
Information and Software Technology xxx (2006) xxx–xxx

www.elsevier.com/locate/infsof

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
TED P
ROOF

Software maintenance seen as a knowledge management issue

Nicolas Anquetil ¤, Káthia M. de Oliveira, Kleiber D. de Sousa, Márcio G. Batista Dias

Catholic University of Brasilia, Knowledge Management and TI Management, SGAN 916, Modulo B Brasilia, DF, Brazil

Received 25 April 2006; received in revised form 18 July 2006; accepted 24 July 2006

Abstract

Creating and maintaining software systems is a knowledge intensive task. One needs to have a good understanding of the application
domain, the problem to solve and all its requirements, the software process used, technical details of the programming language(s), the
system’s architecture and how the diVerent parts Wt together, how the system interacts with its environment, etc. All this knowledge is
diYcult and costly to gather. It is also diYcult to store and usually lives only in the mind of the software engineers who worked on a par-
ticular project.

If this is a problem for development of new software, it is even more for maintenance, when one must rediscover lost information of an
abstract nature from legacy source code among a swarm of unrelated details.

In this paper, we submit that this lack of knowledge is one of the prominent problems in software maintenance. To try to solve this
problem, we adapted a knowledge extraction technique to the knowledge needs speciWc to software maintenance. We explain how we
explicit the knowledge discovered on a legacy software during maintenance so that it may be recorded for future use. Some applications
on industry maintenance projects are reported.
© 2006 Published by Elsevier B.V.
UNCORREC1. Introduction

To maintain legacy software systems, software engineers
need knowledge on many diVerent domains: application
domain, system’s architecture, particular algorithms used,
past and new requirements, programming language, devel-
opment environment, etc. More often than not, this knowl-
edge is extracted at great costs from the detailed analysis of
the system’s source code: according to [28, p.475] or [29,
p.35], from 40% to 60% of the software maintenance eVort
is devoted to understanding the system maintained.

One could argue that software development1 suVers
from the same knowledge needs, however these needs are
more diYcult to fulWll during maintenance. For example, it
is not uncommon in software maintenance to have a very
vague knowledge of what were the exact requirements for

* Corresponding author. Tel.: +55 61 3242 2735; fax: +55 61 3347 4797.
E-mail address: anquetil@ucb.br (N. Anquetil).

1 We use the phrase “software development” to refer speciWcally to the
creation of a new software system. We oppose software development to
software maintenance.
0950-5849/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.infsof.2006.07.007

Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
the system, whereas during software development, one is
expected to have access to the requirements relatively eas-
ily.

Our position is that this constant quest for knowledge is
one of the prominent problems of software maintenance
and should be dealt with accordingly, for example, using
knowledge management methods. We believe that adopting
a knowledge management point of view on software main-
tenance could bring in a new light on the problem and may
help improve the conditions in which it is performed.

In this paper, we present some experiments we did on
software maintenance projects in the industry to capture
the knowledge gained during the maintenance and record
it. Our experiments use two tools from knowledge manage-
ment: an ontology of the knowledge used in software main-
tenance; and Post-Mortem Analysis, a method to elicit
knowledge from software maintainers. These tools have
been adapted so as to fulWll the speciWc knowledge needs of
the maintenance activity.

The organization of the paper is the following: First, in
Section 2, we give a short introduction to Knowledge
Management, with a deWnition of knowledge and the goals
1

2

3

4
5

6

7
8
9
10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
nce seen as a knowledge management issue, Information and Soft-
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

mailto: anquetil@ucb.br
mailto: anquetil@ucb.br
anquetil
Cross-Out

anquetil
Replacement Text
3448 7148

anquetil
Comment on Text
Is it possible to add a new institution only for this author (Marcio G.B.Dias)?University Center of Goiás - Uni-Anhangüera, www.anhanguera.edu.br, GO, Brazil

anquetil
Cross-Out

anquetil
Replacement Text
IT

anquetil
Note
Possibly insert a new institution here: University center o Goias ... (see note on the last author)

2 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

of knowledge management. The two tools we are using,
ontology and Post-Mortem Analysis, are also presented
and discussed in more details. In Section 3 we review some
basic facts about software maintenance to clarify our views,
and the relation between maintenance and knowledge man-
agement. Section 4 presents our ontology of the knowledge
used in software maintenance. The ontology is important as
it serves as a framework for knowledge extraction. In Sec-
tion 5, we discuss the second tool we used: Post-Mortem
Analysis. We show how we adapted it to software mainte-
nance projects. After presenting our approach, we discuss
in Section 6 the results of some experiments we performed.
Finally, in Section 7, we discuss related work before con-
cluding in Section 8.

2. Knowledge management

Knowledge management came out as a reaction to the
recognition that employees in an organization gather, as
part of their daily activities, knowledge that is valuable to
the organization. The typical image is that knowledge is an
asset that has legs and walks home every night (cited for
example in [1]). Another common image, in IT depart-
ments, is that of “immortals” on whom the continuing
operation of a critical system depends exclusively.

In this section, we will provide some basic deWnitions for
knowledge, knowledge management, ontology, and Post-
Mortem Analysis.

2.1. DeWnitions

The deWnition of knowledge is normally built bottom-up
from data, to information and then knowledge (see for
example [34]): Data are raw facts, for example: 1.15. Infor-
mation is data in context, for instance saying that 1.15 is the
exchange rate between the US dollar and the Euro cur-
rency. Knowledge is a net of information based on one’s
particular experience, for example one’s knowledge of the
currency exchange mechanisms. “Knowledge is a Xuid mix
of framed experience, values, contextual information,
expert insight and grounded intuition [ƒ] It originates and
is applied in the minds of knowers” [9] (cited in [39, p.5]).
There is much discussion on whether one may actually
manage knowledge since it is tied to one’s own experience
and life. In this view, knowledge would be highly personal
and impossible to express explicitly.

Without entering into this debate, we will consider that
individuals can actually learn from each other and
exchange knowledge – or information – to fulWll some goal.
We will use a practical deWnition of knowledge manage-
ment: “Knowledge Management enables the creation, com-
munication, and application of knowledge of all kinds to
achieve business goals”. [39, p.5]. In this view, one diVerenti-
ates tacit from explicit knowledge: Explicit knowledge is
knowledge that has been captured and organized in a form
that allows its distribution (for example in a book). In soft-
ware maintenance, explicit knowledge could be an architec-
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

tural model of a system, or a requirement speciWcation.
Tacit knowledge is particular to each individual and diY-
cult to share as one is usually not even aware of all one
knows. In software maintenance, tacit knowledge could be
the understanding one gained on how a system is organized
by working on it, or some special debugging technique one
developed over time.

Nonaka [26] proposes a framework for knowledge shar-
ing illustrated in Fig. 1. Socialization is the process of shar-
ing knowledge doing things, knowledge is not made
explicit, but rather a knower shows to one who does not
know, how to do things. In software maintenance, this
could be the case when an experienced maintainer helps a
novice Wnding his-her way in a system, thereby giving hints
on how the system is organized, where to look for things,
etc. Knowledge may be slowly disseminated among small
groups by this method. Externalization is the process of
expliciting what one knows. Through externalization, a
knower may express (e.g., writing a manual) what he knows
and this knowledge may then be circulated among a large
group or across time. In maintenance, a typical case would
be the redocumentation of a system, but it may also happen
during a meeting when one explains to one’s colleagues
how something works. Combination is the process of com-
bining various sources of explicit knowledge to create a
new one, as one would do in a literature survey. There may
not be many examples of this in software maintenance as
creating explicit documentation is not often performed
when there is already some available. Finally, internaliza-
tion is the process by which one makes some explicit knowl-
edge one’s own, by integrating it to one’s own net of
information. This could be the case of a maintainer study-
ing various bits of documentation (may be a data model, a
user manual and some comments in the code) to build a
geneal understanding of what a system does and how it
does it.

We are looking for ways to help these activities happen
in a maintenance organization where knowledge of the sys-
tems being maintained is of key importance. DiVerent tech-
niques and tools have been proposed to support these
activities of knowledge management. In this paper we will
study two of them: ontology and Post-Mortem Analysis.

2.2. Knowledge organization: ontology

An ontology is an explicit speciWcation of a simpliWed,
abstract, view of some domain that we want to describe,
discuss, and study [40]. The primary goal of an ontology is
to represent explicited knowledge, it is typically the result of
a combination eVort (see Fig. 1) where one gathers various

Fig. 1. Knowledge sharing according to Nonaka [26].

Knowledge
Tacit

Knowledge
Explicit combinationsocialization

externalization

internalization
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
77
78
79
80
81

82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
nce seen as a knowledge management issue, Information and Soft-
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

152
153
154
155
156

anquetil
Note
Wouldn't it be best to have the figure closer to its first reference (line 117). Between lines 144 and 145 seems a good place for this

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 3

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

authoritative sources on the domain and creates a consen-
sus. There are diVerent types of ontology in [17], we use a
domain ontology to describe the domain of software main-
tenance. A domain ontology should contain a description
of entities (of the domain) and their properties, relation-
ships, and constraints [16].

Practically, ontologies may serve various purposes:

• Reference on a domain: Explicit knowledge serves as a
reference to which people, looking for detailed informa-
tion on the domain modeled, may go.

• ClassiWcation framework: The concepts explicited in an
ontology are a good way to categorize information on
the domain modeled. Indication of synonyms in the
ontology helps avoiding duplicate classiWcation. Other
relations among the concepts of the ontology help one
browsing it and Wnding an information one is looking
for.

• Interlingua: Tools and/or experts wishing to share infor-
mation on the domain modeled, may use the ontology as
a common base to resolve diVering terminologies.

2.3. Capturing knowledge: Post-Mortem Analysis

Ontologies are used to organize the knowledge, but tech-
niques to gather this knowledge (making it explicit) are
needed, as well as techniques to redistribute it (for example
to new employees). Such techniques will be discussed in
Section 7, including the best-known in software engineer-
ing: the experience factory.

Maintenance viewed as a knowledge management prob-
lem is an issue little explored. In this paper we will focus on
how to explicit knowledge in a software maintenance con-
text. Once the knowledge has been made explicit, it must be
stored and disseminated among other groups, but we
believe that existing solutions (as the experience factory, see
Section 7) should be adequate to perform this part of the
whole knowledge management cycle.

A knowledge elicitation technique, well known in soft-
ware engineering, is the Post-Mortem Analysis (PMA).
PMA, also called project review or project retrospective,
simply consists in “[gathering] all participants from a pro-
ject that is ongoing or just Wnished and ask them to identify
which aspects of the project worked well and should be
repeated, which worked badly and should be avoided, and
what was merely ‘OK’ but leaves room for improvement”
[38]. In Nonaka’s framework for knowledge management
(Section 2.1), PMA is a tool to externalize knowledge.

The term post-mortem implies that the analysis is done
after the end of a project, although, as recognized by Stålh-
ane in the preceding quote [38], it may also be performed
during a project, after a signiWcant mark has been reached.

There are many diVerent ways of doing a PMA, for
example Dingsøyr et al. [15] diVerentiate their proposal, a
“lightweight post-mortem review”, from more heavy pro-
cesses as used in large companies such as Microsoft, or
Apple Computer. A PMA may also be more or less struc-
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

tured, and focused or “catch all”. One of the great advanta-
ges of the technique is its Xexibility. It may be applied on a
small scale with little resources (e.g., a 2 h meeting with all
the members of a small project team, plus one hour from
the project manager to formalize the results). Depending on
the number of participants in the PMA, it may use diVerent
levels of structuring, from a relatively informal meeting
where people simply gather and discuss the project, to a
more formal process as proposed in [8].

3. Software maintenance

Software maintenance consists in modifying an existing
system to adapt it to new needs (about 50% of maintenance
projects [29]), adapt it to an ever changing environment
(about 25% of maintenance projects [29]), or to correct
errors in it, either preventively (about 5% of maintenance
projects [29]), or as the result of an actual problem (about
20% of maintenance projects [29]).

Software maintenance is not a problem in the sense that
one cannot and should not try to eliminate or avoid it. It is
instead the natural solution to the fact that software sys-
tems need to keep in sync with their environment and the
needs of their users. Lehman [25] established in his Wrst law
of software evolution that “a [software system] that is used,
undergoes continual change or becomes progressively less
useful”.

Software maintenance oVers signiWcant diVerences with
software development. For example, software maintainers
work in more restricting technical conditions, where one
usually cannot choose the working environment, the pro-
gramming language, the database management system, the
data model, the system architecture, etc. Furthermore, these
conditions are usually dictated by past technologies long
superseded. Also, whereas development is typically driven
by requirements, maintenance is driven by events [29]. In
development, one speciWes the requirements and then plans
their orderly implementation. In maintenance, external
events (e.g., a business opportunity, the discovery of a show
stopping error) require the modiWcation of the software
and there is much less opportunity for planning. Mainte-
nance is by nature a more reactive (or chaotic) activity.

Because of these diVerences, software maintenance is
already more diYcult to perform than software develop-
ment. But, we argue that apart from these, maintenance
suVers from another fundamental problem: the loss, and
the resulting lack, of knowledge of various types.

A good part of the development activity consists in
understanding the users’ needs and their world (applica-
tion domain, business rules) and convert this into running
code by applying a series of design decisions [42]. All this
(application domain, business rules, design decisions) rep-
resents knowledge that is embedded into the resulting
application and, more often than not, not otherwise
recorded.

We are not suggesting that software maintenance has
knowledge requirements signiWcantly diVerent from
157
158
159
160
161
162
163

164
165
166
167
168
169
170
171
172
173
174
175
176

177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
nce seen as a knowledge management issue, Information and Soft-
211
212
213
214
215
216
217
218
219

220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

anquetil
Comment on Text
should not this be in italics?

4 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

software development, but rather that whereas the knowl-
edge needs are roughly the same in both activities, they are
more diYcult to fulWll during maintenance. In a proper
software development project, all the knowledge is avail-
able to the participating software engineers, either through
some documentation (speciWcations, models) or through
some other member of the project. In maintenance, on the
other hand, much of this knowledge is, typically, either
lacking, or only encountered in the source code: the busi-
ness model and requirement speciWcations may have been
lost, or never properly documented; the software engineers
who participated in the initial development (often years
ago) are long gone; the users already have a running system
and cannot be bothered with explaining all over again how
they work. To maintain a software system, one must usu-
ally rely solely on the knowledge embodied and embedded
in the source code.

As a result of this lack of knowledge, between 40% and
60% of the maintenance activity is spent trying to under-
stand the system [27, p.475], [29, p.35]. Maintainers need
knowledge of the system they work on, of its application
domain, of the organization using it, of past and present
software engineering practices, of diVerent programming
languages (in their diVerent versions), programming skills,
etc.

Among the diVerent knowledge needs, one may identify:

• Knowledge about the system maintained emerges as a
prominent necessity. For example, Jørgensen and
Sjøberg [22] showed that software maintainers are not
less subject to major unexpected problems when they
have a longer experience in maintaining systems,
whereas, having experience in the particular system
maintained does help to reduce these problems. In other
words, knowing the system greatly help maintaining it
correctly whereas having done a lot of maintenance on
other systems does not.

• In [4], BiggerstaV insists on the importance of applica-
tion domain knowledge. He highlights that users usually
report errors and enhancement requests in terms of
application domain concepts (e.g., “I cannot cancel this
Xight reservation”, “I need to be able to specify a partic-
ular seat in a Xight reservation”) that the maintainers
must then link (trace) to some speciWc system compo-
nent (e.g., “class XYZ”, “function foo”, or table
“TB_ACME”). Another typical example is the need to
know well the business rules of an application domain in
order to test adequately a system (e.g., after a modiWca-
tion).

• Van Mayrhauser and Vans, already cited [42], look at
the design decisions, that is to say knowledge about soft-
ware development applied to the transformation of
knowledge on the application domain to produce source
code. They explain that these decisions impact the result-
ing source code, and one should know what decisions
were made to understand why the program was written
in a particular way. Moreover, why a possible solution
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

was rejected, is also important information because it
gives hints on the broader considerations (e.g., non-func-
tional requirements) that guided the development.

We argue that many of the diYculties associated with
software maintenance, originate from this knowledge man-
agement problem. To tackle this problem, we adapted
knowledge management techniques and tools to the needs
of software maintenance:

• First, we deWned an ontology of the knowledge used in
software maintenance, which serves as a structuring
framework to develop other solutions.

• Second, we adapted the Post-Mortem Analysis tech-
nique to capture relevant knowledge in a maintenance
team.

These two instruments will be detailed in the two follow-
ing sections.

4. An ontology for software maintenance

We deWned an ontology of the knowledge used in soft-
ware maintenance to serve as a structuring framework for
our research. This ontology is presented in [13], and we will
not enter in a detailed description here. We will only pres-
ent the main concepts of the ontology and how they relate
so as to better illustrate afterward how it helped us in the
rest of the work.

The ontology is divided into Wve subontologies: the soft-
ware system subontology, the computer science skills subon-
tology, the modiWcation process subontology, the
organizational structure subontology, and the application
domain subontology. In the following, we present each of
these subontologies, their concepts and relations. The fol-
lowing conventions are used: ontology concepts are written
in CAPITALS and associations are underlined. Fig. 2 illus-
trates how the subontologies combine together.

4.1. System subontology

Fig. 3 shows the Wrst subontology, on the software sys-
tem.

The main concepts are the following. A SOFTWARE SYS-
TEM interacts with USERS and possibly OTHER SYSTEMS. It is
implemented on some HARDWARE and implements speciWc
TASKS (of the application domain). It is composed of ARTI-
FACTS that can generally be decomposed in DOCUMENTATION

Fig. 2. Ontology overview.

Organizational
Structure

Computer
Science
Skills

Modification
Process

Software
System

Application
Domain

deals with

upon regulates

needs

requires

made
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
nce seen as a knowledge management issue, Information and Soft-
322
323
324

325
326
327
328
329

330
331
332
333
334
335

336
337

338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

355

356
357
358
359
360
361
362

anquetil
Cross-Out

anquetil
Replacement Text
other

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 5

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

and SOFTWARE COMPONENTS. Briand [7] considers three kinds
of documentation: (i) PRODUCT RELATED, describing the sys-
tem itself; (ii) PROCESS RELATED, used to conduct software
projects; and (iii) SUPPORT RELATED, helping to operate the
system.

SOFTWARE COMPONENTS represent all the coded artifacts
that compose the software system itself. Booch [6, p.349–
350] classify them in: (i) EXECUTION COMPONENTS, generated
for the software execution; (ii) DEPLOYMENT COMPONENTS,
composing the executable program; and (iii) WORK PRODUCT

COMPONENTS, that are the source code, the data, and any-
thing from which the deployment components are gener-
ated.

All those ARTIFACTS are, in some way, related one to the
other. For example, a requirement is related to design spec-
iWcations which are related to deployment components.
There are also relations among requirements. We call the
Wrst kind of relation a realization, relating two artifacts of
diVerent abstraction levels (in the USDP [21], one says that
a sequence diagram realizes a use case). We call the second
kind of relation correlation, relating two artifacts of the
same level of abstraction (for example, a class diagram and
a sequence diagram realizing the same use case would be
correlated).

4.2. Skills in computer science subontology

The second subontology describes the skills needed in
computer science to perform maintenance. It is presented in
Fig. 4.

The MAINTAINER must know (be trained in) the MAINTE-
NANCE ACTIVITY that must be performed, the HARDWARE the
system runs on, and various COMPUTER SCIENCE TECHNOLO-
GIES (detailed below). Apart from that, the MAINTAINER

must also understand the CONCEPTS of the application
domain and the TASKS performed in it. There are four COM-
PUTER SCIENCE TECHNOLOGIES of interest: possible PROCE-
DURES to be followed, MODELING LANGUAGE used (e.g., the
UML), CASE TOOLS used (for modeling, testing, support-
ing, or developing), and Wnally, the PROGRAMMING LAN-
GUAGE(S) used in the system.
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROO

4.3. ModiWcation process subontology

Fig. 5 shows the concepts of the modiWcation process
subontology. Here, we are interested in concepts from the
modiWcation request and its causes. According to Pigoski
[29], a MAINTENANCE PROJECT originates in a MODIWCATION

REQUEST submitted by a CLIENT. These REQUESTS are
classiWed either as PROBLEM REPORTS or ENHANCEMENT

REQUEST. He also lists the diVerent ORIGINS of a MODIWCA-
TION REQUEST: ON-LINE DOCUMENTATION, EXECUTION,

Fig. 4. Computer Science skills subontology.
FFig. 3. System subontology.
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
nce seen as a knowledge management issue, Information and Soft-
402

403
404
405
406
407
408
409
410

6 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORRECARCHITECTURAL DESIGN, REQUIREMENT, SECURITY, INTEROPER-
ABILITY, and DATA STRUCTURE. One or more MODIWCATION

REQUESTS generate a MAINTENANCE PROJECT that will deWne
the diVerent software MAINTENANCE ACTIVITIES to execute.

Based on [7,24,29], we classiWed the MAINTENANCE ACTIVI-
TIES in the following types: INVESTIGATION, MANAGEMENT,
QUALITY ASSURANCE, and MODIWCATION.

A MAINTENANCE ACTIVITY uses input ARTIFACTS and
aVects output ARTIFACTS. It is inserted (precedes) in a
sequence of ACTIVITIES, it addresses some MAINTENANCE ORI-
GIN, uses HARDWARE resources and some COMPUTER SCIENCE

TECHNOLOGIES.
Finally, diVerent types of person (HUMAN RESOURCES)

may participate in these ACTIVITIES (from [7,18,24,29]): SOFT-
WARE ENGINEERS, MANAGERS, and CLIENT’S HUMAN RESOURCES

(CLIENT and USER).

Fig. 5. ModiWcation Process subontology.
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

4.4. Application domain and organization subontologies

The fourth subontology, on the organizational structure, is
presented in Fig. 6, left part. We considered a traditional deW-
nition of an ORGANIZATION (see for example [37]) composed of
ORGANIZATIONAL UNITS where HUMAN RESOURCES Wll diVerent
POSITIONS. We also included the fact that an organization
deWnes DIRECTIVES to be adopted in the execution of the tasks.
Our goal here was not to deWne all possible aspects of an
organization, but only to deWne that the maintenance is an
activity performed by people in some ORGANIZATIONAL UNIT

that compose the whole ORGANIZATION with its own rules.
Finally, the Wfth subontology (Fig. 6, right) organizes the

concepts of the Application Domain. We chose to represent
it at a very high level that could be instantiated for any pos-
sible domain. We actually deWned a meta-ontology specify-
ing that a domain is composed of domain CONCEPTS, related
to each other and having PROPERTIES which can be assigned
values and RESTRICTIONS that deWnes constraints for the
CONCEPTS. This meta-ontology would best be instantiated
for each application domain with a domain ontology as
exempliWed in [10]. We also considered that the CONCEPTS in
an application domain are associated with the TASKS per-
formed in that domain and those TASKS are regulated by
some RESTRICTIONS.

5. Post-Mortem Analysis for maintenance

As already mentioned, Post-Mortem Analysis is a com-
monly recommended practice for software engineering pro-
jects [5,27]. It is used as an externalization tool (see Section
2.1), for example, to gather the lessons learned during the
realization of a project.

Three facts emerged as near constants in the articles
reporting use of PMA [11]:

• it is mostly used for process improvement;
• it is mostly used in software development context; and
• it is mostly used at the end of projects.

In the literature, PMA is mainly viewed as a process
improvement tool. For example, Stålhane et al. start their
paper [38] with the aYrmation: “An obvious way to
improve a software development process is to learn from
past mistakes”. Other authors [5,15,23,30,?] assume the
same point of view, either explicitly or implicitly.
Fig. 6. Organizational Structure subontology (left) and Application Domain subontology (right).
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
nce seen as a knowledge management issue, Information and Soft-
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

451

452
453
454
455
456
457
458

459
460
461

462
463
464
465
466
467

anquetil
Comment on Text
reference to Yourdon in COMPUTER WORLD (number 43)

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 7

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

Similarly, PMA is always cited in the context of software
development (either explicitly or implicitly). For example,
Kerth [23] in discussing whether to call the activity Post-
Mortem (“after death”) Analysis or post-partum (“after
birth”) Analysis, argues: “a software eVort is more like a
birthing experience than dying experience – after all the
goal is to create something new”. This view mainly holds
for development projects, if we consider maintenance, for
example corrective maintenance, the goal is not to create
anything new.

Finally, PMA appears to be mostly performed at the end
of projects (hence the name). One problem with this
approach is that for long projects, the team only remembers
“the large problems that are already discussed – things that
have gone really bad” [38] (note that, despite raising the
issue, the article does not detail any speciWc solution).
Another diYculty raised by Yourdon [43] is a high turnover
that may cause key team members to disappear, with their
experience, before the end of the project. The solution pro-
posed (but not developed) by Yourdon is to conduct mini-
postmorta at the end of each phase of the projects. One of
our contributions is to formalize the implementation of
Yourdon’s idea of intermediary mini-postmorta for soft-
ware maintenance projects.2

We already saw, in Section 3, that software maintenance
is a knowledge intensive activity including knowledge on
the software system maintained and its application domain.
Therefore to use PMA as an externalization technique in
maintenance projects, we need to adapt it to uncover, not
only knowledge on the maintenance process (e.g., how it
was executed, what tools or techniques worked best), which
is the “traditional” use of PMA, but also to register knowl-
edge on the system maintained (e.g., how subsystems are
organized, or what components implement a given require-
ment).

To deWne this new PMA model, we had to consider three
important aspects that will be detailed in the following sub-
sections: (i) when to insert PMA during the execution of a
typical maintenance process, (ii) what knowledge we should
look for, and (iii) how to extract this knowledge from the
software engineers.

5.1. When to perform PMA during maintenance

Software maintenance projects may be of widely varying
size, they may be short in the correction of a localized error,
or very long in the implementation of a new complex func-
tionality, or correction of a very diluted problem (e.g., the
Y2K bug). For small projects, one may easily conduct a
PMA at the end of the project without risk loosing (forget-
ting) important information, but for larger projects, it is
best to conduct several PMAs during the project (as pro-
posed by Yourdon [43]) so as to capture important knowl-

2 Note that this contribution is not intrinsically linked to software main-
tenance and could be applied to software development projects.
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

edge before it becomes so internalized in the participants’
mental models that they cannot clearly remember the
details.

To identify the points, in a software maintenance pro-
ject, where we could perform PMA, we used the ISO/IEC
14764 [20] maintenance process.3 It is a basic process for
maintenance projects with the following activities: process
implementation, problem and modiWcation analysis, modi-
Wcation implementation, maintenance review/acceptance,
migration, and software retirement (the process appears in
Fig. 7).

Process implementation: includes tasks to document the
maintenance process, establish procedures for modiWcation
requests, establish the conWguration management process,ƒ

Problem and modiWcation analysis: includes tasks to rep-
licate the problem, analyze it, develop options to solve it,
and choose one.

ModiWcation implementation: includes tasks to imple-
ment the modiWcation such as requirements analysis, archi-
tectural design, detailed design, coding, and testing.

Maintenance review/acceptance: includes tasks to review
the modiWcation with the authorizing organization and
obtain approval for it.

Migration: includes tasks to plan the migration of the
modiWed system, notify when, why, and how the migration
will happen, train the users, review the impact of the new
system, etc.

Software retirement: includes tasks similar to the preced-
ing activity but focused on the old system to retire, instead
of implanting a new one.

To be of use, the intermediary PMAs should be
conducted at the end of signiWcant milestones, evenly

3 This process is actually the same as the ISO/IEC 12207 [19] mainte-
nance process.

Fig. 7. Overview of the ISO 14764 Maintenance process [20] with the inter-
mediary and Wnal PMAs and their respective scope.

Process
implementation

Modification
request
analysis

Modification
request

implementation

Maintenance
review

Migration

Software
retirement

Analysis

Design

Implementation

Test
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

509

510
511
512
513
514
515
516
517
518
nce seen as a knowledge management issue, Information and Soft-
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

anquetil
Note
Post

8 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

distributed during the project. In a large software mainte-
nance project, analysis of the modiWcation (how it may be
done, what parts it would impact, how to Wt it in the exist-
ing architecture), and actual implementation (detailed
design, coding, testing) would consume the major part of
the project time (analysis represents 40% to 60% of a main-
tenance project, [29]), while other activities as validation or
migration would be shorter. We identiWed two main points
where to perform the intermediary PMAs (see Fig. 7):

• after the analysis of the modiWcation which includes the
Wrst two activities (Process implementation, Problem
and modiWcation analysis) and the initial task of the
third activity (ModiWcation implementation: require-
ment analysis);

• after the implementation of the modiWcation which
includes the rest of the third activity (ModiWcation
implementation).

A third (Wnal) PMA can then be conducted at the end of
the project in order to review all its aspects and the most
recent activities not yet considered in the intermediary
PMAs.

Other points when to perform PMAs could be consid-
ered, for example after the important Maintenance Review
activity. However, we considered that a PMA after this
activity would probably be very close in time after the sec-
ond PMA (post-implementation) and before the third one
(Wnal), therefore duplicating the eVort for little return.
Important lessons learned during the Maintenance Review
activity (mostly if the modiWcation was satisfactory and if
not why) can be explicited during the Wnal PMA.

5.2. What knowledge to look for in software maintenance

Depending on the speciWc scope of each PMAs, we may
hope to explicit diVerent kind of knowledge. For example,
information on the testing techniques used will be best dis-
covered during the second PMA (post-implementation) just
after the tests have been performed. As already explained, it
is clear from previous work on PMA, that it is a successful
technique to discover lessons learned from the execution of a
process and thereby improve its next execution. Therefore,
during each intermediary PMA, we will seek information on
the tasks and activities that occurred before this PMA. The
Wnal PMA will mainly look for information on the execution
of the whole process. However, we also wish to discover new
knowledge learned on the system, its application domain, or
other issues not related to the maintenance process.

To identify what information we could hope to discover
in each PMA, we mapped the concepts deWned in our
ontology to the particular tasks reviewed in each PMAs.
For example, the Wrst PMA (post-analysis) occurs after: (i)
the process implementation activity, (ii) the Problem and
modiWcation analysis activity, and (iii) the requirements
analysis task from the modiWcation implementation
activity.
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

In the process implementation activity, the only task
typically performed for each new maintenance project is
to develop plans and procedures for conducting the activ-
ities of the project. To execute this task the project man-
ager usually takes into account his/her experience from
previous projects with a similar domain, size, and team.
Therefore, the type of knowledge related to this activity is
about the process execution, what MAINTENANCE ACTIVI-
TIES are needed and may be what speciWc TECHNOLOGY will
be required (see subontologies in Figs. 4 and 5). This
implies that the Wrst PMA should look for this particular
type of knowledge.

The problem and modiWcation analysis activity starts
when the maintainer analyzes the modiWcation request to
determine its impact on the organization, on the existing sys-
tem, and on other systems that may interact with it. From
this analysis the maintainer deWnes options for implementing
the modiWcation. Based on the analysis report the manager
estimates the eVort to do the maintenance and sets the time
frame for the project. With this information, one obtains
approval to do the modiWcation. The types of knowledge
related to this activity are (see concepts from Figs. 3–6):

• detailed knowledge on the modiWcation request (see the
concepts related to the MODIWCATION REQUEST as, what
was the maintenance type: correction or enhancement;
what was the MAINTENANCE ORIGIN: DOCUMENTATION, EXE-
CUTION, ƒ; who submitted the MODIWCATION REQUEST);

• how the impact analysis (an INVESTIGATION ACTIVITY) was
performed. For example, what COMPUTER SCIENCE TECH-
NOLOGIES were used: what CASE tool, what MAINTE-

Table 1
The three maintenance PMAs and the types of knowledge they focus on

PMA Type of knowledge

(1) Post-analysis Details on the modiWcation request
Organizational structure using the software
Options for implementing the modiWcation
EVort estimation for the modiWcation
Negotiation of time frame to do the modiWcation
Documents modiWed
Requirement elicitation technique used
Tools used
Application domain
Details on the requirements

(2) Post-
implementation

Programming languages and tools used

Programming techniques used
Software components modiWed
Systems interrelationship
Analysis/design inconsistencies
Re-engineering opportunities detected
Artifacts traceability
Database design
Design patterns used
Testing technique used
Process and support documentation modiWed

(3) Final Negotiations with other technological departments
ModiWcation monitoring
Maintenance process
551
552
553
554
555
556
557
558
559

560
561
562
563
564
565
566
567

568
569
570
571
572
573
574
575
576
577
578
579
580

581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
nce seen as a knowledge management issue, Information and Soft-
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

626
627
628
629
630
631
632
633

anquetil
Cross-Out

anquetil
Replacement Text
FI

anquetil
Note
Remove blank line

anquetil
Cross-Out

anquetil
Replacement Text
it

anquetil
Cross-Out

anquetil
Replacement Text
p(lower case)

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 9

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

NANCE TECHNIQUE; also, what ARTIFACT of the SYSTEM can
be impacted?;

• the organizational structure (see HUMAN RESOURCES, who
uses the software, who is the CLIENT, who are the SOFT-
WARE ENGINEERS involved); or

• how the time frame to implement the modiWcation was
deWned and negotiated.

Finally, the requirements analysis task includes updating
the system documentation related to the problem being
solved. Performing this task, the maintainer uses speciWc
REQUIREMENT ELICITATION TECHNIQUES (Fig. 4) and tools to
better collect and register the user requirements. During this
task, the maintainer should also learn about diVerent
CONCEPTS of the domain, BUSINESS RULES, who are the USERS,
which parts of the organization use the system, when and why
is it used.

The types of knowledge to consider in each PMA are
deWned similarly, based on the activities they review and
the concepts of the ontology involved in these activities. A
list of knowledge types is proposed in Table 1. The next
section details how we plan to discover information in
each type.

5.3. How to perform PMA during maintenance

Finally, we had to deWne a method that would help the
software engineers remember and explicit all they could
have learned in the various knowledge domains considered
(process, system, application domain, ƒ). For this we
decided to perform the PMAs in two steps: First, we
designed a questionnaire as a mean to pre-focus their mind
on the bits of information we want to discover. This ques-
tionnaire is distributed among the software engineers that
will participate in the PMA session. In a second step, we
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
R

conduct a PMA session where the same topics are brought
up again to eVectively discover new information. The actual
PMA session may take various forms (for examples, see
[38]): semi-structured interview, KJ session,4 using Ishikawa
diagram, or using a combination of these.

The questionnaires are composed of one or more ques-
tions for each type of knowledge identiWed for that PMA.
Questions are designed to instantiate the concepts
deWned in our ontology. Fig. 8 shows some questions
from the PMA post-analysis questionnaire. One can eas-
ily trace the questions of the second part (Category:
Application Domain) back to the concepts of the Appli-
cation Domain subontology. There are two possible uses
of the questionnaire, Wrst, it may be used only to revive
the memory of the PMA participants on the various types
of knowledge sought. In this approach, the actual
answers would not be considered in the PMA session.
Another approach, that we actually used, is to use the
answers to the questionnaires to help the facilitator focus
the PMA session on the topics that appear most likely to
bring new knowledge.

We have, thus far, experimented our proposal with semi-
structured interviews and brainstorming sessions (KJ ses-
sions). The results showed some interesting knowledge bits
as will be discussed in the next section.

6. Discussion of experimentation

Validating a knowledge management approach in general
is a diYcult thing as the results only appear on the long run,
and even then, it may be diYcult to pinpoint a single event
that clearly shows the beneWt of the approach. Moreover, our

4 A kind of brainstorming session.
OOF
Fig. 8. Excerpt of the post analysis questionnaire. Application domain questions are intended to instantiate the concepts of the Application Domain sub-
ontology (see text).
634
635
636
637
638
639
640

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

656

657
658
659
660
661
662
663
664
665
nce seen as a knowledge management issue, Information and Soft-
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

691

692
693
694
695

anquetil
Note
Text was double spaced in the submission. Should not be in the final proof(as in Table 1 for example)

anquetil
Comment on Text
the footnote mark (4) should come before the coma

10 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

proposition is more to show the importance of diVerent
kinds of knowledge for software maintenance, and how they
may be collected, than a complete knowledge management
approach (the experience factory, see Section 7, might be use-
ful there). Therefore, we will limit ourselves to discuss some
experiments of the PMA methodology and their results.

PMA for maintenance was applied to six maintenance
projects from the industry. We applied interview PMAs in
four small maintenance projects (about 1 man/week work),
and KJ sessions for two larger projects (more than two
months). Both experiments and their results will be dis-
cussed here.

The experiments were realized in a public organization,
where the software maintenance group includes about 60
software engineers (managers, analysts, programmers,
DBA, etc.). The methodology was tested on a speciWc group
of 15 people, responsible for the maintenance of 7 legacy
software systems. It must be mentioned that the organiza-
tion had just undergone (2 or 3 months before) a major
redeWnition of its working practices with the introduction
of new software processes. Unfortunately, this meant that
the process issue was still a sensitive one at the time of the
experiment, with many adjustments still to be done and the
topic in itself more present in the mind of the software engi-
neers. This is a bias in our experiments in the direction
opposite to the one we favor (discovering more knowledge
about the system or the application domain).

In all cases, the maintainers had been briefed before
hand on the goals of the PMAs, particularly that it was not
intended to be a witch-hunt. Actually some experimental
PMAs had already been conducted in the organization pre-
viously with the same group.

In all experiments, data on the projects were gathered
through a special management tool implanted earlier (about 9
months before) in prevision of these experiments. Statistics on
the duration of the PMAs were collected more informally.

6.1. Interviews

We applied semi-structured interview PMAs to four
short maintenance projects with few maintainers (one or
two) involved. Semi-structured interviews are a systematic
way to follow an agenda and allow the interviewer to Wnd
out more information on any issue that was not adequately
answered in the questionnaire. We felt that interviews
would be the best tool because the small size of the mainte-
nance team allows the facilitator to easily merge the discov-
eries. The characteristics of these projects were as follow:
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

• Project 1: Perfective maintenance, involved 2 maintain-
ers during 6 days for a total of 27 man/h of work.

• Project 2: Perfective maintenance, involved 1 maintainer
during 5 days for a total of 17 man/h of work.

• Project 3: Perfective maintenance, involved 2 maintain-
ers during 5 days for a total of 47 man/h of work.

• Project 4: Perfective maintenance, involved 2 maintain-
ers during 2 days for a total of 10 man/h of work.

During and after each project, questionnaires were dis-
tributed to the maintainers, then the PMAs facilitator
would meet with each maintainer to interview him/her. The
duration of the interviews is listed in Table 2. It is roughly
constant and does not seem to depend on the duration of
the maintenance project (although the number of inter-
views does depend on the size of the team).

We felt that this way of performing PMAs gave com-
plete satisfaction with results as expected (e.g., knowledge
gained on the system or the application domain). Examples
of these results are proposed in Section 6.3. The interviews
were found to be Xexible, easily applied, and at little cost.
However, as already mentioned, we feel that the method
would not scale up well and larger teams need group meet-
ing(s) to facilitate the convergence of ideas.

In Table 3, we present an overview of the number of con-
cept that could be instantiated during the PMAs. For
example, of the 23 concepts in the System subontology, 11
were instantiated, which means that at least one concrete
example of these concepts was mentioned during the PMAs
as something that was learned and worthy of remembering.
When an instance of a given concept is mentioned (for
example, concept USER from Fig. 5), we consider that this
concept and all its super-concepts (CLIENTE HUMAN

RESOURCE and HUMAN RESOURCE) are instantiated.
From the table, we can see that the Process subontology

is the one that was the most instantiated, in number of con-
cepts (21) and number of instances (135). We already knew
that PMA was an adequate tool to discover lessons learned

Table 3
Concepts from the ontology instantiated during the four PMAs

Number of
concepts

Instanciated
concepts

Number of
instances

System 23 11 80
Process 30 21 135
CS skills 38 05 09
Organization 03 03 22
Application domain 04 04 68
Table 2
Duration of the Interview PMAs

Maintenance
project

Team members
(man/h)

Project duration
(min)

PMA (1): post-analysis
(min)

PMA (2): post-
implementation (min)

PMA (3): Wnal
(min)

1 2 27 20 20 15
2 1 17 20 30 10
3 2 47 20 30 15
4 2 10 20 25 20
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

732

733
734
735
736
737
738
739
740
741
nce seen as a knowledge management issue, Information and Soft-
742
743
744
745
746
747
748
749

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

anquetil
Cross-Out

anquetil
Cross-Out

anquetil
Replacement Text
man/h

anquetil
Inserted Text
utessuggesting to be more explicit on what "min" means. However, this would enlarge further 5th column (PMA (2)). So I am not sure this is a good idea...

anquetil
Inserted Text
utes

anquetil
Inserted Text
utes

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 11

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

from the process. We believe that the recent changes in the
organization’s processes are, at least partly, responsible for
this higher representation of the Process subontology. Vari-
ous other concepts from this subontology were not instanti-
ated due to the characteristics of the projects. For example,
all four projects were perfective maintenance, therefore the
concept CORRECTIVE MAINTENANCE could not be instantiated
in these cases. This is also the case for many CASE sub-
concepts (there are 16 in the subontology) which were not
used or do not exist in the case considered (e.g., DEBUGGER).

With only four maintenance projects, we were able to
instantiate almost half of the concepts from the System
subontology (11 instantiated for a total of 23) with many
instances (80). We see it as a sign that our method does
allow to discover such knowledge and is successful in this
sense. Because of the typical conditions of legacy software
systems (foremost the lack of system documentation),
many concepts from the System subontology could not be
instantiated. This is the case of many DOCUMENT sub-con-
cepts (there are 16 in the subontology).

Similarly, knowledge on the application domain and the
Organizational Structure was gained during the PMAs. All
concepts from these two subontologies were instantiated
and, more importantly, many instances were found, espe-
cially in the case of the application domain subontology (68
instances). This is a good result since application domain
knowledge is considered very important by some authors
(e.g., [4]).

Finally, the lesser results for the Computer Science Skills
subontology is seen as natural and with little impact. From
the nine instances found, four were to mention interviews
as the REQUIREMENT ELICITATION TECHNIQUE used (and to
note that it was satisfactory). The other instances, refer to
the discovery of the minus operator in a relational database
environment (PROGRAMMING TECHNIQUE); the use of a new
class from the programming language library (PROGRAM-
MING TECHNIQUE); two instances of new testing approaches
(TESTING TECHNIQUES) and the discovery of a functionality
of the modiWcation request management tool ClearQuest
(SUPPORTING CASE). It is natural that experienced software
engineers discover less new knowledge about computer sci-
ence techniques or CASE tools, and we do not see this as a
problem with our approach. Computer science skills are
considered background knowledge that all software engi-
neers should have.

6.2. Brainstorming sessions

We applied KJ sessions (a kind of structured brain-
storming) to two large maintenance projects with more
maintainers involved (more than 10 in our experiments).
The KJ sessions seemed best Wtted because they are a kind
of structured brainstorming where all the team members
get a chance to share what they learned. When the team
gets bigger, it is important to have this kind of meeting so
that all opinions may be expressed and compared. A clear
problem of the method is that it is more costly and diY-
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

cult to organize. The characteristics of these projects were
as follow:

• Project 5: Adaptive maintenance, involved 11 maintain-
ers during 60 days.

• Project 6: Adaptive maintenance, involved 12 maintain-
ers during 90 days.

Because of the urgency of both projects, it was not possi-
ble to realize the intermediary PMAs (post-analysis and
post-implementation) and we could experiment only the
Wnal PMAs. This is a sign of the lack of clear support from
the upper management toward this experiment.

As described earlier, these sessions were prepared with the
distribution of questionnaires intended to revive the impor-
tant points of the projects in the mind of the participants and
help them focus on the topics of interest. For each project, the
PMA was divided in two KJ sessions: in the Wrst session, posi-
tive and negative points were raised, they were then summa-
rized and organized by the facilitator to prepare the second
session where corrective actions were proposed for the nega-
tive points (this second session is not really part of our experi-
ment). The duration of each session is given in Table 4.

Although Dingsøyr et al. [15] termed KJ sessions a
“lightweight post-mortem review”, knowledge manage-
ment in general is still a costly process. We could verify this
when we had to Wnd time for a team of more than 10 people
to meet during an entire workday. Because of this, we could
not apply the intermediary meetings that we were planning.
This is a problem because the last PMA focuses potentially
more on the process and less on the system or application
domain.

The recent introduction of new processes showed still
more heavily in these experiments as in the previous
ones because of the need to justify the meetings to the eyes of
the upper management. Consequently, the results were not as
satisfying as for the short maintenance projects, with more
points coming out on the maintenance process itself and less
knowledge on the system, application domain, or organiza-
tional structure being elicited.

Although these PMAs used a diVerent format (brain-
storming session) than for the small maintenance projects,
they still made use of the same instrument (the question-
naire) to revive the knowledge of the software engineers.
Because of this, we believe that they could have met
with our objective of discovering knowledge on the
systems, the application domain, or the organizational
structure. We see the lack of clear results as a consequence
of the particular conditions we had to deal with.

Table 4
Duration of the KJ sessions (the duration is that of the whole “session”
which included two actual meetings) for both projects

Maintenance
project

Team
members

Project duration
(days)

PMA PMA duration
(h)

5 11 60 Wnal 6
6 12 90 Wnal 8
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

824

825
826
827
828
829
830
831
832
833
nce seen as a knowledge management issue, Information and Soft-
834
835

836
837
838
839

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

12 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

6.3. Some results

Examples (from the interview PMA) of knowledge
gained during a maintenance project and uncovered by the
PMAs are:

• redocumentation of business rules found in the source
code;

• detailed understanding of how a particular module
works;

• identiWcation of re-engineering opportunities (the re-
engineering was not actually performed but the need for
it was recorded for future analysis);

• identiWcation (by some software engineers) of incom-
plete knowledge on the programming language or of a
CASE tool; or

• identiWcation of problems in the business processes and
proposition of solutions to improve these processes.

Another result that was not expected but gave us great
satisfaction was that we started to create a culture of
knowledge management in the organization. The main-
tainers were beginning to look for the PMAs to exchange
information and actually asked to have them. One sugges-
tion that came out of these PMAs was that it would be
useful to design a tool to help knowledge recording during
the maintenance so that it would not be lost afterward
(for example, when a PMA may not happen or when it is
delayed too long after the events it covers). It is possible
that the tool proposed by Derrider [12] (see Related Work
Section) could be of some help in this sense, however this
is a diYcult issue and we are not sure whether this is at all
recommendable. We strongly believe that knowledge
management is better done as a separate, clearly identi-
Wed, activity rather than on the Xy. It seems clear to us
that the success of the PMA approach lays in the fact that
people stop to do their usual work to start reXecting on
what they know and learned. Doing this during the execu-
tion of a project may prove diYcult and may be counter-
productive.

7. Related work

Using some kind of knowledge management technique
to help maintenance is not new, although we believe we are
the Wrst to explicitly present and deal with the software
maintenance problem in terms of a knowledge management
issue. We divide related work in two categories:

• Knowledge management in software engineering in general.
• Knowledge management in software maintenance.

7.1. Knowledge management in software engineering

One can trace the introduction of knowledge manage-
ment techniques for software engineering back to the
proposal of the Experience Factory by Basilli et al. (e.g.,
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

[2,3]). The Experience Factory is intended to gather the
lessons learned from past projects and make these avail-
able to other members of the organization. It started as a
process improvement tool and evolved in a more general
knowledge management approach. The Experience Fac-
tory diVers in several points from our proposal: It is
more general, being applicable to any software engineer-
ing process, and not even restricted to software organiza-
tions [3]. All application reports relate to process
improvement (including [41], see next section) and do not
deal with other information as we do. Finally, it is a
much heavier solution than ours, not easily implemented
(e.g., see the application reports in [14,35]), whereas the
use of PMA may be implemented simply and at a rela-
tively small cost.

Actually, PMA may be used inside the Experience Fac-
tory to collect knowledge that the factory will allow to
store and recover. As we already mentioned, we did not
explore the aspect of knowledge redistribution. Our focus
was primarily to consider the knowledge needed in soft-
ware maintenance and see how we could make it explicit.
The next step could be to use the full Experience Factory
framework to complete the knowledge management cycle.
However, due to the investment required to implement
the Experience Factory, much more involvement from the
higher management would be required for this step to be
taken.

As already noted (Sections 2.3 and 5) Post-Mortem
Analysis is already practiced in software engineering pro-
jects (e.g., [5,15,27,38]). An important diVerence of our
approach is the context of software maintenance, which is
diVerent from what is usually practiced. Typically, PMA
has been used to improve development process, we are
using it to gain other types of knowledge (for more details
see Section 5).

Agile software development methods propose practices
that promote knowledge sharing among a team of soft-
ware engineers. Agile methods focus on a relatively small
team, where knowledge is implicitly shared among the
members. To work well, this model requires that the team
evolves slowly over time (low turnover) so that new mem-
bers can catch up with the common pool of knowledge
before too many old members leave. In the organization
we studied, there is no Wxed team, but a pool of 60 soft-
ware engineers who may be assigned to the maintenance
of any system. Actually, many experienced software engi-
neers left the organization, after a change in management
and a re-organization of the working habits.

Another diVerence is that although promoting knowl-
edge sharing is fundamental to agile methods, they remain
software development methods and not knowledge man-
agement methods. Knowledge is shared implicitly and no
special attention is given to it. We put knowledge at the
front of the stage and made it a goal of its own. Actually, in
this sense, an important result for us was to make the soft-
ware engineers conscious of the importance of knowledge,
of recording it, and of sharing it.
881

882
883
884

885
886
887
888
889
890
891
892
893
894
895
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918

919
920
921
922
923

924
925

926

927
928
929
nce seen as a knowledge management issue, Information and Soft-
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 13

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

7.2. Knowledge management in software maintenance

Other authors already applied some kind of knowledge
management techniques to software maintenance.

There is an experiment using the Experience Factory in
the context of Software Maintenance [41]. The objective of
this experiment remains in the line of the traditional Expe-
rience Factory application: study and improve the process.
The fact that much more knowledge may be involved (and
explicited and re-used) in Software Maintenance is not
alluded to. The only hint in this direction is that the charac-
terization of the knowledge (a step in the Experience Fac-
tory process) includes a characterization of the existing
system. This, in itself, implies that the knowledge on the sys-
tem is important too. However, this knowledge was not fur-
ther considered in the referred experiment, i.e., it is not
explicited and stored in the Experience Factory.

There is another proposition to use the Experience Fac-
tory to help share results of researches on Software Mainte-
nance [36]. This is of course a completely diVerent
preoccupation than ours since it focuses researchers and
not practitioners.

A similar preoccupation, although not using the Experi-
ence Factory, guided the work of Kitchenham et al. [24].
They deWned an ontology to help classify research work on
maintenance. Although their work was pioneer, they do not
aim at solving any maintenance problem, but rather help
research on maintenance.

Ruiz et al. [33] published an “ontology for the manage-
ment of maintenance projects”. Their goal is the same as
ours and they also use an ontology to identify and classify
the knowledge to discover. There are two diVerences
between our approaches: First, Ruiz et al. ontology is
mainly concerned with the maintenance process and quality
assurance, it is actually based on a speciWc process; second,
they are trying to come up with tools that would help to
automatically discover, classify, and recover the knowledge.
On the other hand, we tried to deWne our ontology indepen-
dently of any particular process, and we did not give any
special importance to the process, but considered also the
system to maintain (3 concepts in Ruiz et al. ontology), the
skills needed for maintenance, etc. On the second point,
although we do not reject the idea of having tools to help
manage the knowledge (and the need for it was actually
raised by the software engineers during our experiments),
we follow Rus and Lindvall’s recommendation that “it is a
mistake for organizations to focus only on technology and
not on methodology” [34, p.34]. We do believe it is impor-
tant to Wrst establish a culture of knowledge management
before trying to automate things. This is why we concen-
trated Wrst on deWning a method for PMA.

Two other closely related publications [31,32] deal with
knowledge for software maintenance, but once again they
consider primarily knowledge on the process, ignoring the
larger necessities maintenance has.

Another approach, looking to record and recover
knowledge with the aid of specialized tools, is that of
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

Deridder [12]. He proposes to help maintenance using a
tool that would keep explicit knowledge about the applica-
tion domain (in the form of concepts and relations between
them) and would keep links between these concepts and
their implementation. His approach is mainly concerned
with the tool and has no backing ontology. It concentrates,
a priori, on application domain knowledge (although the
tool would probably allow representing any concept in
other domains).

8. Conclusion

Software Maintenance is a knowledge intensive activity.
Software maintainers need knowledge of the application
domain of a legacy software, the problem it solves, the
requirements for this problem, the architecture of the sys-
tem, how it interacts with its environment, etc. All this
knowledge may come from diverse sources: experience of
the maintainers, knowledge of users, documentation, source
code, ƒ Most of the time however, the knowledge once
acquired stays in someone’s head as opposed to be formally
documented for later retrieval and reuse. When a main-
tainer leaves the organization, all the knowledge he/she
gathered on the various systems he/she worked on, is lost
for this organization.

This process is costly, and studies suggest that about
50% of the cost of maintenance is spent on recreating it [29,
p.35]. In this paper, we submit that this lack of knowledge is
one of the prominent problems in software maintenance,
and we look for some solutions to help solve it:

• We designed an ontology of the knowledge useful to
software maintenance as a framework to support other
knowledge management solutions;

• We experimented Post-Mortem Analysis to help in elic-
iting knowledge acquired during maintenance and
record it.

The ontology of the knowledge useful to software main-
tenance may be seen as a reference, listing all the concepts
we need to worry about; or it may be seen as a classiWcation
scheme to categorize pieces of information that we may
gather; it could also be used as a common description of
maintenance for various tools trying to exchange informa-
tion. We did not explore this last part.

People usually do not know what they know. This is why
techniques such as Post-Mortem Analysis (PMA) are
needed to elicit knowledge. PMA is a tool now common in
software engineering, however it has mainly been used in
software development projects to help gather lessons
learned for process improvement. In a software mainte-
nance context, we need to elicit other types of knowledge,
for example, knowledge about the system maintained or
the application domain. For this, we designed a PMA
method where a questionnaire is used to focus the mind of
the maintainers on the bits of knowledge that we are inter-
ested in.
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
nce seen as a knowledge management issue, Information and Soft-
1043
1044
1045
1046
1047
1048
1049
1050
1051

1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071
1072
1073
1074
1075
1076

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

14 N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
UNCORREC

We experimented our PMA method on diVerent mainte-
nance projects of various size and obtained good results:

• the capability of PMA to uncover lessons learned from
projects has not been diminished and several possible
improvements were proposed;

• we demonstrated the possibility to elicit other types of
knowledge, particularly knowledge gained on the system
maintained and the application domain;

• we believe we actually started to create a culture of
knowledge management in the subject organization.
This was not a goal we actively pursued, but came as a
gratifying outcome.

We are still involved with knowledge management for
software maintenance, and a new goal for us will be to Wnd
a way to disseminate the knowledge gained among a large
body of people. We feel this is but imperfectly dealt with by
current methods such as recording knowledge on paper or
in database.

References

[1] Victor Basili, Patricia Costa, Mikael Lindval, Manoel Mendona, Car-
olyn Seaman, Tesoriero Roseanne, Marvin Zelkowitz. An experience
management system for a software engineering research organization,
in: Proceedings of the 26th Annual NASA Goddard Software Engi-
neering Workshop. NASA Goddard Space Flight Center, 2001.

[2] Victor R. Basili, Gianluigi Caldiera, H. Dieter Rombach. Encyclope-
dia of Software Engineering, volume 1, chapter The Experience Fac-
tory, pages 469–76. John Wiley & Sons, 1994.

[3] Victor R. Basili, Mikael Lindvall, Patricia Costa. Implementing the
experience factory concepts as a set of experience bases, in: Proceed-
ings of 13th International Conference on Software Engineering and
Knowledge Engineering, SEKE’01, pp. 102–109. Knowledge Systems
Institute, 2001.

[4] T.J. BiggerstaV, B.G. Mitbander, D. Webster, Program understanding
and the concept assignment problem, Commun. ACM 37 (5) (1994)
72–83.

[5] A. Birk, T. Dingsøyr, T. Stålhane, Postmortem: never leave a project
without it, IEEE Softw. 19 (3) (2002) 43–45.

[6] G. Booch, J. Rumbaugh, I. Jacobson, The UniWed Modeling Lan-
guage User Guide, Addison-Wesley, 1998.

[7] Lionel C. Briand, Victor R. Basili, Yong-Mi Kim, Donald R. Squier,
A change analysis process to characterize software maintenance pro-
jects, in: International Conference on Software Maintenance/
ICSM’94, pp. 1–12, 1994.

[8] B. Collier, T. DeMarco, P. Fearey, A deWned process for postmortem
review, IEEE Softw. 13 (4) (1996) 65–72.

[9] T.H. Davenport, P. Laurence, Working Knowledge: How Organiza-
tions Manage What They Know, Harvard Business School Press,
Boston, 1998.

[10] K.M. de Oliveira, F. Zlot, A.R. Rocha, G.H. Travassos, C. Gallota, C.
Menezes, Domain-oriented software development environment, J.
Syst. Softw. 172 (2) (2004) 145–161.

[11] Kleiber D. de Sousa, Nicolas Anquetil, Káthia M. de Oliveira,
Learning software maintenance organizations, in: Grigori Melnik,
Harald Holz (Eds.), Advances in Learning Software Organizations –
6th International Workshop, LSO 2004, No. 3096 in Lecture Notes
in Computer Science, pp. 67–77. Verlag, June 2004. ISBN 3-540-
22192-1.

[12] Dirk Deridder, Facilitating software maintenance and reuse activities
with a concept-oriented approach, Technical report, Programming
Technology Lab – Vrije Universiteit Brussel, May 2002.
Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
TED P
ROOF

[13] M.G. Batista Dias, N. Anquetil, K.M. de Oliveira, Organizing the
knowledge used in software maintenance, J. Universal Comput. Sci. 9
(7) (2003) 641–658.

[14] T. Dingsøyr, R. Conradi, A survey of case studies of the use of knowl-
edge management in software engineering, Int. J. Softw. Eng. Knowl.
Eng. 12 (4) (2002) 391–414.

[15] Torgeir Dingsøyr, Nils Brede Moe, Nytrø Øystein, Augmenting experi-
ence reports with lightweight postmortem reviews, Lecture Notes in
Computer Science, 2188(2001) 167–181, PROFES 2001, Berlin, Germany.

[16] Michael Gruninger, Mark S. Fox, Methodology for the design and
evaluation of ontologies, in: Workshop on Basic Ontological Issues in
Knowledge Sharing/IJCAI’95, August 1995, Also available as a Tech-
nical Report from the Department of Industrial Engineering, Univer-
sity of Toronto.

[17] Nicolas Guarino (Ed.), Formal Ontology in Information Systems.
Frontiers in ArtiWcial Intelligence and Applications. IOS Press,
Amsterdam, 1998.

[18] Standard for software maintenance. Technical report, IEEE – Insti-
tute of Electrical and Electronics Engineers, May 1998. ISBN:
0738103365.

[19] ISO/IEC 12207 Information technology – Software life cycle pro-
cesses. Technical Report 12207, ISO/IEC, 1995.

[20] ISO/IEC 14764: Information technology – Software Maintenance.
Technical Report 14764, Joint Technical Commitee International
Standards Organization/International Electrotechnique Commis-
sion, 1999.

[21] I. Jacobson, G. Booch, J. Rumbaugh, The UniWed Software Develop-
ment Process, Addison-Wesley, 1999.

[22] M. Jørgensen, D.I.K. Sjøberg, Impact of experience on maintenance
skills, J. Softw. Maint.: Res. Pract. 14 (2) (2002) 123–146.

[23] Norman L. Kerth, An approach to postmorta, postparta and post
project review, On Lione: http://c2.com/doc/ppm.pdf. Last accessed
on: 06/01/2003.

[24] B.A. Kitchenham, G.H. Travassos, A. von Mayrhauser, F. Niessink,
N.F. Schneidewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang,
Towards an ontology of software maintenance, J. Softw. Maint.: Res.
Pract. 11 (1999) 365–389.

[25] M.M. Lehman, Programs, life cycles and the laws of software evolu-
tion, Proc. IEEE 68 (9) (1980) 1060–1076.

[26] Ikujiro Nonaka, Hirotaka Takeuchi, The Knowledge-Creating Com-
pany. Oxford University Press, 1995. ISBN 0195092694.

[27] S.L. PXeeger, What software engineering can learn from soccer, IEEE
Softw. 19 (6) (2002) 64–65.

[28] S.L. PXeeger, Software Engineering: Theory and Practice, second ed.,
Prentice Hall, 2001.

[29] T.M. Pigoski, Practical Software Maintenance: Best Practices for
Software Investment, John Wiley & Sons, Inc., 1996.

[30] Linda Rising, Patterns in postmortems, in: Proceedings of the 23rd
Annual International Computer Software and Applications Confer-
ence, pp. 314–15. IEEE, IEEE Comp. Soc. Press, October 25–26, 1999.

[31] Oscar M. Rodriguez, Aurora Vizcaíno, Ana I. Martínez, Mario Piat-
tini, Jesús Favela, How to manage knowledge in the software mainte-
nance process, in: Grigori Melnik, Harald Holz (Eds), Advances in
Learning Software Organizations – 6th International Workshop,
LSO 2004, Lecture Notes in Computer Science 3096, pp. 78–87.
Springer Verlag, June 2004. ISBN: 3-540-22192-1.

[32] Oscar M. Rodriguez, Aurora Vizcaíno, Ana I. Martínez, Mario Piat-
tini, Jesús Favela, Using a multi-agen architecture to manage knowl-
edge in the software maintenance process, in: Mircea Gh. Negoita,
Robert J. Howlett, Lakhmi C. Jain (Eds.), Proceedings of the 8th
International Conference on Knowledge-Based Intelligent Informa-
tion and Engineering Systems, KES 2004, Lecture Notes in Computer
Science 3213, pp. 1181–1188, Springer Verlag, 2004. ISSN 0302-9743.

[33] F. Ruiz, A. Vizcaíno, M. Piattini, F. García, An ontology for the man-
agement of software maintenance projects, Int. J. Softw. Eng. Knowl.
Eng. – SEKE 14 (3) (2004) 323–349.

[34] I. Rus, M. Lindvall, Knowledge management in software engineering,
IEEE Softw. 19 (3) (2002) 26–38.
1096
1097

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

1108
1109
1110
1111
1112
1113

1114

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
nce seen as a knowledge management issue, Information and Soft-
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

http://c2.com/doc/ppm.pdf
http://c2.com/doc/ppm.pdf

N. Anquetil et al. / Information and Software Technology xxx (2006) xxx–xxx 15

INFSOF 4683 No. of Pages 15; Model 5+
ARTICLE IN PRESS

14 August 2006 Disk Used Aranganathan (CE) / Selvi (TE)
[35] K. Schneider, J.-P. von Hunnius, V.R. Basili, Experience in imple-
menting a learning software organization, IEEE Softw. 19 (3) (2002)
46–49.

[36] Carolyn B. Seaman, Unexpected beneWts of an experience repository
for maintenance researchers, in: International Workshop on Empiri-
cal Studies of Software Maintenance, WESS’00, http://hometown.aol.
com/geshome/wess2000/metricsandmodels.htm, October 2000. accessed
on: 02/01/2005.

[37] Mark S. Fox, Mihai Barbuceanu, Michael Gruninger, An organiza-
tion ontology for enterprise modeling: preliminary concepts for link-
ing structure and behaviour, Comput. Ind. 29 (1996) 123–134.

[38] Tor Stålhane, Torgeir Dingsøyr, Geir K. Hanssen, Nils Brede Moe.
Post-mortem – an assessment of two approaches, in: Proceedings of
the European Software Process Improvement 2001 (EuroSPI 2001),
October 10–12, 2001.
UNCORREC

Please cite this article as: Nicolas Anquetil et al., Software maintena
ware Technology (2006), doi:10.1016/j.infsof.2006.07.007.
[39] Amrit Tiwana. The Knowledge Management Toolkit. Prentice Hall
PTR, 2000.

[40] T.R. Gruber, Toward principles for the design of ontologies used
for knowledge sharing, Int. J. Hum. Comput. Stud. 43 (5-6) (1995)
907–928.

[41] J. Valett, S. Condon, L. Briand, Y.-M. Kim, V. Basili. Building an
experience factory for maintenance, in: Proceedings 19th Annual
Software Engineering Workshop. NASA Goddard Space Flight Cen-
ter, November 1994.

[42] Anneliese von Mayrhauser, A. Marie Vans. Dynamic code cognition
behaviors for large scale code, in: Proceedings of 3rd Workshop on
Program Comprehension, WPC’94, pp. 74–81. IEEE, IEEE Comp.
Soc. Press, November 1994.

[43] Yourdon (Ed.), Minipostmortems. COMPUTERWORLD, March
19, 2001.
TED P
ROOF
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
nce seen as a knowledge management issue, Information and Soft-
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

http://hometown.aol.com/geshome/wess2000/metricsandmodels.htm
http://hometown.aol.com/geshome/wess2000/metricsandmodels.htm
http://hometown.aol.com/geshome/wess2000/metricsandmodels.htm

	Software maintenance seen as a knowledge management issue
	Introduction
	Knowledge management
	Definitions
	Knowledge organization: ontology
	Capturing knowledge: Post-Mortem Analysis

	Software maintenance
	An ontology for software maintenance
	System subontology
	Skills in computer science subontology
	Modification process subontology
	Application domain and organization subontologies

	Post-Mortem Analysis for maintenance
	When to perform PMA during maintenance
	What knowledge to look for in software maintenance
	How to perform PMA during maintenance

	Discussion of experimentation
	Interviews
	Brainstorming sessions
	Some results

	Related work
	Knowledge management in software engineering
	Knowledge management in software maintenance

	Conclusion
	References

