
h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

What do developers consider magic literals? A smalltalk perspective
N. Anquetil a,∗, J. Delplanque a, S. Ducasse a, O. Zaitsev b, C. Fuhrman c, Y.-G. Guéhéneuc d

a Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 - CRIStAL, France
b Arolla, France
c ÈTS Montreal, Canada
d Concordia University, Canada

A R T I C L E I N F O

Keywords:
Software analysis
Software quality
Magic literals

A B S T R A C T

Context: Literals are constant values (numbers, strings, etc.) used in the source code. Magic literals are such
values used without an explicit explanation of their meaning. Such undocumented values may hinder source-
code comprehension, negatively impacting maintenance. Relatively little literature can be found on the subject
beyond the usual (and very old) recommendation of avoiding literals and preferring named constants. Yet,
magic literals are still routinely found in source code.
Objective: We studied literal values in source code to understand when they should be considered magic or
not (i.e., acceptable).
Methods: First, we perform a qualitative study of magic literals, to establish why and under which conditions
they are considered harmful. We formalize hypotheses about the reasoning behind how literals are considered
magic. Second, we perform a quantitative study on seven real systems ranging from small (a few classes) to
large (thousands of classes). We report the literals’ types (number, string, Boolean, . . .), their grammatical
function (e.g., argument in a call, operand in an expression, value assigned, . . .), or the purpose of the code in
which they appear (test methods, regular code). Third, we report on another study involving 26 programmers
who analyzed about 24,000 literals, to understand which ones they consider magic. Finally, we evaluate the
hypotheses defining specific conditions under which literals are acceptable.
Results: We show that (1) literals still exist and are relatively frequent (found in close to 50% of the methods
considered); (2) they are more frequent in test methods (in 80% of test methods); (3) to a large extent, they
were considered acceptable (only 25% considered magic); and (4) the hypotheses concerning acceptable literals
are valid to various degrees.
Conclusion: We thus pave the way to future research on magic literals, for example, with tools that could
help developers deciding if a literal is acceptable.
1. Introduction

Literals are constant values in source code, and magic literals are
constant values whose meaning might not be obvious to the reader
of the code. They have long been considered a type of code smell,
as they may hinder source-code comprehension, negatively impacting
maintenance [1, p. 166][2,3]. When the same literal is used in several
places, there is also a risk that a software change fails to modify all the
instances of the literal, thus resulting in a bug.

Yet, despite the very old recommendation of avoiding literals and
preferring named constants [4, p. 300], literals and magic literals are
still easily found in source code. Smit et al. [2] reported that magic
literals were common in the systems they studied.

∗ Corresponding author.
E-mail address: nicolas.anquetil@inria.fr (N. Anquetil).

1 ‘‘two’’ in Italian.

In this paper, we contrast Magic literals, that would best be replaced
by a named constant, with Acceptable ones, that may remain as is in the
source code. We therefore propose that if one cannot eradicate literals
in the source, we must learn to live with them. For example, we envi-
sion tools that assist developers avoiding magic literals by (1) warning
them when they introduce a magic literal and (2) refactoring magic lit-
erals semi-automatically. To do so, we need to better understand what
literals are used, where, and what may make them Acceptable or not
(i.e., Magic). This is difficult because the same value may have different
meanings in different contexts, and be Magic in one and Acceptable
in another. For example, ‘‘2’’ in the statement ‘‘circumference ∶=
radius * pi * 2’’ is not a magic literal [4, p. 300]. In this con-
text, it is self-explanatory and using a named constant (ex: ‘‘DUE1’’)
ttps://doi.org/10.1016/j.infsof.2022.106942
eceived 9 August 2021; Received in revised form 6 May 2022; Accepted 10 May
 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:nicolas.anquetil@inria.fr
https://doi.org/10.1016/j.infsof.2022.106942

N. Anquetil et al.

s

a

would be detrimental to understanding. On the other hand, the same
‘‘2’’ in the statement ‘‘r1 ∶= ((depth - 2) * arcWidth) + off’’ was
considered Magic by one of the participants of our study.

In this paper, we report the results of several studies to better
understand literals:

• First, we study the manifestation of the ‘‘problem’’ with a quali-
tative study of literals. Why are they detrimental and under what
conditions could they be acceptable? We deduce and formalize
5 + 1 hypotheses to reason about acceptable literals.

• Second, we perform a quantitative study on seven real systems
ranging from small (four classes) to large (7 700 classes) and
covering different domains. We report the literals’ types (number,
string, Boolean, . . .), their grammatical function (e.g., argument
in a call, operand in an expression, value assigned, . . .), or the
purpose of the code in which they appear (test methods, regular
code).

• Third, we study when a literal might be considered Magic or
Acceptable with the help of 26 developers who analyzed about
24,000 literals, from more than 3500 methods.

• Fourth, we formalize and validate 5+1 hypotheses regarding how
literals are considered Magic or Acceptable.

Results include:

• The confirmation that literals are frequent in source code. Almost
50% of all the methods in the seven systems (and up to 73%
for one system) contained at least one literal. And they are more
frequent in test methods, with 80% of them containing at least
one literal;

• Most of these literals (close to 75%) were considered Acceptable;
• Our proposed hypotheses about Magic and Acceptable literals

proved to be valid (giving results that were statistically signif-
icant with a 𝜒2 tests), although to varying degrees of practical
significance.

The rest of the paper is organized as follows: Since the study pre-
sented is based on Pharo2 systems, and Pharo has a syntax originating
from Smalltalk, Section 2 gives an overview of this syntax and discusses
its impact on the study. Section 3 describes our qualitative study of
(magic) literals and formalizes the hypotheses about acceptable ones. In
Section 4 we present the seven systems used for our quantitative study,
we give numbers on the prevalence of literals for each of these systems,
and we also test the validity of our hypotheses about the reasoning of
how acceptable literals are distinguished from magic ones. Section 6
discusses properties and limitations of the studies. Section 7 discusses
research related to the topic of this paper. Section 8 concludes and
proposes possible extensions and future work.

2. Background

We used the Pharo system, projects, and libraries to perform our
qualitative and quantitative analyses of (magic) literals. In the rest of
this paper, several snippets of Pharo code also serve as examples.

Therefore, in this section, we first recall the Pharo syntax, then we
give the list of Pharo’s literals that we extended slightly for the purpose
of this study. We also explain how named constants are defined in
Pharo.

Although Pharo might not be the most popular programming lan-
guage, we chose it for several reasons:

Expertise: This paper is an extension of a preliminary study [5] itself
done with Pharo;

2 pharo.org
 l
Applicability: We hope to use the results of the study to improve the
Pharo development environment to actively support developers
in avoiding Magic literals;

Convenience: We had the possibility to enlist several experienced
Pharo developers in our study and classify literals as Magic or
Acceptable for us;

Tooling: Pharo includes various tools and a reflexive API that made
the extraction of the data (literals) straightforward.

Throughout the paper we strive to make the discussion of results
more generic. When meaningful, we compare Pharo’s syntax or con-
ventions to that of other programming languages and we adopted
conventions that better match other programming languages. For ex-
ample, although nil is not a literal in Pharo (see below) we did consider
it as such in our study to match the conventions in languages like C,
Java, or others.

2.1. General Pharo syntax

Pharo syntax, following Smalltalk’s tradition, is compact and fully
fits on a postcard.3 It is composed of literals (boolean values, numbers,
strings, symbols, literal arrays, nil), variable definitions, assignments,
returns, method definitions, method annotations, lexical closures, and
messages. For example, there are no flow control instructions. Loops
and conditionals are expressed with messages sent to boolean objects
(e.g., methods ‘‘ifTrue:’’4 or ‘‘to:do:’’5). Messages are discussed below
but have the same meaning as in other object-oriented languages.

1 CardGame >> distributeCards
2 "Returns four random cards (numbered from 1 to 52)"
3 <menu: 'start'>
4 | cards |
5 cards := (1 to: 52) asOrderedCollection.
6 ^ (1 to: 4) collect: [:i | cards remove: (cards size atRandom)]

Listing 1: Pharo code example.

Listing 1, which defines a method distributeCards in class
CardGame, illustrates some of the syntactic elements of Pharo with
several examples of literals:

• Line 1: Method name — The actual method starts at its name
(distributeCards). What comes before here is a convention to
specify in which class it is implemented: CardGame;

• Line 2: Comment — Enclosed in double quotes, not to be mistaken
for a string (see below);

• Line 3: Pragma — Enclosed in ‘‘<’’ and ‘‘>’’, here the pragma
(annotation) is <menu:> and it has one argument (’start’);

• Line 3: String — Enclosed in simple quote, here ’start’;
• Line 4: Local variable declaration — Enclosed in ‘‘|’’. Variables are

not statically typed, so only their name is declared, here cards;
• Line 5: Assignment — Denoted by ∶=;
• Line 5: Message — There is no dot before a message sent (as in

other languages) but just a space. Here the message ‘‘to:’’ is sent
to the object ‘‘1’’ with argument ‘‘52’’, the result of this call is an
object to which the message ‘‘asOrderedCollection’’ is sent;

• Line 5: Statement separator — Denoted by a dot;

3 https://richardeng.medium.com/syntax-on-a-post-card-cb6d85fabf88
4 If the receiver (a boolean object) is true, executes the argument (a block,

imilar to a lambda).
5 The receiver (a number) creates a sequence of numbers up to the first

rgument (another number) and the second argument (a block, similar to a

ambda) is called for each number in the sequence.

http://pharo.org
https://richardeng.medium.com/syntax-on-a-post-card-cb6d85fabf88

N. Anquetil et al.

d
l
f

1

• Line 6: Message — Again the message ‘‘to:’’ is sent to the object
‘‘1’’ with argument ‘‘4’’ this time, and the message ‘‘collect:’’ is
sent to the result with argument the lexical closure (see below)

• Line 6: Return — Denoted by ˆ (caret symbol);
• Line 6: Lexical closure — Enclosed in square brackets, ‘‘:i’’ denotes

a parameter of the closure, and the code after ‘‘|’’ is the body of
the closure.

Messages are an important part of Pharo, because they are used to
efine method invocations, as in other object-oriented programming
anguages, but also all the control flow (see above). They can be as
ollows:

• unary messages: no argument e.g., ‘‘asOrderedCollection’’,
‘‘sin’’, or ‘‘atRandom’’. In Java syntax, they would correspond
to ‘‘asOrderedCollection()’’, ‘‘sin()’’, or ‘‘atRandom()’’;

• binary messages: they are operators (often arithmetic) with one
receiver and one argument e.g., ‘‘+’’ in ‘‘1 + 2’’. They have no
equivalent in Java since it uses primitive types for arithmetic
rather than messages;

• keyword messages: for messages with arguments. The arguments
are delimited by ‘‘:’’, e.g., ‘‘remove:’’ would correspond to the
message ‘‘remove(arg)’’ in Java syntax. When there are multiple
arguments, there are multiple keywords followed by ‘‘:’’, e.g., a
method for dictionaries: ‘‘at: key put: value’’ would correspond
to the Java syntax: ‘‘atPut(key, value)’’. The name of the Pharo
method in this case is ‘‘at:put:’’.

In Pharo, developers tend to write short methods. Zaitsev et al.
reported that the mean method length was only 5.7 lines and the
median was 3 [6]. This could have an impact on our study, since
shorter methods would be easier to understand and would contain
fewer literals.

2.2. Definitions of literals and their use

Literals are defined as follows: ‘‘Literals describe certain constant
objects, such as numbers and character strings. [. . .] The five types of
literal constant are (1) Numbers, (2) Individual characters, (3) Strings of
characters, (4) Symbols, and (5) Arrays of other literal constants’’ [7, p18–
19]. This definition is similar to definitions used by other programming
languages.

In our study, we use this definition of literals and extend it with
true, false, and nil, which are not literals per se in Pharo but predefined
objects contained in global variables. As explained above, these three
specific objects were added to the list of literals to better match the
conditions of other programming languages.

In Pharo, Symbols are a special kind of unique String for which
there is a single instance for each sequence of characters (symbols
are Flyweight [8]). Symbols are often used as keys in associative data
structures, such as dictionaries.

Named constants (typically public static final in Java) are often
represented by a method returning a literal. For example, pi could be
represented by a method ‘‘pi ˆ3.14159’’. We will come back to this
convention in the next section (Listing 4).

3. Qualitative study

In the literature, authors may call any kind of undocumented literal
a magic number. Martin highlights that ‘‘[t]he term ‘‘magic number’’
does not apply only to numbers. It applies to any token that has a value
that is not self-describing’’ [4, p. 300]. Thus, ‘‘magic numbers’’ could be
integers, strings, characters, boolean values, etc. To avoid confusion, we
prefer the term ‘‘magic literals’’ and use ‘‘magic numbers’’ only when
referring to magic literals that are numbers.

We now discuss what makes literals Magic (Section 3.1) or Ac-
ceptable (Section 3.2). These definitions are expressed as 5 + 1 formal

hypotheses that will be tested later on real cases.
3.1. Magic literals

Usage of literals can detract from code quality, for example by
reducing understandability, increasing logic duplication, or reducing
modularity (a missed opportunity for customization).

Understandability . Martin defines magic literal as ‘‘any token that
has a value that is not self-describing ’’ (our emphasis) [4, p. 300]. The
usage of magic literals hinders the understanding of program logic.
Developers (should) usually attempt to have code as self-explanatory as
possible to reduce the need for documentation, and, in turn, to reduce
the need for maintaining this documentation.

Magic literals can make source code less straightforward, because
these literals have ‘‘hidden meanings’’ that cannot be extracted from
the literals alone. They require additional knowledge that, if not docu-
mented, is difficult to obtain.

We may therefore hypothesize that the familiarity (experience) of
developers in a system or a domain should influence what literals they
consider Magic.

Hyp1. Novices in a system consider literals as Magic more often than
experts.

Listing 2 shows a method with a detailed comment about its purpose
and returned value. However, this method is difficult to understand
because of its magic literals. Line 10 is shifting the bits of an integer
(returned by the call to format) 16 times to the right, which is used
to discard the 16 least significant bits. Then the bit-wise ‘‘bitAnd:’’
operation is applied to the result and the 16r1F literal.

1 Behavior >> instSpec
2 "Answer the instance specification part of the format
3 that defines what kind of object an instance of the
4 receiver is. The formats are
5 0 = 0 sized objects (UndefinedObject True False et al)
6 1 = non--indexable objects with inst vars (Point et al)
7 [...]
8 24--31 = compiled methods (CompiledMethod)"
9

0 ^(self format bitShift: --16) bitAnd: 16r1F

Listing 2: Example of magic literals used for bit operations.

The purpose of the bit-wise ‘‘bitAnd:’’ is not explicit for anyone not
familiar with base-16. The literal 1F in base 16 is 11111 in base 2, and
the ‘‘bitAnd:’’ will therefore extract the 5 least significant bits from the
receiver. Still, we do not know why these specific bits are extracted and
there is no documentation (such as comments) to explain it.

Thus, using a base-2 representation could improve understandabil-
ity. Another improvement would be to create ‘‘named constants’’ which
would be done in Pharo by extracting the values 16 and 16r1F to be
returned by methods with useful names such as instSpecOffset and
instSpecMask, respectively.

Logic duplication. When the same magic literal is repeated over and
over, two difficulties arise from such duplication: (1) as with any
duplication, a typing mistake can happen in some occurrences, which
create bugs and confusion for developers and (2) it is not clear if the
(duplicated) values are coincidental.

For example, Listing 3 shows many occurrences of the magic literal
‘‘1024’’, which could refer to the same thing, i.e., the maximal length
of a jump in the bytecode: changing one would require changing all the
others. More subtle, and not explicit, are the relationships between the
magic literals ‘‘1024’’, ‘‘1023’’, and ‘‘256’’.

Note that modern development environments may offer better han-
dling of literal repetition by offering refactoring operations that will

N. Anquetil et al.

1

1

1

1

i
p
T
r
c
t

s
b
i
i

L
a
i

t
h
i
t

L
a

L
d
e
0
C
e

e
p
1
t

1 EncoderForV3 >> genJumpLong: arg1
2 (arg1 >= --1024 and: [arg1 < 1024])
3 ifTrue: [| tmp2 |
4 tmp2 := stream.
5 tmp2
6 nextPut: 160 + (arg1 + 1024 bitShift: --8);
7 nextPut: (arg1 + 1024) \\ 256.
8 ^ self].
9 ^ self
0 outOfRangeError: 'distance'
1 index: arg1
2 range: --1024
3 to: 1023

Listing 3: Example of a method with multiple occurrences of the
magic literal 1024.

modify all occurrences of a given literal. This refactoring, however, will
not take care of literals with a related but different value (e.g., ‘‘1024’’,
‘‘1023’’, and ‘‘256’’.) These will still need to be handled manually.

Modularity . Magic literals reduce the modularity and reusability of
methods in which they occur. The occurrence of a magic literal freezes
its value in the source code, preventing subclasses or client code to
adapt the method to their need. By creating a named constant, one
stabilizes the part of the code needing the value, while allowing the
value to be changed easily.

This raises the issue of how constant a ‘‘constant’’ is. For example,
the number pi is widely seen as an absolute constant. There is no
need to worry about understandability and modularity here, although
redundancy could be an issue [4, p. 300].

But other values, assumed constants, might depend on circum-
stances. For example, gravity on Earth is cited as a constant
by Fowler [1, p. 166], but it is subject to variations6 that might be
mportant for some. It does not seem too big a stretch to imagine a
hysics program reusing a generic library where Fowler’s GRAVITA-
IONAL_CONSTANT is defined, and later the author of the program
ealizing he needs a more flexible definition of the ‘‘constant’’ and
onsequently having to redefine all library functions/methods using
his value.

The Java convention to define named constants is to use public
tatic final. This solves the understandability and duplication issues,
ut not the modularity one – a final variable may not be reassigned. It
s, of course, possible to define a constant as non-final in Java, but this
s not the accepted convention.

The convention in Pharo is to use a method returning a literal (e.g.,
isting 4). This tackles all three issues, as the name of the method acts
s the name of a Java constant, whereas the method can be overridden
n subclasses to adapt its value.

1 earthGravity
2 ^ 9.81

Listing 4: Example of how Pharo defines a named constant to
improve modularity.

These three dimensions of code quality are orthogonal to the con-
cept of Magic vs. Acceptable literals and will not be further discussed in
this paper.

6 https://en.wikipedia.org/wiki/Gravity_of_Earth
 e
3.2. Acceptable literals

Authors recognize that the presence of literals in source code is not
a code smell per se [1,4]. In some contexts it is legitimate or necessary
to insert a literal value at a specific place in the code. We must identify
these legitimate usages of literals.

From the discussion in previously cited work (prominently [1,4])
and the experience of the authors, we propose a list of Acceptable literal
cases. We associate hypotheses with each of these categories, formal-
ized here and tested in Section 4.4 on data from real projects. The
cases of Acceptable literals may not be complete and other cases might
be proposed, for example specific to other programming languages. If
Hyp1 holds, one should expect that other rules could be identified in
specific application domains or for specific systems. Whether this effort
would be worthwhile would depend on the domain or the system.

Self-describing literals. Some literals directly refer to the data that they
hold. For example, the Booleans (true and false), the empty pointer
(nil or null), the empty string, and in Smalltalk the empty arrays (#()
and {}). Those literals are acceptable because the semantics is obvious
upon reading.

Using string literals in the source code might also be legitimate,
particularly if the target audience is end users. Developers understand
that special efforts must be put in to allow end users to understand the
messages of a program. If a constant is in natural language, then it is
self-explanatory and therefore Acceptable.

Note, however, that if the target audience is developers (as for
strings used as dictionary keys) it is akin to normal identifiers and
therefore subject to the same shortcomings (too short, cryptic, unre-
lated). Dealing with this difficulty is outside the scope of this paper.
Maybe some artificial intelligence or natural language processing solu-
tion could help deciding whether a string is actually self-describing?

Internationalization is another special case that we do not consider.
Even if source code contains a string in some foreign language, we
assume the developer understands it.

1 CriticBrowser class >> icon
2 "Answer an icon for the receiver."
3 ^ self iconNamed: #smallWarningIcon

Listing 5: Example of iconNamed: method call.

Pharo has symbol literals (nonexistent in Java, see Section 2.2). We
reat symbols as strings and also consider them Acceptable because they
ave a readable form, contrary to numbers that do not convey semantic
nformation beyond their actual values. Listing 5 shows a method using
he symbol #smallWarningIcon, which is explicit.

We hypothesize that ‘‘self-describing’’ literals are Acceptable.

Hyp2. Self-describing literals are less often magic than other literals.
iterals considered self-describing in this paper are Booleans, empty
rrays, empty pointer, strings, and symbols.

iterals related to coding conventions. Programming languages usually
efine some conventions that must be respected by developers. An
xample of such a convention is the indexing of collections. Java uses
as first index; Python uses −1 to refer to the last element of a list;
considers 0 as false and any other value is true; C again denotes the

nd of strings with the character of ASCII code 0; etc.
Such literals are acceptable because the programming languages

xplicitly expect developers to use them. This assumption is also sup-
orted by Smit et al. [2] whose Java-centered study considered −1, 0,
, and 2 as non-magic. Furthermore, these conventions are described in
he language’s specifications, and it is very unlikely that they change.

Pharo also has such conventions. They are often contextual, because
ven flow control operations are not part of the language syntax but

https://en.wikipedia.org/wiki/Gravity_of_Earth

N. Anquetil et al.

w
c
s
t
c
p
o
(
i
n
t

b
a
a
l
t
a
p
a

o

L
e
r

o

Table 1
Literals ignored in the context of certain message because they follow
known code conventions.

Selector Literal Role

to: 1 Receiver
to:by: 1 Receiver
to:do: 1 Receiver
+ 1 1st arg.
- 1 1st arg.
nextPut: Character 1st arg.
nextPutAll: String 1st arg.
<< Character 1st arg.
<< String 1st arg.
name: String 1st arg.

are messages like any others. Thus to loop over an array, one would
use ‘‘1 to: anArray size do:. . . ’’ which sends the message to:do: to
‘‘1’’, the starting index of arrays ([7, p. 21]). Similarly in Listing 6,
copyFrom:to: is sent to an instance of a string, which is a Sequence-
ableCollection (of Characters), to copy it from the first argument
index to the last. Collections being indexed from 1 (as arrays), the
literal ‘‘1’’ is often used as first argument of this message.

1 'abcdedfgh' copyFrom: 1 to: 5

Listing 6: Example of literals as arguments.

Table 1 lists the contexts (messages sent) we identified in Pharo
here literals are acceptable because they fall in the Coding Convention

ategory. In the table, the ‘‘Selector’’ column is the name of the message
ent. The ‘‘Role’’ column describes where the literal should appear in
he message sent (receiver of the message or argument). The ‘‘Literal’’
olumn describes the acceptable literal. The first three messages im-
lement a for loop in Pharo and the receiver is the starting value
f the loop (1 being a common value). The two arithmetic operators
+ and -) with an argument (second operand) of 1 correspond to the
ncrement (resp. decrement) operator of other languages. The messages
extPut:, nextPutAll:, and << are used to append characters or strings
o output streams (similar to the << on ostream in C++); they take as

(first) argument the character or string to append to the stream. The
last message (name:) is a setter for a name instance variable that is
commonly found in classes; the (first) argument is a string denoting
the name to give.

The list comes off the experience of the authors as Pharo pro-
grammers and from an early analysis of a small set of literals (100
literals, [5]). Defining such a list is a trade-off between recall (finding
all Acceptable literals) and precision (finding only Acceptable literals).
In specific contexts, other messages could be added to the list (see
Section 6). We did not strive to reach the best possible list for the
systems considered, but wished mainly to evaluate that such a list
could make sense and give good results. The results are discussed in
Section 4.4; they show that the list could be improved.

We hypothesize that all the usages listed in Table 1 represent
legitimate cases of literals in the source code.

Hyp3. Literals matching one of the contexts described in Table 1 are
less often magic than others (context here includes the method sent and
the specific literal in a specific role, e.g., receiver, first argument).

Named literals. As mentioned in Section 3.2, Java represents named
constants as public static final variables to which a literal value is
assigned. More generally, a literal directly assigned to any variable
(e.g., Listing 7) may also be considered acceptable as the variable name
provides the semantics.
1 EventSensorConstants class >> initializeEventTypeConstants
2 "Types of events"
3 EventTypeNone := 0.
4 [...]

Listing 7: Example of literal assignments.

1 IntegerTest >> testNthRootTruncated
2 <timeout: 5>
3 | tooBigToBeAFloat |
4 tooBigToBeAFloat := 1 << 2000.
5 self assert: (tooBigToBeAFloat nthRootTruncated: 100)

equals: 1 << 20.
6 ...

Listing 8: Example of ‘‘<timeout:>’’ pragma usage with an argument.

In Pharo, public static final variables do not exist, but named con-
stants are often implemented through simple methods only returning a
value (Listing 4) allowing developers to access them explicitly.

Furthermore, McConnell [9] referred to named constants as a lower-
level use of information hiding in design. We therefore hypothesize that
it is acceptable for a literal to be assigned to a variable or returned
directly by a method because its semantics is provided by the variable
or method names.

Hyp4. Literals directly assigned to a variable or directly returned by
a method are less often magic than other literals.

Literals in method annotations. Pragmas in Pharo and annotations in
Java act as a tag attached to methods or classes. They may accept
parameters.

Annotations and pragmas can be parameterized with arguments
(e.g., in Java ‘‘@Test(timeout=1000)’’, or the same in Pharo
‘‘<timeout=5>’’, see Listing 8). These arguments can only be literals
ecause the annotations or pragmas are interpreted during parsing
nd are static by nature. We give examples of a string argument to
pragma in Listing 1 and an integer argument in Listing 8. Thus, any

iteral that is an argument to a pragma is considered Acceptable because
he language imposes it to be a literal — named constants are not
llowed there. Note that although literals are mandatory in this case,
rogrammers considered them magic in some cases (see Sections 4.4
nd 6.4).

Hyp5. Literals that are arguments of a pragma (annotation) are less
ften magic than other literals.

iterals in test and example methods. Literals may appear in test and
xample code [10]. They are usually acceptable for the following
easons:

1. Tests or examples should stay as simple as possible. Having to
create extra entities (constant variables of methods) would make
the code more complex.

2. A test class may contain many tests (methods) each using dif-
ferent literals. Refactoring all these literals would inflate the
code.

3. Literals in tests or examples are used to build instances of
demonstrative objects only used locally and transiently.

The Literal Value pattern [11] is a common way to specify the values
f attributes of elements in a test. According to this pattern, they can

N. Anquetil et al.

a
l
t
d

p
t
p

‘

4

w
c
t
(
r
m
t
h

4

q
R
i
d
i
s
c
t

M

P

P

P

R

S

V

m
T

i
d

s
‘
m
a
o

m
t

p
c

(
t
c

o
a
9

g
c
t
(
m
V
w

t
2
(
m

be self-describing values, e.g., ’Irrelevant product name’ for a string
rgument in an object constructor used in a test method. However,
iterals can sometimes be code smells in tests. If they are repeated, then
hey should be replaced with a symbolic constant to reduce test-code
uplication.

Example methods in Pharo are denoted with the <example>
ragma. This does not fall in the previous hypothesis case, as we are
alking here of the literals in the body of a method (and the example
ragma has no argument).

Hyp6. Literals in test methods or example methods (i.e., having the
‘example’’ pragma) are less often magic than other literals.

. Quantitative study on the prevalence of literals

Now that we have defined and discussed magic literals qualitatively,
e want to assess the prevalence of literals, magic or not, in the source

ode of different systems. First, we present the systems studied in
his experiment, and descriptive statistics on the presence of literals
Section 4.1). Second, we perform a qualitative study to collect and
eport the prevalence of literals (Section 4.2). Third, we perform a
anual validation of these literals, with external developers, to report

he prevalence of magic literals (Section 4.3). Last, we validate the
ypotheses of the preceding section (Section 4.4).

.1. Subject systems

We selected seven systems or libraries on which to perform our
uantitative and qualitative study: Morphic, Parser , Pharo, Polymath,
oassal, Seaside, and VMMaker (see Appendix A for version and repos-

tory details). The systems were chosen from different application
omains and we would have several experts or knowledgeable partic-
pants for classifying the literals in these systems. For some of these
ystems, we had expectations on what kind of literals they would
ontain (e.g., Polymath should contain numerical literals) and we aimed
o cover different types of literals (character, string, numerical).

orphic: The graphical user-interface library of Pharo.

arser : A small parser and lexical scanner library. We expect it to
contain many character literals. It does not appear much in the
discussions because of its small size.

haro: A Smalltalk-like programming language as well as a devel-
opment environment. Pharo has heterogeneous domains of ap-
plication, as it includes a programming language, a software
development environment, process handling and multitasking,
streams and input–output, etc. Morphic and Parser are usually
considered a part of Pharo; here we explicitly excluded them to
avoid overlaps.

olymath: A mathematical library to represent mathematical abstrac-
tions such as Fourier transforms, random number and statistical-
distribution generators. We expect it to contain many numerical
(integer, float) literals.

oassal: A visualization engine to draw graphs or graphics of data and
source code. Because of the layout and drawing of graphs, we
expect it to contain numerical literals, maybe more integers than
floats.

easide: A server-side framework for developing and running Web
applications. Because of the HTML code generation, we expect
it to contain many string literals.

MMaker : (also known as OpenSmalltalk-VM) A generator of the
Smalltalk virtual machine (in C) from a description in a higher
abstraction-level language. Because of the C code generation, we

expect it to contain many string literals. i
Table 2
Descriptive statistics on the seven studied systems (numbers of classes, methods, and
literals; percentages of methods with literals, average numbers of literals per method
that do have literals).

#class #method meth. w/ lit. #literal lit./meth.

Regular methods (i.e. excluding tests and examples)

Morphic 363 8 668 3 660 42.2% 9 877 2.7
Parser 6 140 76 54.3% 241 3.2
Pharo 7 190 80 534 29 851 37.1% 81 307 2.7
Polymath 227 1 969 945 48.0% 3 238 3.4
Roassal 867 9 783 4 313 44.1% 16 361 3.8
Seaside 626 4 730 2 063 43.6% 4 611 2.2
VMMaker 328 15 012 10 887 72.5% 64 641 5.9

overall 9 607 120 836 51 795 42.9% 180 276 3.5

Test or example methods only

Morphic 26 123 89 72.4% 485 5.4
Parser 3 65 56 86.2% 248 4.4
Pharo 1 408 14 133 11 450 81.0% 62 658 5.5
Polymath 97 813 754 92.7% 6 709 8.9
Roassal 28 169 144 85.2% 978 6.8
Seaside 96 607 564 92.9% 3 583 6.4
VMMaker 28 232 218 94.0% 2 219 10.2

overall 1 686 16 142 13 275 82.2% 76 880 5.8

Pharo is a large system, while Parser is a small one; the others are
edium size, with Roassal and Seaside on the upper range, as shown by
able 2 (first two columns).

Table 2 provides descriptive statistics of the systems studied includ-
ng the literals they contain. See Appendix B for the details of how the
ata was extracted using the reflective API of Pharo.

Note that the number of classes is only used as indication of the
ize of the systems. There may be an overlap between regular and
‘test’’ classes as an otherwise regular class may contain an example

ethod, or an otherwise test class can contain a regular method (e.g.,
utility method to do some processing). For methods, there is no such
verlapping and the distinction is clear.

Overall, a significant proportion of methods contain literals (regular
ethods = 42.9%, test or example methods = 82.2%). This confirms

hat literals are prevalent and Magic literals could be an issue.
One system, VMMaker , stands out because it has the highest pro-

ortion of regular methods with literals (72.5%) and the highest con-
entration of literals in regular methods with literals (5.9).

Tests have much higher proportions of methods with literals
82.2%) and also higher densities of literals per method (5.8) compared
o 3.5 for regular methods. This observation seems natural as tests must
ompare computed values to some explicit standards.

Again, VMMaker stands out as the system with the highest densities
f literals per test method, 10.2. Seaside and Polymath also come out
s systems with a high proportion of test methods containing literals,
2.9% and 92.7%, respectively.

Considering the proportions of literals found in tests, there are two
roups. On the one hand, Parser , Pharo, Polymath, and Seaside have
lose numbers of literals in regular methods and test methods, even
hough they may have much fewer test methods than regular ones
e.g., Pharo, 7190 regular methods with 81,307 literals and 1408 test
ethods with 62,658 literals). On the other hand, Morphic, Roassal, and
MMaker have much fewer literals in tests. They are also the systems
ith comparatively fewer test methods.

However, the relation between the numbers of test methods and of
est literals is not direct. For example, one third (813∕(813 + 1969) ≃
9%) of Polymath methods are tests, but they contain two thirds
6709∕(6709 + 3238) ≃ 67%) of all the literals. Similarly, 15% of Pharo
ethods are tests (14, 133∕(14, 133 + 80, 534)), but they contain 44% of
ts literals (62, 658∕(62, 658 + 81, 307)).

N. Anquetil et al.

a
o

Table 3
Distributions of the types of literals for each studied system (number of literals per type followed by their percentages over
all literals for that system).

Int. Strng Symb. Bool. Arr. nil Float Char.

Morphic 4 385 827 2 314 1 316 310 815 330 65
42.3% 8.0% 22.3% 12.7% 3.0% 7.9% 3.2% 0.6%

Parser 96 196 74 25 33 10 1 54
19.6% 40.1% 15.1% 5.1% 6.7% 2.0% 0.2% 11.0%

Pharo 52 390 37 834 24 307 11 505 7 679 5 095 2 021 3 134
36.4% 26.3% 16.9% 8.0% 5.3% 3.5% 1.4% 2.2%

Polymath 6 864 414 120 138 820 89 1 457 45
69.0% 4.2% 1.2% 1.4% 8.2% 0.9% 14.6% 0.5%

Roassal 8 738 3 442 2 113 560 790 323 1 227 146
50.4% 19.9% 12.2% 3.2% 4.6% 1.9% 7.1% 0.8%

Seaside 1 629 4 598 650 481 305 293 56 182
19.9% 56.1% 7.9% 5.9% 3.7% 3.6% 0.7% 2.2%

VMMaker 37 271 7 441 12 102 7 086 609 1 496 222 633
55.7% 11.1% 18.1% 10.6% 0.9% 2.2% 0.3% 0.9%

all 111 373 54 752 41 680 21 111 10 546 8 121 5 314 4 259
43.3% 21.3% 16.2% 8.2% 4.1% 3.2% 2.1% 1.7%
(
c
e
s

t
c
t
a
e

6
(

1
m
c
t
c

4.2. Prevalence of all literals

Table 3 provides the numbers and percentages of each type of literal
for the seven studied systems and overall.

Except in the case of Seaside and Parser , Integer is the most frequent
type. We believe this is due to the ubiquitous nature of integers. They
are needed for domain values just like Strings or Floats, but they are
lso required for algorithmic-like looping over arrays (see discussion
f Hyp3 in Section 3.2).
Seaside and Parser have more string literals (56.1%, 40.1%) than

integer literals (19.9%, 19.6%), because string literals describe web
content (HTML elements, MIME types, URIs, etc.) and parsing error
messages respectively.

String and Symbol are the second and third most frequent types.
The prevalence of symbols (18.1%) over strings (11.1%) in VMMaker is
possibly due to its nature as a system performing batch computations
with little to no user input.

Polymath differs from the other systems with very few string (4.2%)
or symbol (1.2%) literals, but much more float (14.6%) and array
(8.2%) literals. This clearly comes from its application domain.

Characters seem to be rarely used, except in Parser , which uses these
characters in its parsing rules.

4.3. Prevalence of magic literals

We asked 26 developers (including five of the authors) to study and
characterize literals as magic or not. The participants can be described
as follows:

• Level of education was high, with only three not having com-
pleted a master in computer science, 14 having a master (or
equivalent) including height of them doing a PhD at the time,
and nine participants already having a PhD;

• Experience in computer science ranges from ‘‘none’’ (only
courses) for four, between 1 and 5 years for four, between 6 and
10 years for seven; between 11 and 20 years for five; and six with
over 20 years;

• Most of them (23) were working in a research environment,
either as a student (intern, Ph.D. student), professor, or research
engineer in a research institute. The three others were developers
in companies;

• Most of them (21) were working for public organizations at the
time, with 10 of these having previous experience in working for
private companies;

• Level of expertise in Smalltalk was high among them, with all but
two having several years of experience programming in Smalltalk
as their main programming language. Four of the participants are
among the lead contributors of Pharo.
 a
For each system studied, we collected all the methods having literals
and grouped them in batches of 50 methods. Thus a batch contained
at least but usually more than 50 literals (more than one literal per
method). For each batch, the methods were chosen randomly. We
forced a minimal level of redundancy by selecting 10% of a batch (5
methods) among methods pertaining to previous batches. Having the
same literal evaluated by more than one participant allows to have
different opinions on it to test the bias that experience in the system
could introduce (see Hyp1). We also ensured that at least 10% of a
batch were test methods. Thus test methods are overrepresented to
ensure that we had enough data to analyze them separately (e.g., to
validate Hyp6).

The result of this classification work is available as a replication
package at https://doi.org/10.5281/zenodo.5818035.

A shared document listed all available batches, identified by the
name of the subject system and a sequential number (e.g., ‘‘Pharo-12’’).
The developers were asked to choose one batch and put their name in
front of it to mark it as done.7 Having different participants evaluate
systems that they might not know well allows us to test Hyp1.

For the study itself, a small tool (see Fig. 1) presented the methods
one at a time (figure, left) with the source code of the method (figure,
top right), and the list of its literals (figure, middle right). The par-
ticipant had to classify each literal as Magic, Acceptable, or Undecided
even though check boxes appear in the interface, it was not possible to
heck more than one). The participant had access to the entire Pharo
nvironment if needed (figure, ‘‘Browse’’ button on the top right) to
tudy the method in its class, related methods, etc.

Participation was entirely voluntary and participants were assured
hat their answers would not be divulged along with their names. They
ould choose to work on any system(s) by marking the batches as
reated in the shared document. We only asked them not to concentrate
ll on the same systems, to keep a balance on the number of literals
valuated per system.

The study considered 3857 (2818 + 1039) methods (5.9% of the
5,070 total methods with literals). From these, 1039 were test methods
7.8% of the 13,275 test methods with literals).

Table 4 shows that 24,207 literals in total were evaluated (13, 705+
0, 502). Because there is some imposed evaluation redundancy in the
ethods (see above) the same literal (at a specific place in the source

ode) could be classified several times. To evaluate this point, we give
he number of source literals (i.e., the distinct literals in the source
ode). For regular methods, there are 11,945 source literals which

7 Participants only knew who evaluated what batch, they did not have
ccess to each other’s evaluations.

https://doi.org/10.5281/zenodo.5818035

N. Anquetil et al.

i
l
f
c
o

s
t
t

a

Fig. 1. The small interface to evaluate a batch of methods with literals. On the left the list of methods, the first three already analyzed. On the top right, the current method
with one literal (‘‘200’’) highlighted. The ‘‘Browse’’ button allows seeing this method in a normal system browser for its class. On middle right, the list of literals for the current
method with the three choices for each literal. At the bottom a progress bar for this batch and a button to save the result in a file.
Table 4
Descriptive statistics on the manual classification study (numbers of classes, methods,
and literals; percentages of methods with literals; average numbers of literals per
method that do have literals).

#class #meth. #lit. #srce lit. lit. redun. lit./meth.

Regular methods (i.e., excluding tests and examples)

Morphic 64 174 471 463 1.7% 2.7
Parser 6 76 241 241 0.0% 3.2
Pharo 624 793 3 394 2 948 15.1% 4.3
Polymath 126 357 1 527 1 253 21.9% 4.3
Roassal 254 522 3 145 2 430 29.4% 6.0
Seaside 231 455 1 502 1 400 7.3% 3.3
VMMaker 131 441 3 425 3 210 6.7% 7.8

overall 1 436 2 818 13 705 11 945 14.7% 4.9

Test and example methods only

Morphic 11 20 73 73 0.0% 3.7
Parser 3 56 248 248 0.0% 4.4
Pharo 235 344 2 716 2 181 24.5% 7.9
Polymath 73 287 3 549 2 742 29.4% 12.4
Roassal 29 85 963 682 41.2% 11.3
Seaside 58 193 1 985 1 603 23.8% 10.3
VMMaker 17 54 968 684 41.5% 17.9

overall 426 1 039 10 502 8 213 27.9% 10.1

gives 14.7% redundancy8: (13, 705−11, 945)∕11,945. The fact that there
s much more redundancy for tests (27.9%) is probably due to the
arger numbers of literals per test method. Morphic has 0% redundancy
or test methods because very few of them (only 20) ended up being
lassified. Parser has 0% redundancy because it was evaluated by only
ne participant.

The number of literals per method is almost always larger in this
tudy (regular + test methods: 6.3) than for all the systems (regular +
est methods: 3.9), see Table 2. We could not find an explanation for
his fact.

Table 5 summarizes the results of the participants’ analyses. Here
re the important points:

8 redundancy = #𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒
= 𝑡𝑜𝑡𝑎𝑙 − #𝑠𝑜𝑢𝑟𝑐𝑒 .
#𝑠𝑜𝑢𝑟𝑐𝑒 #𝑠𝑜𝑢𝑟𝑐𝑒
Table 5
Percentages of magic literals for each system and for each literal type. In parentheses
number of literals that were classified (to compare to the total number of literals in
Table 3).

Int. Strng Symb. Bool. Arr. nil Float Char.

Morphic 18.6% 0.0% 2.0% 0.0% 7.7% 4.8% 17.2% 0.0%
(242) (36) (99) (56) (26) (42) (29) (14)

Parser 21.9% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
(96) (196) (74) (25) (33) (10) (1) (54)

Pharo 27.0% 6.5% 6.1% 5.6% 14.7% 13.3% 25.3% 38.1%
(3 239) (874) (792) (234) (441) (263) (91) (176)

Polymath 35.5% 12.8% 4.4% 23.9% 33.3% 36.5% 51.9% 9.1%
(3 469) (156) (68) (46) (330) (52) (933) (22)

Roassal 27.0% 26.2% 18.6% 17.6% 26.9% 21.1% 27.3% 0.0%
(2 764) (351) (269) (91) (219) (95) (311) (8)

Seaside 18.4% 9.9% 7.0% 3.1% 7.9% 7.2% 6.3% 9.8%
(1 315) (1 231) (171) (159) (214) (222) (32) (143)

VMMaker 43.7% 10.5% 2.2% 14.0% 36.4% 23.7% 33.3% 21.4%
(2 929) (408) (536) (321) (55) (76) (12) (56)

all 31.6% 10.3% 6.3% 9.7% 20.7% 14.5% 42.8% 20.1%
(14 054) (3 252) (2 009) (932) (1 318) (760) (1 409) (473)

• Results vary per system: Morphic and Seaside have only 10.3% and
12.3% of literals considered Magic while Polymath has 37.1% and
VMMaker 32.6%. Note these numbers are not show directly in the
table.

• Float literals are more often considered Magic (42.8%) even for
systems in the mathematical domain (Polymath: 51.9%). We give
an example of a float considered magic in Polymath in Listing 10
(next section). Results for float literals in Morphic, Pharo, Seaside,
and VMMaker may be insignificant because they occur much less
(fewer than 40 cases for Morphic, Seaside, VMMaker ; 91 cases for
Pharo).

• Symbols, Booleans, and Strings are generally considered less Magic
(10% or less of Magic literals among them). Our explanation is
that Symbols and Strings are often self-explanatory and Booleans
have only two possible values. See Listing 9 for an example of a
Boolean considered Acceptable by two participants (and Undecided
by a third one). Listing 11 gives examples of a String and a Symbol
literals considered Acceptable.

• Apart from Float (already discussed above), the types with most

variation are nil, array, and Character. Only 4.8% of nil literals are

N. Anquetil et al.

4

b

Fig. 2. Classification of literals according to expertise of the participant (Hyp1). Bars
show percentages, numbers give raw values.

considered Magic in Morphic9 but 36.5% in Polymath; 7.7% Magic
array in Morphic but 34.4% in VMMaker ; 0% Magic Character in
Morphic and Roassal but 38.1% in Pharo. However, these results
may not be very significant because they have fewer occurrences
(only 473 Character literals in total over the 24,207 classified; 760
nil and 1318 array literals.

• The literal nil was considered Magic in 15% of the cases. This
is another indication that people may have different definitions
of what is Magic, like understanding what nil means, but not
understanding why it is used at a specific location in the code.
Listing 9 shows an example where the nil literal was classified
as Magic by a ‘‘low experience’’ participant (and Acceptable by
another ‘‘low experience’’ participant and a ‘‘high experience’’
participant).

1 RSRotated>>#dragEnd: evt
2 drag := false.
3 prevAngle := nil.

Listing 9: Example from Roassal. RSRotated is a class handling user
interaction (mouse drag rotation).

.4. Validating hypotheses

We may now check the validity of the 5+1 hypotheses formalized
in Section 3. Hyp1 (Section 3.1) differs from the others as it looks
at the experience of the developer. The remaining five hypotheses
(Section 3.2) only consider the source code.

Fig. 2 shows, for each category, the classification of literals accord-
ing to the participants’ expertise in the subject system, as self-declared
by the participants. One clearly sees that the proportion of literals
considered Magic drops as the expertise increases. Although this is
less clear in the figure, the same goes for the proportion of Undecided
(4.9% for ‘‘low’’ expertise, 3.3% for ‘‘medium’’ expertise, and 2.9% for
high expertise). A 𝜒2 test confirms that this hypothesis holds (𝑝-value
< 1e−5).

Listing 9, in the previous section, showed example of literals clas-
sified differently by participants with different expertise. Listing 10
shows an example of a domain-specific literal (Euler–Mascheroni con-
stant, used in the Gumbel distribution10) that was classified as Magic
y a (self declared) ‘‘low expertise’’ participant.

9 We do not consider Parser here because it has very little Magic literals
overall.

10 https://en.wikipedia.org/wiki/Gumbel_distribution
1 PMFisherTippettDistribution >> average
2 "Answer the average of the receiver."
3 ^0.577256649 ∗ beta + alpha

Listing 10: Example from Polymath where Float literal 0.577256649
(Euler–Mascheroni constant) was classified as Magic by one

participant.

Table 6
Number of Magic and Acceptable literals overall and for the five hypotheses based on
the code. Hypotheses 2 to 5 give the numbers for the literals respecting its condition
and the ‘‘other literals’’ (i.e., ‘‘Overall’’ - hypothesis). Hypothesis 6 (test methods) is
not compared to ‘‘Overall’’ methods but to ‘‘Regular’’ methods.

Hypothesis # Other % Magic

Overall Magic 6 075 – 25.1%
Acceptable 18 132 –

Hypothesis 2 Magic 672 5 403 9.4%
(self describing) Acceptable 6 447 11 685
Hypothesis 3 Magic 289 5 786 18.1%
(lang. convention) Acceptable 1 310 16 822
Hypothesis 4 Magic 285 5 790 20.8%
(named literals) Acceptable 1 086 17 046
Hypothesis 5 Magic 74 6 001 8.5%
(pragma arg.) Acceptable 795 17 337

Regular Magic 3 137 – 26.6%
Acceptable 8 673 –

Hypothesis 6 Magic 2 938 3 137 23.7%
(tests/examples) Acceptable 9 459 8 673

For each of the five remaining hypotheses (see Table 6) we count the
number of Magic and Acceptable literals that respect the conditions of
the hypothesis (e.g., number of Magic and Acceptable literals as pragma
argument for Hyp5). These values are compared to the number of
literals that do not respect the condition (‘‘other literals’’ = Overall - hy-
pothesis). For Hyp6, we compared to the number of ‘‘regular’’ methods,
because ‘‘overall’’ also contain these text and example methods.

We thus obtain a contingency table for each hypothesis and the
independence of the categories is tested with a 𝜒2 test. If the 𝑝-value
of the test is lower than 5%, we conclude that the distribution of
Magic/Acceptable literals in the hypothesis does not follow the distri-
bution in the other literals. We then compare the percentage of Magic
literals in the hypothesis to the percentage in the other literals and see
whether the literals in the hypothesis tend to be less magic.

The 𝑝-values of the 𝜒2 tests are < 1e−5 for the five hypotheses
confirming that ‘‘hypothesis literals’’ and ‘‘other literals’’ do not follow
the same distribution.

The percentage of Magic literals is inferior to 25.1% (overall per-
centage from Table 6) for all hypotheses, confirming that there are
fewer Magic literals respecting the conditions of the hypotheses. In
other words, these literals are more likely to be Acceptable.

However, all hypotheses do not have the same strength. We discuss
each of them in more detail.

Hyp2 (self-describing literals) is strong with 9.4% literals considered
Magic. In detail, symbols and empty arrays have around 6.5% Magic
literals; Booleans and strings have around 10% Magic literals. To our
surprise, the empty pointer (nil) literal was the worst, with almost 15%
considered magic.

Listing 9 shows examples of the nil literal and a boolean one. These
two have conflicting classifications: nil was classified as Acceptable
by a ‘‘low experience’’ participant and a ‘‘high experience’’ partici-
pant, and Magic by another ‘‘low experience’’ participant; the Boolean
false was classified as Acceptable by the same ‘‘low experience’’ and
‘‘high experience’’ participants, and Undecided by the ‘‘low experience’’
participant.

https://en.wikipedia.org/wiki/Gumbel_distribution

N. Anquetil et al.

a
a

c
M
a
c
2
a
1
i
c

w
u

M
(
(
l
o
s
t
c
o

(
M
e
m

e
(
w

Listing 11 shows an example of a string literal (’All superclasses’)
nd symbol literal (#systemIcon) that were classified as Acceptable by
‘‘medium experience’’ participant.

1 Behavior >> spotterSuperclassesFor: aStep
2 <spotterOrder: 40>
3 aStep listProcessor
4 title: 'All superclasses';
5 allCandidates: [self allSuperclasses];
6 itemIcon: #systemIcon;
7 filter: GTFilterSubstring

Listing 11: Example from Pharo where the string ’All superclasses’
and symbol #systemIcon were evaluated as Acceptable. The pragma

argument (40) was judged Magic by the same participant.

Hyp3 (language conventions) is somehow weak with 18.1% literals
onsidered Magic. In detail, three conditions are less or equal to 8%
agic literals: ‘‘1’’ as starting value of a loop; strings and characters

ppended to output streams; and strings in the name: message. The
ondition on increment/decrement of 1 is much less effective with
5.5% Magic literals (value not shown), worse than the overall percent-
ge. This is especially surprising, as incrementing (or decrementing) by
has often been considered an Acceptable literal (e.g., see the Mag-

cNumber rule of Checkstyle: https://checkstyle.sourceforge.io/config_
oding.html#MagicNumber).

Listing 12 shows a typical example of a loop where the literal ‘‘1’’
as classified Acceptable by two ‘‘low experience’’ participants when
sed as the initial value in the loop 1 to: self size do:.

1 PMVector >> log
2 "Apply log function to every element of a vector"
3 1 to: self size do: [:n | self at: n put: (self at: n) log].

Listing 12: Example from Polymath where the ‘‘1’’ literal is Acceptable
as initial value in the loop 1 to: self size do: .

Hyp4 (named literal) is also weak with 20.8% literals considered
agic. In detail (not in the table), the literals assigned to a variable

20.5%) is a bit better than literals directly returned by a method
22.3%). It is surprising that, when defined as a constant, one in five
iterals is still considered Magic. It might be due to poor name choices,
r it might suggest that the problem of literals’ semantics goes beyond
imply giving them a name. Another possible explanation would be
hat the participants only see a small part of the code (the method
ontaining the literal). It may be that on a larger scale, the interest
f having named constants is more obvious.

Listing 13 shows a named literal in the code for the Calypso browser
Pharo’s tool to browse classes and their methods). It was evaluated as
agic by a ‘‘high experience’’ participant and Acceptable by a ‘‘medium

xperience’’ participant. The value here is used to order entries in a
enu.

1 ClyMetaLevelToolbarGroup >> order
2 ^3

Listing 13: Example of a named literal with conflicting evaluation.

Hyp5 (literals in pragmas) is the strongest with 8.5% literals consid-
red Magic. This seems natural as the literals are mandatory in pragmas
annotations). However, a counter-example is proposed in Listing 11
here the pragma argument (40) was classified Magic by a ‘‘medium

experience’’ participant.
Finally, Hyp6 (test and example methods) is the worst with 23.7%
of literals considered Magic. This result must not be compared to the
number for Overall which also includes the test/example methods; it
must be compared to the number of literals considered Magic in regular
methods: 26.6%.

Although the result for this hypothesis is statistically relevant (dif-
ferent from the result for regular methods), it seems too close to the
‘‘regular’’ percentage to have practical relevance. In detail (not shown
in the table), literals in example methods are Magic at 26.8%, slightly
worse than the ‘‘regular’’ percentage. Literals in test methods (23.1%)
are slightly better but still not different enough from the ‘‘regular’’
percentage. One might consider treating literals in test methods the
same as in regular methods.

5. Threats to validity

We now consider the threats to validity of our study:

Construct validity. Are we asking the right questions?
Magic literals are well known to all software developers and the

question asked to the participants was quite straightforward (‘‘Is this
literal Magic or not?’’).

Yet, we were surprised to see that 20% of literals defined as con-
stants (according to the Pharo convention of defining a method solely
returning a literal) were classified as Magic. It could be a sign that
naming a literal is not always enough, or perhaps the names were
unclear, or despite the well known rule, it could be the sign that the
definition of Magic literal is not as universal and clear cut as one could
think. We did try to mitigate this risk by adding a note at the bottom of
the tool (see Fig. 1): ‘‘A _magic_ literal is a literal that you don’t really
understand (Why this value? What happens if you change it?)’’.

We could have tried to be more specific on what should be consid-
ered a Magic literal, but we believe this would have biased the study
towards our understanding of the term. Our goal was to evaluate what
developers (at large) would consider Magic or not.

Internal validity. Is there something inherent to how we collect and
analyze the data that could skew our findings?

The analysis of the participants’ answers is very simple, consisting
only in statistics on the number of literals. This does not seem to raise
any issue.

The validation of the heuristics (Section 4.4) has a problem in that
the same literals may appear several times in different hypotheses. For
example, strings are used to evaluate Hyp2 (they are self-describing)
and some of them are also used when they are an argument of a pragma
(Hyp5), an argument of specific messages sent (Hyp3), or returned by
a method (Hyp4). The usual way to deal with this is to multiply the
𝑝-value by the number of tests applied (Bonferroni correction method).
Given that our 𝑝-values were several orders of magnitude lower than
the level of acceptance (5%), this issue has been amply addressed.

There might be different, maybe competing, notions of what consti-
tutes magicness. By combining the ratings of all participants into one
large dataset, these different notions of magicness would get blurred.
This is a threat that we did not explore in this first study.

External validity. Are our results generalizable to other environments?
Our studies were conducted on only one programming language

that is not a mainstream language. This is an issue for generalization
of the results and we do not claim they can be applied to all systems
or programming language. We did raise some interesting points that
should be investigated in other contexts to see whether they still hold.

The choice of the subject system could also introduce a bias al-
though we did try to select very different systems, from different
domains, of different sizes, with different developers.

The literals were manually classified which always introduce a
risk of a bias if the number of participants is too small, for example.
We have a fair number of participants (26), but there could be a
‘‘community bias’’ as they are all Smalltalk developers. This goes back

to our first point on the programming language.

https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber

N. Anquetil et al.

t
t
N
e
t

6

a
t
a

6

g
d
t
e

i
n
(
U
A

d
o
M
w
n
3
t

Reliability. Can others replicate our results?
The classification of literals as Magic vs. Acceptable would be ‘‘easy’’

o replicate given the needed resources. All literals and
heir classification by participants are available at https://github.com/
icolasAnquetil/MagicLiteralsData.git. The README.md file contains
xplanation on how to reproduce the results of the hypotheses valida-
ions from the data.

. Discussion

We have defined magic literals and shown that literals in general
nd magic literals in particular are highly prevalent in software sys-
ems. We also validated our hypotheses on what can make a literal
cceptable.

In this section, we discuss other points of interest.

.1. Magic literal detection

One purpose of this research would be to implement rules in pro-
ramming environments to help developers improve their code by
ynamically checking (and advising the developer) whether a par-
icular instance of literal is acceptable or should be named more
xplicitly.

Because the topic is such an old one and has made so little progress
n all these years, we believe it would be important to have a mecha-
ism that would point to Magic literals with a high degree of confidence
good precision), even at the cost of missing some (medium recall).
nfortunately, our hypotheses are currently geared towards detecting
cceptable literals and not the opposite.

As an early experiment, we implement the hypotheses as rules to
etect Acceptable literals. We obtained very good precision (88%: 1 out
f 10 literals tagged Acceptable should actually have been considered
agic) and acceptable recall (34%: one third of all Acceptable literals
ere detected). Unfortunately, this means that what we believe is
eeded (detecting Magic literals) gave opposite results (87% recall and
2% precision). Only one third of the literals pointed to as Magic by
hese rules (i.e., the opposite of our hypotheses) would really be Magic.

This seems too low to get a good acceptance from developers.

6.2. Magic strings

We could develop better heuristics to detect string literals that are
not self-describing (Hyp2). One possibility would be to look for real
words in the strings, for example using a dictionary of common English
words (https://github.com/dwyl/english-words). Strings with too few
real words would be declared not self-describing and therefore Magic.

A possible follow-up would also be to consider application do-
main vocabulary, maybe using natural language techniques and topic
modeling techniques.

6.3. Method selectors

As shown before, the Pharo method selector gives a context for
some literals (Hyp3). This section explores how this context can be
better exploited. For example, some Pharo projects make heavy use of
external C libraries (Cairo graphics, libgit, SQLLight, etc.). They rely on
FFI (Foreign Function Interface) methods (ffiCall:, ffiCall:option:, ffi-
Call:module:option:) that take as a first argument an array of symbols
describing the C function to call (e.g., #(String strcpy #(String dest,
String aString)). In such a context, the array of symbols is Acceptable.

The use of keywords to denote parameters in Pharo can also
be very revealing. For example, the class-side (i.e., static) message
‘‘year:month:day:’’ of the Date class gives a clear meaning to its literal

arguments in the call: ‘‘date ∶= Date year: 2019 month: 6 day: 1.’’
We also identified another Pharo convention relating to the descrip-
tion of project configurations and dependencies. These are usually de-
fined in a BaselineOfXYZ or ConfigurationOfXYZ class with specific
methods. In these classes and methods, most integer literals correspond
to version numbers and strings or symbols describing other project
names, or specific configurations’ names. They are thus Acceptable.

In conclusion, specific projects may have more of these conventions.
An in-depth study of Pharo and any interesting project needs to be done
to identify more interesting contexts.

6.4. Location of literals

The locations in the source code where literals can appear depend
on the abstract syntax tree (AST) of the source code. Thus, literals can
play different roles in an AST:

1. Receiver: The literal is the receiver of a message send. In Pharo,
operators such as ‘‘+’’ or ‘‘<=’’ are (binary) messages (and the
left operand is an argument of this message). For this study, we
considered that receivers of such messages were Operands (see
the following).

2. Operand: Receiver or argument of a binary message.
3. Argument: Argument in a message send (except binary messages).
4. Assignment: Right-hand side of an assignment.
5. Return: Returned value in a method.
6. Sequence: Corresponds to an expression statement. Mainly used

as the last statement of blocks (which are like lambdas) for the
return value of the block.

7. Pragma: Argument to a pragma (which are like annotations in
Java).

Table 7 shows that literals, on average, appear half of the time
(49.9%) as message arguments and a quarter of the time (14.1%) as
operands. Considering its mathematical content, Polymath surprised us
by ranking only third (28.7%) among the projects with respect to
operands, after Roassal (31.4%) and Morphic (34.7%), two graphical
systems.

VMMaker has a very high proportion (22.9%) of literals used in
pragmas (i.e., annotations) compared to the others (the second is Roas-
sal with 1.7%). This is because the VM is generated from a high-level
description in a language (Slang [12]) that requires metadata described
in pragmas.

The proportion of literals returned is low overall, 5.9%. Two systems
stand out: Morphic on the high end with 9.0% and Polymath on the low
end with 1.0%. We cannot explain particularly these numbers that seem
to depend only on the ways these systems are implemented.

The two graphical systems, Morphic and Roassal, differ from the
others as the only two above average for the proportions of literals
directly assigned to variables, 6.8% and 7.1% respectively. Again, we
cannot explain particularly these numbers that seem to depend only on
the system implementations.

7. Related work

To the best of our knowledge, no similar study of magic literals
in software systems exist in the literature. This paper addresses the
problem in the context of Pharo.

In 1978 Kernighan and Ritchie [13] stated it is bad practice to place
‘‘magic numbers’’ in a program, because they ‘‘convey little information
to someone who might have to read the program later, and they are
hard to change in a systematic way’’. As such, they discuss the modu-
larity problem caused by magic literals that should be parameterizable.
Parnas [14] and later McConnell [9] described this problem as excessive
information distribution, which is a barrier to information hiding. The
consequence is increased complexity, and code that is harder to change

when the same magic numbers are buried throughout the program.

https://github.com/NicolasAnquetil/MagicLiteralsData.git
https://github.com/NicolasAnquetil/MagicLiteralsData.git
https://github.com/NicolasAnquetil/MagicLiteralsData.git
https://github.com/dwyl/english-words

N. Anquetil et al.

f
a
s
t
a
o

b
O
t
n
d
i
e
v
d

‘
e
l
T
a
a
t
m
a

C
t

c
a

Table 7
Distribution of the AST roles of the literals for each studied system (numbers of literals per role; percentages of literals over
all literals for the system).

Arg. Oper. Pragma Return Assig. Receiv. Seq.

Morphic 4 306 3 596 12 937 704 319 439
41.6% 34.7% 0.1% 9.0% 6.8% 3.1% 4.2%

Parser 263 122 0 5 60 33 4
53.8% 24.9% 0.0% 1.0% 12.3% 6.7% 0.8%

Pharo 80 690 32 475 2 038 8 361 7 003 9 057 3 703
56.0% 22.6% 1.4% 5.8% 4.9% 6.3% 2.6%

Polymath 5 653 2 853 21 97 412 820 91
56.8% 28.7% 0.2% 1.0% 4.1% 8.2% 0.9%

Roassal 8 453 5 439 287 866 1 227 802 215
48.8% 31.4% 1.7% 5.0% 7.1% 4.6% 1.2%

Seaside 5 852 1 263 0 393 311 160 215
71.4% 15.4% 0.0% 4.8% 3.8% 2.0% 2.6%

VMMaker 23 164 16 168 15 307 4 428 3 142 1 438 3 099
34.6% 24.2% 22.9% 6.6% 4.7% 2.2% 4.6%

all 128 381 61 916 17 665 15 087 12 859 12 629 7 766
49.9% 24.1% 6.9% 5.9% 5.0% 4.9% 3.0%
m

g
i

w

Fowler [1] and Martin [4] described it as a code smell that should be
avoided. All these authors claim that magic numbers should be replaced
with symbolic constants to improve understandability. McConnell [9]
described named constants as a lower-level use of information hiding
in design. None of the authors evaluated the concept of magic numbers
as thoroughly as we did on real systems.

Smit et al. [2,15] identified the relative importance to maintain-
ability of 71 coding conventions based on a survey of seven develop-
ers. They analyzed the revisions of four different open-source systems
and observed that, when developers are conscious of conventions (via
explicit coding conventions policy and checks made by continuous
integration servers), they put an effort in respecting these conven-
tions. When developers are not conscious of conventions, violations
are prevalent. One of the coding conventions is avoiding the use of
magic numbers. Their definition [2] considered −1, 0, 1, and 2 as
non-magic (note that other people only consider −1, 0, and 1, see
or example http://wiki.c2.com/?ZeroOneInfinityRule, see also static
nalyzers’ rules below). They report that avoiding magic numbers in
ource code is considered important by the developers. However, in
he analysis of the four systems, they observed many magic numbers
nd ‘‘avoiding magic numbers’’ appeared three times as the third and
nce as the fourth most violated convention.

Nundhapana and Senivongse [16] discussed the approach taken
y an IT organization in Thailand to enforce naming conventions in
bjective-C. They developed a library to check naming conventions au-

omatically. In particular, magic numbers are considered as violation of
aming conventions because they are unnamed literal constants. They
evised a checker based on regular expressions to detect magic numbers
n Objective-C source code. They reported results of a readability
xperiment involving code before and after it was revised according to
iolations of conventions identified by their tool. However, no specific
ata was given regarding violations of magic numbers.

Both Smit et al. [2,15] and Nundhapana et al.,nund18 distinguished
‘magic numbers’’ from ‘‘literal strings’’, the latter being the string
quivalent of magic numbers. Therefore, they assume that all string
iterals are Magic. Our experiment shows that this is hardly the case.
heir different interpretation may come from mixing understandability
nd maintainability (Section 3.1). A string literal is usually understand-
ble (Hyp2: self-describing literals), but if it occurs multiple times in
he code, it is detrimental to maintainability. The solution is the same:
ultiple occurrences of the same string literal should be extracted into
constant.

Mukherjee [17], who explained how to perform static analysis of
#, presented three techniques for finding magic numbers in C# sys-
ems, in particular in arithmetic expressions, array indices, and conditions.

Literals in test code are addressed by Deuresen et al. [10] in the
ontext of a test smell they called Sensitive Equality. They are discussed

s a symptom of a bigger problem, which is a lack of an equality
ethod. Meszaros [11] documented the Literal Value pattern, which
states to use literal constants for attributes and assertions in tests. The
intention of the pattern is to make tests less obscure (more readable).
A potential disadvantage of the pattern is that it can be overused, e.g.,
a key for a database defined as a literal value can actually make a test
more obscure.

There are various static analysis tools to verify the quality of the
source code. We consider three of them here that are well known.

The PMD11 tool is a static code analyzer that finds common pro-
ramming flaws defined in rules. PMD has the following rules concern-
ng literals:

• AvoidDuplicateLiterals.
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#av
oidduplicateliterals.

• AvoidLiteralsInIfCondition.
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#av
oidliteralsinifcondition.

Similarly, CheckStyle12 has the following rules pertaining to literals:

• MultipleStringLiterals. Checks for multiple occurrences
of the same string literal within a single file.
https://checkstyle.sourceforge.io/config_coding.html#MultipleSt
ringLiterals

• MagicNumber. Checks that there are no ‘‘magic numbers’’ where
a magic number is a numeric literal that is not defined as a
constant. By default, −1, 0, 1, and 2 are not considered to be
magic numbers.
https://checkstyle.sourceforge.io/config_coding.html#MagicNum
ber

Sonarqube13 has the following rules for literals in Java, many of
hich are very specific:

• String literals should not be duplicated
https://rules.sonarsource.com/java/RSPEC-1192.

• Literal boolean values should not be used in assertions
https://rules.sonarsource.com/java/RSPEC-2701.

• URIs should not be hardcoded
https://rules.sonarsource.com/java/RSPEC-1075.

• Magic numbers should not be used, −1, 0, and 1 are not consid-
ered magic numbers.
https://rules.sonarsource.com/java/RSPEC-109

11 https://pmd.github.io/
12 https://checkstyle.sourceforge.io/
13
 https://www.sonarqube.org/

http://wiki.c2.com/?ZeroOneInfinityRule
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidduplicateliterals
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://pmd.github.io/latest/pmd_rules_java_errorprone.html#avoidliteralsinifcondition
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MultipleStringLiterals
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://checkstyle.sourceforge.io/config_coding.html#MagicNumber
https://rules.sonarsource.com/java/RSPEC-1192
https://rules.sonarsource.com/java/RSPEC-2701
https://rules.sonarsource.com/java/RSPEC-1075
https://rules.sonarsource.com/java/RSPEC-109
https://pmd.github.io/
https://checkstyle.sourceforge.io/
https://www.sonarqube.org/

N. Anquetil et al.

a
t
s

8

a
o
b

e
d
i
s

l
t
p
e

W
s
s
O
o
t
p

m
w
a
t
v

Table A.8
Versions of systems used in the studies.

Project Version/commit-ish Date

Morphic Pharo 8.0 (see below)
Parser Pharo 8.0 (see below)
Pharo Pharo 8.0, https://github.com/pharo-project/pharo/commit/a153e04ae4e325509ed78bfe25c9ce560afb24b0 Mar 27, 2020
Polymath https://github.com/PolyMathOrg/PolyMath/commit/b73ac039715d7997942fa78baf16782d9b5300af Jan 24, 2020
Roassal https://github.com/ObjectProfile/Roassal3/commit/6534657660bf8ed518963b95dd5942d0e2037e1d Apr 7, 2020
Seaside https://github.com/SeasideSt/Seaside/commit/506db6a883588b27ccfc6edc56054c20a1e9093f Jun 28, 2019
VMMaker https://github.com/pharo-project/opensmalltalk-vm/commit/2baf863adcb44881ba4fd9c0cb92ed31a96c9546 Dec 2, 2019
C

I
v
D
W
o
Z
g
V
o

D

c
i

A

i

A

P

R

Some of these rules are specific (‘‘URIs should not be hardcoded’’)
nd could fall in our Hyp3 (Language conventions). These tools do seem
o miss many Magic literal instances. They may have stumbled on the
ame problem as ours, explained in Section 6.1.

. Conclusion

In this paper we explored the concept of magic literals generally
nd more specifically in the context of Pharo. We looked at how literals
ccur in systems leading us to a definition of why Magic literals are to
e avoided, and what could characterize acceptable literals.

We show that literals are still very prevalent in real systems and
ven more so in test methods. We also evaluated the prevalence of
ifferent types of literals (integers, strings, etc.) and show that if there
s some variation in specific domains (e.g., mathematical), integers and
trings are the most prevalent.

We validated our hypotheses about the reasoning behind acceptable
iterals on real data showing that they hold, even if at least one of
hem (Hyp6) does not seem particularly interesting. Some intriguing
oints emerged in this evaluation for which we do not have immediate
xplanation:

• There are more literals in test methods, but they are not consid-
ered less Magic than in non-test methods;

• The Pharo convention for creating constants is to have a method
solely returning a literal (the constant is a method, not a variable
as commonly done in Java and other languages). Yet 20% of these
(named) literals were considered Magic (as opposed to 25% of all
literals being considered Magic). This is not a huge improvement
and suggests that naming a literal as a constant does not solve
everything. It could also be the result of showing only a small part
of the code (the method containing the literal) to participants.
It could be that on a larger scale, the interest of having named
constants is more obvious.

• the literal ‘‘1’’ in 𝑥+1 and 𝑥−1 is not considered less Magic than
the average literals (25% Magic)

• The empty pointer literal (nil in Pharo) was considered Magic in
15% of the cases. This is another indication that people may have
different definitions of what is Magic, like understanding what
nil means, but not understanding why it is used at this specific
location in the code.

The research we conduct in this article opens multiple perspectives.
e want to dig deeper in the analysis of magic literal occurrence by

tudying how and why they occur system per system. We think that
ome domains are probably more subject to Magic literals than others.
ur experiment did show that the domain had an influence on the type
f literal used (like Character literals for Parser). We would like to test
his hypothesis on a large set of Pharo subsystems addressing various
roblems of different domains.

Finally, an empirical study of the evolution of magic literals across
ultiple versions of these Pharo subsystems will help us to understand
hy magic literals appear. Such a study consists in doing a post-mortem
nalysis of commits that occurred during the development of the sys-
em. We will compute the difference between each pair of consecutive

ersions of each system and watch for the appearance of magic literals.
RediT authorship contribution statement

N. Anquetil: Methodology, Software, Validation, Formal analysis,
nvestigation, Data curation, Writing – original draft, Writing – re-
iew & editing, Visualization, Supervision, Project administration. J.
elplanque: Conceptualization, Methodology, Software, Investigation,
riting – original draft, Project administration. S. Ducasse: Method-

logy, Investigation, Resources, Supervision, Funding acquisition. O.
aitsev: Investigation, Writing – original draft. C. Fuhrman: Investi-
ation, Resources, Writing – original draft, Writing – review & editing,
isualization, Supervision. Y.-G. Guéhéneuc: Resources, Writing –
riginal draft, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ppendix A. Subject systems

Table A.8 shows the version information for the seven systems used
n the studies of this article.

ppendix B. Data extraction using reflective API

The data from Table 2 was extracted from the reflective API of
haro:

1. First specify the list of all classes of interest for a given system
(for example for Seaside, all classes in a package prefixed by
‘‘Seaside’’);

2. then get all methods for each class (aClass methods);
3. get the parse tree of the method (aCompiledMethod parse-

Tree);
4. visit the Abstract Syntax Tree to get all literals.

eferences

[1] Martin Fowler, Refactoring: Improving the Design of Existing Code, second ed.,
Addison-Wesley Professional, Boston, 2018.

[2] Michael Smit, Barry Gergel, H. James Hoover, Eleni Stroulia, Maintainability
and Source Code Conventions: An Analysis of Open Source Projects, Tech. Rep.
TR11, 6, University of Alberta, Department of Computing Science, 2011.

[3] Asher Trockman, Keenen Cates, Mark Mozina, Tuan Nguyen, Christian Kästner,
Bogdan Vasilescu, Automatically assessing code understandability reanalyzed:
Combined metrics matter, in: 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories, MSR, 2018, pp. 314–318.

[4] Robert C. Martin, Clean Code: A HandBook of Agile Software Craftsmanship,
Pearson Education, 2009.

[5] Julien Delplanque, Stéphane Ducasse, Oleksandr Zaitsev, Magic literals in pharo,
in: International Workshop of Smalltalk Technologies, 2019.

[6] Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, Characterizing Pharo
Code: A Technical Report, Inria Lille Nord Europe - Laboratoire CRIStAL -
Université de Lille, Arolla, 2020.

[7] Adele Goldberg, David Robson, Smalltalk 80: The Language and Its
Implementation, Addison Wesley, Reading, Mass., 1983.

[8] Sherman R. Alpert, Kyle Brown, Bobby Woolf, The Design Patterns Smalltalk

Companion, Addison Wesley, Boston, MA, USA, 1998.

https://github.com/pharo-project/pharo/commit/a153e04ae4e325509ed78bfe25c9ce560afb24b0
https://github.com/PolyMathOrg/PolyMath/commit/b73ac039715d7997942fa78baf16782d9b5300af
https://github.com/ObjectProfile/Roassal3/commit/6534657660bf8ed518963b95dd5942d0e2037e1d
https://github.com/SeasideSt/Seaside/commit/506db6a883588b27ccfc6edc56054c20a1e9093f
https://github.com/pharo-project/opensmalltalk-vm/commit/2baf863adcb44881ba4fd9c0cb92ed31a96c9546

N. Anquetil et al.
[9] Steve McConnell, Code Complete, second ed., Microsoft Press, Redmond, Wash.,
2004.

[10] Arie van Deursen, Leon Moonen, Alex van den Bergh, Gerard Kok, Refactoring
test code, in: M. Marchesi (Ed.), Proceedings of the 2nd International Conference
on Extreme Programming and Flexible Processes, XP2001, University of Cagliari,
2001, pp. 92–95.

[11] Gerard Meszaros, XUnit Test Patterns – Refactoring Test Code, Addison Wesley,
2007.

[12] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, Dan Ingalls, Two decades
of smalltalk vm development: Live vm development through simulation tools,
in: Proceedings of the 10th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages, ACM, 2018, pp. 57–66.
[13] B.W. Kernighan, D.M. Ritchie, The C Programming Language, Prentice Hall
Software Series, 1978.

[14] David Lorge Parnas, Designing software for ease of extension and contraction, in:
International Conference on Software Engineering, ICSE’78, 1978, pp. 264–277.

[15] Michael Smit, Barry Gergel, H. James Hoover, Eleni Stroulia, Code convention
adherence in evolving software, in: 2011 27th IEEE International Conference on
Software Maintenance, ICSM, IEEE, 2011, pp. 504–507.

[16] Ruchuta Nundhapana, Twittie Senivongse, Enhancing understandability of objec-
tive C programs using naming convention checking framework, in: Proceedings
of the World Congress on Engineering and Computer Science, vol. 1, 2018.

[17] Sudipta Mukherjee, Source Code Analytics with Roslyn and JavaScript Data
Visualization, APress, 2017.

	What do developers consider magic literals? A smalltalk perspective
	Introduction
	Background
	General Pharo syntax
	Definitions of literals and their use

	Qualitative study
	Magic literals
	Acceptable literals

	Quantitative study on the prevalence of literals
	Subject systems
	Prevalence of all literals
	Prevalence of magic literals
	Validating hypotheses

	Threats to validity
	Discussion
	Magic literal detection
	Magic strings
	Method selectors
	Location of literals

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Subject systems
	Appendix B. Data extraction using reflective API
	References

