Tonella
and Antoniol [15] use CA to detect the structure of Gamma-
style design patterns using relationships between classes,
such as inheritance and composition.

All the above approaches only take information into ac-
count about which selectors are implemented by which
classes or how clients classes use the class hierarchy. They
do not consider behavioral information (i.e., based on self
and super sends) or usage of the state between the differ-
ent classes in a class hierarchy. As shown in this paper,
this information in static analysis helps us to identify differ-
ent behavioral and state dependency schemas. With these
schemas, we evaluate the reuse of the methods and state de-
fined in the classes, and we discover different design deci-
sions used in building the class hierarchies.



8. Conclusion and Future Work

In this paper, we show how the automatic generation
of schemas using FCA helps us to discover different im-
plicit and undocumented dependencies in class hierarchies
in terms of the behavior and state usage. The categoriza-
tion of these schemas into good, irregular and bad smell
design decisions allows us to localize where different irreg-
ularities or problems occur in the implementation of a class
hierarchy. With the dependency schemas we are able to an-
alyze a class hierarchy from a global viewpoint considering
all the classes, and from a local viewpoint considering con-
sidering one class and the relationships with its subclasses
and superclasses.

We have previously explored two other applications of
FCA. With X-Ray Views [4], we analyze a class in isola-
tion (without the context of superclasses and subclasses).
The study is based on the use of behavior and the state, and
the collaborations of different defined methods inside the
classes. This approach complements the information of the
schemas Local Behavior and local state introduced in this
paper.

We have also previously used FCA to explore behavioral
dependencies [1] in class hierarchies. In that approach, we
analyze only the relationships between classes based on the
behavioral dependencies (self and super sends and where
the methods are captured). We introduced a possible list of
schemas that show the different design decisions in a class
hierarchy. In this paper, we complement the information
with state accesses and also analyse the cancellation mech-
anism of methods. We also provide a categorization of the
schemas to be able to concentrate on the irregularities and
problems in the class hierarchies.

We plan to apply the approach to other class hierarchies
to check if the catalog of schemas identified thus far cov-
ers all the interesting possible cases or if we discover new
cases of implicit contracts. Another interesting analysis is
the combination of the methods that are invoked and those
that are not invoked but are declared in the classes. This
kind of approach can measure how much information de-
fined in the class hierarchy is used or not. Another feature
to improve is the refinement of properties to be able to get
a mapping 1 to 1 from concept to schema, and thus, re-
duce the complexity of the lattice in terms of number of
concepts. Last but not less important is the analysis of re-
lationships given by the partial order between the different
schemas -mapped from the concepts in the lattice.
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[10] S. Kuznetsov and S. Obëdkov. Comparing Performance of
Algorithms for Generating Concept Lattices. In Proceedings
of International Workshop on Concept Lattice-based Theory,
Methods and Tools for Knowledge Discovery in Databases,
2001.

[11] G. Snelting and F. Tip. Reengineering Class Hierarchies us-
ing Concept Analysis. In ACM Trans. Programming Lan-
guages and Systems, 1998.

[12] R. Stata and J. V. Guttag. Modular reasoning in the presence
of subclassing. In Proceedings of OOPSLA ’95, pages 200–
214. ACM Press, 1995.

[13] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse Con-
tracts: Managing the Evolution of Reusable Assets. In Pro-
ceedings of OOPSLA ’96, pages 268–285. ACM Press, 1996.

[14] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. A
Meta-model for Language-Independent Refactoring. In Pro-
ceedings of ISPSE ’00, pages 157–167. IEEE Computer So-
ciety Press, 2000.

[15] P. Tonella and G. Antoniol. Object Oriented Design Pat-
tern Inference. In Proceedings of ICSM ’99, pages 230–238.
IEEE Computer Society Press, Oct. 1999.

[16] N. Wilde and R. Huitt. Maintenance Support for Object-
Oriented Programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.


