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Abstract

Understanding the internal workings of classes is a key
prerequisite to maintaining an object-oriented software sys-
tem. Unfortunately, classical editing and browsing tools of-
fer mainly linear and textual views of classes and their im-
plementation. These views fail to expose the semantic rela-
tionships between the internal parts of a class. We propose
XRay views —a technique based on Concept Analysis—
which reveal the internal relationships between groups of
methods and attributes of a class.XRay views are com-
posed out of elementary collaborations between attributes
and methods and help the engineer to build a mental model
of how a class works internally. In this paper we present
XRay views, and illustrate the approach by applying it to
three Smalltalk classes:OrderedCollection, Scanner, and
UIBuilder.

Keywords: Class Understanding, Concept Analysis,
Logical Views

1 Introduction

It is well-established that 50% to 75% of the overall cost
of a software system is devoted to maintenance [20]. Dur-
ing maintenance, it is estimated that software professionals
spend at least half their time reading and analysing soft-
ware in order to understand it [7]. Code reading is not only
a means to understand software, but is also a viable strategy
for checking and assuring software quality [3]. These facts
show that understanding source code is a key activity in the
maintenance of software systems.

∗This paper has been accepted as a short paper in the ASE 2003 Main
Conference

†In Proceedings of 2nd International MASPEGHI 2003 Workshop
colocated in ASE 2003 (Montreal, Canada), pp. 9-18, CRIM - University
of Montreal, 2003

Although object-oriented technology was expected to re-
duce the cost of developing and maintaining large software
systems, paradoxically the contrary is the case. On the
one hand, object-oriented techniques help engineers master
complexity, so object-oriented systems tend to last long, and
thus enter their “maintenance” phase much earlier. On the
other hand, object-oriented systems can be harder to under-
stand than procedural systems [9, 18], so the cost of mainte-
nance can actually be higher. This is due to several reasons
[26, 5, 10]:

1. Contrary to procedural languages, the method defini-
tion order in a file is not important [9]. There is no sim-
ple and apparent top-down call decomposition, even if
some languages propose the visibility notion (private,
protected, and public). Furthermore, the run-time ar-
chitecture is not apparent from the source code, which
only exposes the class hierarchy [10].

2. The presence of late-binding leads to “yoyo effects”
when walking through a hierarchy and trying to follow
the call-flow [26].

We propose a technique to support software engineers
in the task of understanding a complex object-oriented sys-
tem. Instead of requiring the engineer to read code line-by-
line, we provide three logically connected “XRay views” of
classes that give the engineer an impression of the relation-
ships between methods, attributes, and the invocation and
access patterns. In this way we supportopportunisticun-
derstanding [22] in which the engineer understands a class
iteratively by exploring patterns and reading code. To be
precise in the rest of the paper, we use the termcollabora-
tion to express a relationship between a set of methods and
a set of attributes.

Let us take a simple example. Imagine we want to under-
stand how the (Smalltalk) classOrderedCollection works.
In VisualWorks 7.0 its source code contains the following
comment:



“ OrderedCollection represents a collection of ele-
ments explicitly ordered by the sequence in which
objects are added and removed. Elements are
accessible by external keys that are indices.Or-
deredCollections can act as stacks or queues.”

OrderedCollection has two named attributes,firstIndex
andlastIndex and an indexed attribute (i.e., an array-like at-
tribute).OrderedCollection inherits 377 methods and imple-
ments 56 methods of which 25 redefine inherited methods.
Simply reading the source code of these methods would
clearly be a slow process that would not necessarily reveal
the collaborations between the three attributes and the meth-
ods of this class.

Instead, anXRay view will tell us that the methods
notEmpty:, size, remove:ifAbsent:, includes:, find:, at:, and
at:put: systematicallyaccess the attributesfirstIndex and
lastIndex. Moreover the class does not define any setter or
getter methods for these attributes and we can consequently
infer that the methods mentioned previously are responsi-
ble for maintaining the class invariant. Armed with this in-
formation, the engineer can now focus attention on these
methods and gain further insight into the workings of this
class.

Generalizing from this example, here is a (non-
exhaustive) list of the kind of information that an engineer
would typically like to know about a class:

• which methods access any attribute, directly or indi-
rectly

• which groups of methods access directly or indirectly
all the attributes or some subset of the attributes,

• which methods are only called internally,

• which methods/attributes are heavily used and ac-
cessed,

• how the methods and attributes collaborate.

Each of these aspects is important for understanding the
inner workings of a class, but unfortunately they are implicit
in the source code, and therefore cannot easily be teased out
by a straightforward reading of the source. For this reason
we generate a graph representation of the source code and
run our tool,ConAn, which appliesConcept Analysisto de-
tect different collaborations to compose them in theXRay
views. In this paper we limit our approach to understanding
a single class, without taking into account relationships to
subclasses, superclasses, or peer classes.

Structure of the Paper. In Section 2 we provide a brief
introduction to Concept Analysis. In Section 3 we show
how to interpret the collaboration of methods and attributes
within classes using Concept Analysis. In Section 4 we

show how the concepts identified help us to interpret dif-
ferentXRay views of classes. In Section 5 we present an
overview of related work, and in Section 6 we summarize
the results so far and outline our future work.

2 Concept Analysis in a Nutshell

Concept analysis (CA) [12] (also known as Concept Ga-
lois lattices [27]) is a branch of lattice theory that allows
us to identify meaningful groupings of “objects” that have
common “attributes”. (NB: To avoid confusion with object-
oriented terminology, we refer in this paper instead toele-
mentshaving commonproperties.)

To illustrate CA, let us consider a toy example about mu-
sical preferences. Theelementsare a group of peopleFrank,
Anne, Arthur, John, Thomas, andMichael; and theproper-
ties areRock, Pop, Jazz, Folk, andTango1. Table 1 shows
which people prefer which kind of music.

prefers Rock Pop Jazz Folk Tango
Frank True True True
Anne True True True
Arthur True True

Catherine True
Thomas True
Michael True True

Table 1. Elements and their satisfied proper-
ties in the Music example

A contextis a tripleC = (E,P,R), whereE andP are
finite sets of elements and properties, respectively, andR is
a binary relation betweenE andP . In the musical prefer-
ences example, the elements are the people, the properties
are the different kinds of music they prefer, and the binary
relationprefersis defined by Table 1. For example, the tuple
(Frank, Folk)is in R, but (Anne, Jazz)is not.

Let X ⊆ E, Y ⊆ P , and

σ(X) = {p ∈ P |∀e ∈ X : (e, p) ∈ R}
τ(Y ) = {e ∈ E|∀p ∈ Y : (e, p) ∈ R}

σ(X) gives us all thecommon attributesof the ele-
ments contained inX, and τ(Y ) gives us thecommon
objectsof the properties contained inY . For example,
σ({Arthur, Catherine}) = {Jazz}.

A conceptis a pair of sets — a set of elements (theex-
tent) and a set of properties (theintent) (X, Y ) — such
that Y = σ(X) and X = τ(Y ). In other words,
a concept is a maximal collection of elements sharing

1The full property names areprefers Popor prefers Folk. We abbreviate
these names for the sake of conciseness.
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common properties. In Table 1, a concept is a maxi-
mal rectangle we can obtain with relations between peo-
ple and musical preferences. For example,({Frank, Anne},
{Rock, Pop}) is a concept, whereas({Catherine}, {Jazz})
is not, sinceσ({Catherine}) = {Jazz}, but τ({Jazz}) =
{Arthur, Catherine, Thomas, Michael}. The extent and in-
tent of each concept is shown in Table 2.

top ({ all elements}, ∅)
c7 ({Arthur, Catherine, Thomas, Michael}, {Jazz})
c6 ({Frank, Arthur, Michael}, {Folk})
c5 ({Frank, Anne}, {Rock, Pop})
c4 ({Arthur, Michael}, {Jazz, Folk})
c3 ({Frank}, {Rock, Pop, Folk})
c2 ({Anne}, {Rock, Pop, Tango})

bottom (∅, { all properties})

Table 2. The set of concepts of the example
about Music

The set of concepts forms a partial order known as acon-
cept lattice. There are several algorithms for computing the
concepts and the concept lattice for a given context [16, 21].
For more details, the interested reader should consult Gan-
ter and Wille [12].

3 Applying Concept Analysis to Class Under-
standing

Complex software systems are composed of a large num-
ber of different kinds of entities (classes, methods, modules,
subsystems) and a lot of different kinds of relationships that
hold between them. CA can help us to detect patterns in
these relationships, but first we must encode the software in-
formation at hand in terms of elements and properties. De-
pending on exactly what kinds of patterns we are interested
in, we may apply CA in radically different ways.

In this paper we apply CA to identify concepts that corre-
spond to the collaborations within a single class. We there-
fore choose as elements themethodsand attributes of a
class, and as properties theaccessand invocationrelation-
ships between them.

3.1 Elements and Properties of Classes

Suppose a class has a set of methodsM and a set of
attributesA. The basic properties we use are extracted from
the source code as follows:

• m readsx means that the methodm ∈ M either di-
rectly reads the value of attributesx ∈ A or uses a
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calls directly
calls indirectly

accesses directly
accesses indirectly

Figure 1. Attribute accesses and method in-
vocations and the groups they form.

“getter” method to access the value ofx. We callm a
readermethod ofx.

• m writesx means that the methodm ∈ M either di-
rectly updates the value of attributex ∈ A or uses a
“setter” method to modify the value ofx. We callm a
writer method ofx.

• m callsn means that the methodm calls the methodn
explicitly via aself-call.

We also define a number of derived properties, for exam-
ple:

• m accessesx if either m readsx or m writesx (i.e.,
accesses= reads∪ writes)

In Figure 1 we see a graphical representation of a class
with methodsM = {m,n, o, p, q, r, s, t} and attributes
A = {a, b, c, d}. Here we haveo calls m, m calls n,
n accessesa, and so on.

These properties express direct relationships between
entities. We are also interested inindirect relationships,
for example, m accessesa indirectly (which we write
“m accesses∗ a”). Indirect relationships are important in re-
vealing collaborations between methods and attributes, and
are helpful in assessing the impact of changes. We therefore
define as well the following derived properties:

• m calls∗ n if m calls m′ and eitherm′ calls n or
m′ calls∗ n (i.e., calls∗ = ∪i≥2 calls i)

• m reads∗ x if m calls m′ or m calls∗ m′, and
m′ readsx (i.e., reads∗ = ∪i≥1 calls i · reads)

• m writes∗ x if m calls m′ or m calls∗ m′, and
m′ writesx (i.e., writes∗ = ∪i≥1 calls i · writes)

• m accesses∗ x if m reads∗ x or m writes∗ x (i.e.,
accesses∗ = reads∗ ∪ writes∗ )
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In the example, we see thato calls∗ n andn readsa, and
consequentlyo reads∗ a.

We apply CA to our example class to reveal the follow-
ing concepts:({m, o}, {accesses∗ a}),
({n}, {accessesa}), ({p}, {accessesa, b}),
({q}, {accessesc}), ({s, t}, {accesses∗ d}) and
({r}, {accessesd}).

Finally, we are sometimes interested to know when ele-
ments donot exhibit a certain property, so we introduce the
following notation to express the negation of a relation:

• e ¬R p if it is not true thate R p.

For example,o ¬ readsa.

3.2 Collaborations

Since we are interested in collaborations occurring be-
tweensetsof methods and attributes, we extend our proper-
ties to sets in the obvious way. Suppose thatF andG are
arbitrary subsets of the set of elementsE. We define:

• F R G means that each entity inF is related with each
one inG, i.e., ∀e ∈ F, e′ ∈ G, e R e′.

• F R G means that the entities inF arerelated exclu-
sivelywith those inG, i.e., ∀e ∈ E, e′ ∈ G, e R e′,⇒
e ∈ F and conversely,∀e ∈ E, e′ ∈ F, e′ R e ⇒ e ∈
G.

3.3 Interpretation

We introduce now the collaborations based on which
XRay views are built. Note that in each case we are in-
terested inall of the participants of a given collaboration.
For example, below we defineCollaborating Attributes, but
we are interested not only in the attributes themselves, but
also in the set of methods that access them. This holds for
each example collaboration listed below.

Direct Accessors : Direct accessors, readers or writers
M ⊆ M of an attributea are defined by non-exclusive re-
lationships:

• M accesses{a}

• M reads{a}

• M writes{a}

This collaboration provides us with a simple classification
of the methods according to which attributes they use. In
our example,{n, p} accesses{a}.

Exclusive Direct Accessors : A methodm is anexclu-
sive direct accessorof a whenm is theonly method to ac-
cessa directly. We are interested in the sets of exclusive
direct accessors of an attribute:

• M reads {a}

• M writes {a}

In our example, we see that{r} accesses{d}.

Exclusive Indirect Accessors : We consider a method to
be anexclusive indirect accessorwhen it calls adirect ac-
cessormethod of a specific attribute. It is represented as an
exclusive relationship:

• M accesses∗ {a}

• M reads∗ {a}

• M writes∗ {a}

This collaboration helps us to distinguish those methods
that define the behaviour of a class without using at all the
state from those that use the state of the class. In our exam-
ple, we have{s, t} accesses∗ {d}.

Collaborating Attributes : This collaboration expresses
which attributes are used exclusively by a set of methods:

• M reads A

• M writes A

In the example, we have the sets of attributes accessed ex-
clusively by sets of methods are all of size 1:{q} reads {c}
and{r} accesses{d}.

Stateful Core Methods : This collaboration is a special
case ofcollaborating attributesand expresses which meth-
ods accessall the state of a class:

• M readsA and

• M writes A

This collaboration is interesting because it provides a guide-
line if all the attributes are collaborating in the core of the
class, and providing a functionality to the class through a set
of methods. In the example, there are no methods accessing
the entire state of the class.
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Collaborating Methods : This collaboration expresses
which methods uses the behaviour defined in the class. It
is represented by anexclusive dependency:

• M calls∗ M ′

• M calls M ′

This collaboration helps us to identify the direct and indi-
rect collaborations between groups of methods inside the
class. In the example,{o} calls {m}, {m} calls {n},
{o} calls∗ {n} and{s, t} calls {r}.

Interface Methods : This collaboration expresses which
methods are not used at all inside the class. It is represented
with anexclusive dependencyas:

• M ¬ calls M

M is the complete set of interface methods since there is no
method inM that calls them, and there exist no other such
methods.
M¬ calls {o, p, q, s, t} identifies the interface methods

of Figure 1.

Externally Used State : This dependency expresses
which interface methods aredirect accessors:

• M ¬ calls M andM accesses{a}

This collaboration helps us to determine which methods
are used as interface to the class and access directly the
state of the class. In the example,p andq provide exter-
nally used state, sinceM ¬ calls {p} accesses{b} and
M¬ calls {q} accesses{c}.

Stateless Methods : This collaboration expresses which
methods complement thecollaborating ones, i.e., which
methods provides a service without calling any other meth-
ods or accessing the state of the class:

• M = M1 ∩ M2, where M1 ¬ calls M and
M2 ¬ accessesA

There are no stateless methods in the example, since every
method either calls another method or accesses some state.

4 XRay Views

An XRay view is agroupof collaborations that exposes
specific aspects of a class. Based on the collaborations spec-
ified above, we now define threeXRay views: STATE US-
AGE, EXTERNAL /INTERNAL CALLS, and BEHAVIOURAL

SKELETON. These three views address different, but log-
ically related aspects of the behaviour of a class. STATE

USAGE focuses on the way in which the state of a class is
accessed by the methods, and exposes, for example, how
cohesive the class is. EXTERNAL /INTERNAL CALLS cate-
gorizes methods according to whether they are internally or
externally used, while BEHAVIOURAL SKELETON focuses
on the way methods invoke each other internally.

In order to illustrate our approach, we present three
Smalltalk classes —OrderedCollection, UIBuilder, and
Scanner— from the VisualWorks Smalltalk distribution
[25]. We chose these particular three classes because they
are different enough in terms of size and functionality, they
address a well-known domain that the reader is certainly fa-
miliar with, and they show characteristic results ofXRay
view application. Here follows a brief description of these
classes:

OrderedCollection represents a collection of elements ex-
plicitly ordered by the sequence in which objects are
added and removed. The elements are accessible by
external keys that serve as indices. This class has at-
tributesfirstIndex andlastIndex that index the first and
last elements in the collection. MoreoverOrderedCol-
lection has an anonymous array-like attribute. Its be-
haviour is defined by 56 methods from which 24 rede-
fine methods inherited from the superclass.

UIBuilder implements the Builder design pattern [1]. It
is a complex class that is used to build user inter-
faces (windows and their subcomponents) according
to declarative specifications provided by its clients.
A UIBuilder is created and used at interface open-
ing time by the client’s interface opening method.
UIBuilders use a special library of user interface com-
ponents tailored for automatic user interface genera-
tion such as radio buttons, action buttons, and check
boxes. UIBuilders can build and install composites of
these components to any desired level of nesting. This
class has 18 attributes and its behaviour is defined in
122 methods.

Scanner represents a traditional language scanner for the
Smalltalk language. It scans a stream of Smalltalk to-
kens with a single look ahead. This class has ten at-
tributes which refer to the source, to the current char-
acter, current token, current token type, a type table,
and comments. Its behaviour is defined with just 24
methods which are procedurally-coded.

We describe the threeXRay views according to a com-
mon pattern: first we provide adescription, then thecol-
laborationsused to build the view, and finally arationale
indicating the key aspects that the view can reveal. Note
that the results provided by different views will often over-
lap, as the views provide different perspectives of the same
class using the same elements.
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Class HNL Attributes Methods
OrderedCollection 3 3 56

UIBuilder 1 18 122
Scanner 1 10 24

Table 3. Data about the classes (HNL indicates
the level of inheritance

Due to space limitations, we describe just the first view,
STATE USAGE, in detail, and only summarize the remaining
views. For each view, we ran our analysis tool,ConAn,
on the three classes, we examined the resulting views by
looking at and combining the groups presented in the “Used
and Shown Collaborations” section of the view definition,
and we validated our findings by reading the source code
opportunistically.

4.1 XRay View: STATE USAGE

Description: Clusters attributes and methods according
to the way methods access the attributes.

Used and Shown Collaborations: Exclusive Direct Ac-
cessors, Exclusive Indirect Accessors, Collaborating At-
tributes, andStateful Core Methods.

Rationale: Objects bundle both public and private be-
haviour and state. In order to understand the design of a
class, it is important to gain insight into how the behaviour
accesses the state, and what dependencies exist between
groups of methods and attributes.

Validation with OrderedCollection : As shown in Fig-
ure 2, STATE USAGE leads to the following groups.

• Exclusive Direct Accessors

– {before, removeAtIndex:, add:beforeIndex:, first }
reads {firstIndex} and {removeFirst, remove-
First:, addFirst } writes {firstIndex },

– {after, last } reads {lastIndex } and
{removeIndex:, addLastNoCheck:, removeLast,
addLast:, removeLast: } writes {lastIndex }

• Exclusive Indirect Accessors

– {addLast:, copyWithout:, select:, trim, add:, rep-
resentBinaryOn:, add:before:, increaseCapacity,
collect:, grow, after:, add:after:, addAllLast:, ad-
dAll:, addAllFirst:, removeLast: } accesses
{firstIndex }

– {copyWithout:, select:, add:beforeIndex:, add:,
addFirst:, trim, add:, representBinaryOn:, re-
moveAtIndex:, collect:, increaseCapacity, grow,
removeFirst:, add:before:, before:, add:after:, ad-
dAllLast:, addAll:, addAllFirst:, removeLast: }
accesses {lastIndex }

• Collaborating Attributes,

– {makeRoomAtFirst, changeSizeTo:, removeAll-
SuchThat:, makeRoomAtLast, do:, notEmpty:,
keysAndValuesDo:, detect:ifNone:, changeCa-
pacityTo:, isEmpty, size, remove:ifAbsent:, in-
cludes:, reverseDo:, find:, setIndices, insert:
before:, at:, at:put:, includes: } accesses
{firstIndex, lastIndex }

• Stateful Core Methods = the same set asCollaborating
Attributes

Before analysing the groups identified by this view, we
posed the hypothesis that the two attributes maintain an in-
variant representing a memory zone in the third anonymous
attribute.

First, we note that the attributesfirstIndex and lastIndex
have no getters or setters, so the state of the class is not
exposed to clients.

Second, by browsingExclusive Direct Accessors meth-
ods, we confirm the hypothesis that the methodremoveFirst
accessesfirstIndex andremoveLast: accesseslastIndex.

The numbers of methods that exclusively access each at-
tribute are very similar, however, we discover thatfirstIndex
is mostly accessed by readers, whereaslastIndex, is mostly
accessed by writers.

It is worth noting thatCollaborating Attributes are ac-
cessed by the same methods that are identified asState-
ful Core Methods. This situation is not common even for
classes with a small number of attributes, and reveals a co-
hesive collaboration between the attributes.

We identified 20 over 56 methods in total that access sys-
tematicallyall the state of the class. By further inspection,
we learned that most of the accessors are readers. There
are only five methods,makeRoomAtFirst, makeRoomAt-
Last, setIndices, insert:before:, and setIndicesFrom:, that
read and write the state at the same time. More than half
of the methods (33 over 56) directly and indirectly access
both attributes.

This confirms the hypothesis that the class maintains a
strong correlation between the two attributes and the anony-
mous attribute of the class.

Validation with UIBuilder : The results are quite different
compared to those obtained forOrderedCollection.
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Figure 2. An XRay view STATE USAGE applied to the class OrderedCollection. Here we browse the
Collaborating Attributes collaborations and the method find: of this collaboration.

First, we find getters and setters for each attribute. If we
consider only the methods that access directly the attributes,
we can classify the attributes into three groups:

• a) attributes that are accessed only through their getter
and setter (policy, stack, cacheWhileEditing, anddeco-
rator);

• b) attributes that are accessed through their getter and
setter, and an additional method (labels, values);

• c) attributes that are accessed by several methods. Note
that the view EXTERNAL /INTERNAL CALLS helps us
to refine our understanding of these differences.

We also learned that most accessors are readers, and
there are only very few writers. Most of the writer meth-
ods are setters. This means that most of the attributes either
are initialized when instances are created or are initialized
and modified outside the class scope.

If we consider the collaborations among the attributes
taking into account only the direct accessors, we find that
there are very few groups of collaborating attributes:(wrap-
per, component), (bindings, window), (stack, composite),
(policy, window), (source, bindings), (component, decorator,
wrapper). The methods access groups of attributes only by
reading them. 9 over 18 attributes are used with other ones.

This means that there are 9 attributes that are used alone
in different methods, so this fact reveals that the class is
grouping several functionalities and could be split using the
set of non-collaborating and collaborating attributes. This
kind of hypothesis can be refined using the BEHAVIOURAL

SKELETON view.
When we look at indirect accesses to attributes we ob-

tain some new groups of collaborating attributes but these
new groups only include twonewattributes that were not
identified by the direct access attribute groups. From this
observation we can learn that there is a group of 11 core
attributes that are used in the same group of methods.

In this specific case, we do not have any stateful core
methods, which is not surprising as the class has a lot of
attributes.

Validation with Scanner : The results forScanner are
completely different from those obtained for the other two
classes. We find that we cannot partition the attributes into
groups that are exclusively used by certain sets of meth-
ods. Instead, each method typically uses some subset of
attributes that overlaps in arbitrary ways with those used by
other methods. This means that every attribute offers some
specific functionality that is complemented by the function-
ality offered by other attributes. None of the attributes have
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setters and getters,i.e., the state is internal and it is not ex-
ported outside the scope of the class.

4.2 XRay View: EXTERNAL /INTERNAL CALLS

Description: Clusters methods according to their partici-
pation in internal or external invocations.

Used and Shown Collaborations: Interface Methods and
Externally Used State.

Rationale: This view reveals the overall shape of the class
in terms of its internal reuse of functionality. This is espe-
cially important for understanding framework classes that
subclasses will extend. Interface methods, for example, are
often generic template methods, and internal methods are
often hook methods that should be overridden or extended
by subclasses.

Validation with OrderedCollection : OrderedCollection
has 37 external methods. Of these, there are 22 methods
that directly access attributes. Therefore the classOrdered-
Collection has a flat call-flow which means that there is little
internal reuse of its own behaviour.

The groups also reveal that on the one hand we have
methods such asadd:, remove: that are part of the public
class interface but are also used internally, and on the other
hand we have pure, public methods such aschangeSizeTo:
andrepresentBinaryOn:.

In VisualWorks, the classOrderedCollection has 6 sub-
classes. However, each of these subclasses onlyaddsextra
behaviour and does not change the internal behaviour of the
class. This confirms our expectations, since the absence of
internal reuse of methods inOrderedCollection is also a sign
that there is little behaviour to be reused or extended by sub-
classes.

Validation with UIBuilder : 89 of 124UIBuilder methods
are not invoked by the class itself. Just 31 methods de-
fine the internal behaviour of the class. This fact fits well
with the intent of the Builder design pattern and the fact
thatUIBuilder offers not only a lot of functionality to build
complex user interface but also offers several ways to query
its internal state via methods such ascomponentAt:, listAt:,
andmenuAt:.

Moreover we checked how the accessor methods iden-
tified by the STATE USAGE are classified as external and
internal methods.policy anddecorator are external, as they
allow the client of the builder to specify the look and feel
policy used for the window. Curiously, the attributestack is
simply not used, whereascacheWhileEditing is purely inter-
nal, as its name suggests.

Note that this is a typical example how different views
like STATE USAGE and EXTERNAL /INTERNAL CALLS

complement each other in the process of understanding a
class.

Validation with Scanner : In the case ofInterface Meth-
ods, we have a group composed of two Smalltalk method
categories2 of Scanner:multi-character scans andpublic in-
terface. Within the first group, we can find methods such as
xDigit or xLetter that are used to form numbers or words, and
within the second group, we have the methods defined as
public access: {breakIntoTokens:, scanFieldNames:, scan-
PositionsFor:inString:, scanTokens: }. Thus we see that the
view reveals a traditional narrow interface of a scanner, and
it confirms the hypothesis that we present in the view STATE

USAGE that all the methods and the attributes are collabo-
rating inside the class.

4.3 XRay View: BEHAVIOURAL SKELETON

Description: Clusters methods according to whether or
not they collaborate with other methods defined in the class
or whether or not they access the state of the class.

Used and Shown Collaborations: Collaborating Meth-
ods andStateless Methods.

Rationale: Ideally an object should be cohesive. In real-
ity, this is not always the case. For example user interface
classes usually act as a glue between the domain objects and
the widgets. The way methods form clusters of collaborat-
ing methods indicates whether a class is cohesive or not [4].

Validation with OrderedCollection : We do not observe
much collaboration among the methods. The collaborations
between them are made in pairs, and there are not so many
calls∗ , i.e., the methodadd:after: calls the methodfind:, and
this last method does not call any other method in the class.
Most of the methods confirm this fact,i.e., that there are no
groups of methods collaborating with other groups. We saw
in the STATE USAGE view that most of the methods access
the attributes of the class. Now we can confirm that the
methods do not collaborate with each other, thus illustrating
the flat method call-flow pattern for this class. For stateless
methods, we identify two main groups: (1) those that access
a global variable, and (2) those that invoke methods, such as
error:, inherited from the superclass.

2Method categories in Smalltalk are groups of methods without lan-
guage semantics that support code browsing.
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Validation with UIBuilder : In the EXTERNAL /INTER-
NAL CALLS view we see thatUIBuilder has 31 methods that
constitute the internal behaviour. We see that the call-flow
is a complicated structure, and the internal collaborations
are more complex than in the other two classes.

Validation with Scanner : In this class, we identify a sit-
uation similar to that withOrderedCollection. The collabo-
ration between the methods occurs in pairs, and there are no
groups of methods collaborating with other groups. Since
Scanner is a small class, it is not surprising that the internal
collaborations are simple.

5 Related Work

We find different kinds of applications for understanding
object-oriented systems at the class level both using CA and
using other approaches.

Among those that use CA, we have two main axes:
one for analysing individual classes and the other one for
analysing class hierarchies.

Dekel uses CA to visualize the structure of the class in
Java and to select an effective order for reading the meth-
ods [9]. He calculates all the accesses to fields that each
method makes. In contrast to our approach, the concept lat-
tice he calculates does not provide information about the in-
teraction between the methods, nor does it reveal whether a
method accesses a combination of fields directly, by access-
ing their values, or indirectly, by invoking methods that ac-
cess them directly. To detect all the mentioned features, he
superimposes themethod call-graphonto the concept lat-
tice and obtains aembedded call-graph, which provides a
detailed visualization of the class.

Godin and Mili [13] have applied concept analysis
to maintain, understand and detect inconsistencies in the
Smalltalk Collection hierarchy. In their approach, they
show how Cook’s [6] earlier manual attempt to build a bet-
ter interface hierarchy for this class hierarchy (based on in-
terface conformance) could be automated. They suggest
how the design of a class hierarchy implementing the de-
tected interfaces could be organized in a way that optimizes
the distribution of the methods over the hierarchy. In C++
and Java, Snelting and Tip [24] have analysed a class hi-
erarchy by making the relationship between methods and
variables explicit. They were able to detect design anoma-
lies such as class members that are redundant or that can
be moved into a derived class. As a result, they propose
a new class hierarchy that is behaviourally equivalent to
the original one. Similarly, Huchard [14] and Leblanc [19]
have applied concept analysis to improve the generaliza-
tion/specialization of classes in a hierarchy.

There is also some relevant work to support the under-
standing of object-oriented systems at the class level that

is not based on CA. GraphTrace visualizes concurrent ani-
mated views to understand the way a system behaves [15].
ObjectExplorer [17] uses both dynamic and static informa-
tion that the reengineer can query and visualize via sim-
ple graphs to understand and verify hypotheses. Using ba-
sic graph visualizations to represent various relationships,
Mendelzon and Sametinger [23] show that they can express
metrics, verify constraints, and identify design patterns.
Crosset al., in the context of procedural languages, have
proposes and investigated new control structure diagrams
to support the reading of the applications’ control flow [8].
Lanza and Ducasse have proposedclass blueprints, which
are structured call flows enriched with semantical informa-
tion and metrics [18]. Finally, program slicing [11] is also
used to support the understanding of programs. Based on
slices, CodeSurfer [2] supports understanding by using hy-
pertext facilities.

6 Conclusions and Future Work

In this paper we have applied concept analysis to help in
the understanding of object-oriented classes. The identified
concepts are the collaborations between groups of methods
and attributes of a single class. Using them, we have defined
a number of usefulXRay views which correspond to groups
of collaborations that expose specific aspects of a class, and
they are particularly useful for understanding the behaviour
of a class. We have validated the technique by applying
it to a number of Smalltalk classes usingConAn, a tool
we have developed to automatically generate collaborations
that compose theXRay views.

In our first experiences we can observe the following:

• eachXRay view has a clear focus, and identifies a set
of methods exhibiting some key properties

• the views do not stand on their own, but complement
and reinforce each other

• although the generation of collaborations and the
views is fully automatic, their interpretation entails
iterative application of views and opportunistic code
reading

• the current approach does not take inheritance into ac-
count, which can be an impediment to understanding

Our next steps are to explore the definitions of new kinds
of views, and apply them to larger classes. We also intend
to explore ways of analysing classes in the context of their
class hierarchies, and also considering the possible relation-
ships with other class -not necessarily presented in the class
hierarchies.
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