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Abstract

As valuable software systems become older, reverse engineering becomes increasingly important to com-
panies that have to maintain the code. Clustering is a key activity in reverse engineering that is used to
discover improved designs of systems or to extract significant concepts from code.

Clustering is an old, highly sophisticated, activity which offers many methods to meet different needs. The
various methods have been well documented in the past, however conclusions from general clustering literature
may not apply entirely to the reverse engineering domain. In this paper, we study three decisions that need
to be made when clustering: The choice of 1) abstract descriptions of the entities to be clustered, 2) metrics
to compute coupling between the entities, and 8) clustering algorithms. For each decision, our objective is
to understand which choices are best when performing software remodularization. The experiments were
conducted on three public domain systems (gce, Linux and Mosaic) and a real world legacy system (2 million
LOC).

Among other things, we confirm the importance of a proper description scheme for the entities being
clustered, we list a few effective coupling metrics and characterize the quality of different clustering algo-
rithms. We also propose novel description schemes not directly based on the source code, and we advocate
better formal evaluation methods for the clustering results.
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I. INTRODUCTION

As a software system becomes older, its maintenance becomes more difficult. Software
engineers face systems where a minor change in some part can have an unexpected impact
on an apparently unrelated part. Consequently, important goals of the reverse engineering
community are to help software engineers understand and restructure legacy software as
well as to migrate it towards more modern architectures and languages. A key technique for
doing this is clustering, which is used to gather software components into modules that are
meaningful to the software engineers.

Clustering, however, is a sophisticated research domain in itself. There are many alter-
native methods, the choice of which depends on such factors as size and type of the data,
a priori knowledge of the expected result, etc. Reverse engineering is a younger research
domain, with still unclear goals [1] and methods that are somewhat ad-hoc. In this context,
clustering has often been used without a deep understanding of many of the issues involved.
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To try to address this, Wiggerts presents in [2] a summary of literature on clustering. This
summary is valuable since it lists the possible decisions one needs to make and gives insights
about advantages and drawbacks associated with various alternatives. However, as we said,
the clustering field is a very sophisticated one, and just summarizing it in a single paper is
already a challenge on its own. As a consequence, Wiggerts’ paper “only” offers conclusions
drawn from the general clustering literature, some of which may not apply to the domain
of software remodularization. We present here a study of clustering that is more geared
towards the specific needs of reverse engineering. We study three issues: 1) How to describe
the entities to be clustered, 2) the similarity metrics used to quantify the coupling between
these entities, and 3) the choice of clustering algorithms. Our study includes theoretical
discussion of important questions one should keep in mind when doing clustering, as well as
practical experiments to verify some of our hypotheses.

We organize the paper in two main parts. In the first part, we present essential theoretical
background regarding clustering as applied to reverse engineering. This starts (section II)
with an introduction to clustering and the three major issues mentioned in the last paragraph.
We then discuss related research (section III). Following this, we analyze each of the three
issues in the context of reverse engineering (sections IV and V). During this analysis, we
present some specific observations and hypotheses. The observations highlight facts that we
judged important or that will help understand some of our hypotheses.

In the second part of the paper, we present a framework for the comparison of different
approaches to clustering (section VI), and then discuss the experimental conditions and the
results of testing the hypotheses (section VII). Note that we can only present a few results
from the large number of experiments we performed. The interested reader will find the com-
plete results, as well as the clustering programs, on the web: http://www.site.uottawa.ca/
~anquetil/Clusters/.

II. Issues IN CLUSTERING

Software engineers perform reverse engineering to help understand a presumably large
piece of software. A key activity in reverse engineering consists of gathering the software
entities (modules, routines, etc.) that compose the system into meaningful (highly cohesive)
and independent (loosely coupled) groups. This activity is called clustering. There are many
different approaches to clustering. We will concentrate, in this paper, on generic statistical
methods that have wide applicability. We will not consider more intelligent solutions tailored
to solving specific problems (e.g. [3], [4], [5]). Statistical clustering has been thoroughly
studied in taxonomy to classify organisms into species. Most of the clustering activity in
reverse engineering is based on these studies.

To perform clustering, we need to consider the following three issues:

Entities’ description: How to build an abstraction of the real world in which the entities to
be clustered are described according to some scheme.

Entities’ coupling: How to define when a pair of entities should be clustered together to make
a cohesive unit.

Clustering algorithm: The choice of clustering algorithm to apply to the abstract descriptions
of the entities.

The first issue is of the utmost importance. Clearly, if we decide to describe files by the
77th character they contain, the result would not be in any way useful to software engineers.

Once an abstract description scheme for the entities is chosen, we need to tackle the second



issue: When will two entities be considered as forming a cohesive cluster. There are two
approaches which we call direct and sibling link!. We can put together entities where one
depends on the other, this is the direct link approach. Alternatively we can put together
entities that have the “same behavior”, the sibling link approach. Figure 1 gives examples
of both approaches.
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Fig. 1. Two reasons for clustering entities (here files) together: One file depends on the other (direct link,
left cluster); or two files have the “same behavior” (sibling link, right cluster.)

An important difficulty is that typical software systems are fully-connected graphs. To
create “meaningful independent clusters”, we must decide to ignore (i.e. break) some links.
For example, in Figure 1, the fact that F2.c includes Fa.h is not considered meaningful enough
to cluster them together. For software engineers, who may have considerable knowledge
about each entity, the task of allocating files to subsystems is often difficult. For a computer
program, the task is even more complex, because it must rely only on abstract information,
with no semantic information about the actual importance of each link.

For both sibling and direct link approaches, the coupling between two entities is quantified
by what we call “similarity metrics” (see §V-A). Clustering algorithms use these similarity
metrics to make decisions about whether or not to break links.

At this point, we are left with the third and final issue to be discussed in this paper: The
choice of clustering algorithm. There are many alternatives to choose from. It is important
to understand that these algorithms do not discover some hidden or unknown structure
in a system, instead they impose a structure on the set of entities they are given. They
(arbitrarily) decide to ignore some links and favor others; a decision based on the similarity
metrics used and on the algorithm itself (e.g. a genetic algorithm or a hierarchical algorithm).
The structures imposed by the different algorithms have different qualities. We will discuss
this point in §V-B.

Clustering is a very broad domain, so we had to pick certain experiments on which to
focus our investigations. We experimented with a large set of possible entity-description
schemes, ranging from “traditional” ones (e.g. based on data binding) to more innovative
ones (e.g. based on comments). With regard to coupling, we conducted a few experiments to
compare the direct and the sibling link approaches. We chose the sibling link approach, and
the similarity metrics pertaining to it, for more extensive study. Finally, on the third issue,
we performed a few experiments with a hill-climbing algorithm? but concentrated mainly on
hierarchical clustering algorithms.

'Patel in [6] uses a cocktail-party analogy to describe these two approaches.
2Thanks to S. Mancoridis at Drexel University for providing the Bunch tool, [7], [8]



III. RELATED WORK

There has been a rather limited amount of research that gives the reverse engineering
community grounds with which to compare clustering approaches.

Wiggerts gives an overview of clustering techniques in [2]. Our paper is intended as a
continuation of his work. Wiggerts gives a summary of many classical clustering methods; we
take some of these methods and test them to compare their relative strengths and weaknesses
for reverse engineering.

Lakhotia [9] proposes a comparison framework for the description of entities and for clus-
tering methods. He establishes some common ground on which to compare different methods
but does not actually do the comparison.

Armstrong [10] and Storey [11] give a comparison of various reverse engineering tools,
however their work is at a higher level of abstraction than ours: Whereas they compare
tools, discussing issues such as the quality of the interface, we compare clustering algorithms
that might be used by the tools.

Girard et al. [5] compare five different heuristics to find objects and classes in procedural
code. Their evaluation is based on a comparison of their results with results proposed by
experts. Their work differs from ours in that it does not use general statistical clustering
algorithms, but specific algorithms tailored for the task.

Recently, there has been high interest in a new approach called “Concept Analysis” [12],
[13], [14]. Again, this is not a statistical clustering method, and falls outside the scope of
this paper. We believe that clustering remains a valuable approach in that it extracts only
important concepts from a data set, whereas concept analysis extracts all concepts and may
therefore produce information overload for the user (e.g. see [15], [16]).

Many publications present and evaluate a single software remodularization method. They
do not provide a comparison of different approaches (hence Lakhotia’s work) and also are
usually based on more subjective evaluation criteria such as users’ appreciation of their
results.

IV. ENTITIES TO CLUSTER AND THEIR DESCRIPTIONS

In taxonomy, entities are organisms (animals or plants) that should be classified into
species. Each entity is described using a vector of features like “number of leaves”, “laying
eggs” or not, etc. The features may come from many different sources, based on anatomy,
geographical distribution, temporal distribution, behavior, chemical properties, etc.

For each entity, one first lists all the features it possesses; clustering is then used to group
together those entities that have features with the same values; i.e. using what we describe as
the “sibling link” approach (§II). In addition, for software remodularization the “direct link”
approach can also be used to do the clustering. This will be studied in §1V-C. For software
remodularization, entities may be files, routines, classes, processes, etc. The features used
to describe them are usually references from an entity to some other program components.
For example, the five files of Figure 1 could be described according to the files they include
as follows:

Fa.h: ()

Fb.h: ()

Fl.c: (Fa.h)
F2.c: (Fa.h, Fb.h)



F3.c: (Fa.h, Fb.h)

We will refer to a general label like “included files” as a feature kind, and one file in this
group (e.g. Fa.h) as a feature or dimension.

Some features, such as how many references to a particular global variable is found in
a file, are quantitative, we can refer to each feature as a dimension; the quantity is the
coordinate in that dimension. Where an entity does not refer to a particular thing, the
coordinate (quantity) for that feature will be zero. In the file inclusion example above, the
coordinate would be 1 if the file is included and 0 if it is not. The above descriptions might
then become:

Fa.h: (Fa.h =0, Fb.h = 0)
Fb.h: (Fa.h = 0, Fb.h = 0)
Flc: (Fah =1, Fb.h = 0)
F2.c: (Fa.h =1, Fb.h =1)
F3.c: (Fah =1, Fb.h = 1)

Note that each entity has a vector of the same length, whether or not it includes a file.
Features such as those described above are based purely on a syntactic analysis of the

code. We call them formal features. Although formal features are predominant in software

remodularization, in §IV-B we discuss the availability and usefulness of non-formal features.

A. Formal Features

We classify a feature as formal® if it consists of information that has direct impact on, or
is a direct consequence of, the software system’s behavior. For example, describing an entity
using the routines to which it refers is formal because if we change a routine call in the code,
we should expect a change in the system’s behavior.

Formal features are the most commonly used in reverse engineering research; in [9], Lakho-
tia lists 12 works on clustering, among which only two use non-formal features (one exclu-
sively [20]* and the other a mix of formal and non-formal [21]).

We experimented with the following formal feature kinds:

Type: User defined types referred to by the entity described. For example a type is referred
to when it is used to define a variable. Used for example in [6], [22] to describe files or in
[23] to describe routines.

Var.: Global variables referred to by the entity. A variable is referred to when it is assigned
a value or when its value is read.

Rout.: Routines called by the entity. Used in [4], [21] to describe files or in [24] to describe
classes.

File: Files included by the entity. May only be used to describe files as in [4], [25].

Macro: Macros used by the entity. This feature kind is only available in some languages (like
C). It is most relevant to file or macro entities, that is to say: Given the fact that macros
are extraneous to the language’s grammar, it would be difficult to define generally what it

3Note that in [17], Gannod and Cheng give another definition of formality and informality based on the use or not
of Formal Methods and Formal Languages (e.g. [18], [19]).

4This cited work is not really about reverse engineering, but is more related to information retrieval and document
classification.



means for a type or a function to refer to a macro. Several well-defined conventions exist for
the use of macros; these could allow for greater use of macros as a descriptive feature kind.
All: Union of the above five feature kinds.

One can imagine other formal feature kinds, like inter-process calls [26], or past bug fixes
that impacted the entities.

Observation 1: The choice of feature kinds for software is more limited than in taxonomy.

Combining feature kinds is easily achieved by describing an entity using the union of its
features for all the feature kinds. This is possible because all the features have very similar
form?®

Most of the literature reports experiments with formal features, extracted from the same
source: the actual code. Hence, the lack of choice could be aggravated by redundancy.

Hypothesis 1: There are redundancies among all the formal feature kinds extracted from
the source code.

For example all files that use a particular variable will include the same header file de-
scribing that variable. This would introduce a correlation between the “var.” and the
“file” feature kinds. Another example would be a routine referring to one of its parameters’
types (“type” feature kind), forcing a calling routine (“rout.” feature kind) to refer to the
same type as one of its variables’ types. These redundancies are imposed by programming
languages to provide for error checking.

Some researchers propose to reduce the number of features for efficiency reasons (the
programs have less data to process) or to remove noisy data. Van Deursen [12] does not
consider “utility” features which have a high fan-in because they may be used in all subsys-
tems, Schwanke [27] removes features used in only one entity because they do not contribute
to the similarity of two entities (they could however contribute to differentiate entities). We
did not study this aspect.

Another problem with formal features is that most of them are at a very low level of
abstraction (e.g. calls to utility routines, uses of loop counter variables, etc.) and contain
much noise. This makes it difficult to extract significant abstract concepts.

B. Non-Formal Features

To overcome the problems associated with the formal features, we propose to use non-
formal ones. We define a non-formal feature to be one that uses information having no
direct influence on the system’s behavior. A typical non-formal feature kind is the naming
of routines, since changing the name of a routine has no impact on the behavior of a system.

In a previous study [28], we showed that for a particular legacy software system, the
file naming convention was the best feature kind to recover the modular structure of small
subsystem examples given to us by software engineers. Other non-formal feature kinds
can include comments describing the entities, names of software engineers who worked on
an entity, dates when an entity was created or modified, etc. We experimented with the
following two:

Ident.: References to words in identifiers declared or used in the entity. Identifiers found in
the entity are automatically decomposed into words according to simple word markers. This
is a naming-convention feature kind similar to what is used in [29].

5In taxonomy, on the other hand, features may be boolean, discrete or continuous, bounded or not, etc.



Cmi: References to words in comments describing the entity. For better results, the words
are filtered using a standard stop list® and stemmed’.

For legacy software, documentation is often missing or considered outdated. Some re-
searchers argue that non-formal features are not reliable because nothing guarantees that
the information extracted will correspond to the actual behavior of the system. Sneed, for
example, states that “in many legacy systems, procedures and data are named arbitrarily”
[32]. Clearly in such cases, the “ident.” non-formal feature kind would prove useless. How-
ever many legacy systems use significant identifiers, intended to help other software engineers
to grasp the semantics of the software components they denote. Other researchers have used
heuristics based on naming conventions for various reverse engineering activities (e.g. [33],
[34], [35]). This leads us to our second hypothesis:

Hypothesis 2: Non-formal feature kinds can be used for software remodularization.

Assuming they provide relevant information, non-formal features can offer some or all of
the following advantages over formal ones; we will discuss each of these in the subsequent
paragraphs. Non-formal features:

« Have a higher level of abstraction (describe high-level intent of the code).

« Are closer to human understanding.

« Have less redundancy.

« Are easier to extract.

« Are more versatile.

« Contain more information (in particular, result in fewer entities with empty descriptions).

Non-formal feature kinds such as the ones we experimented with, are intended for human
readers. As such it seems reasonable to assume that they provide information at a higher
level of abstraction than features based purely on the syntax of the code. Therefore, it would
probably be easier to extract abstract concepts from the resulting clusters.

Observation 2: This issue of levels of abstraction is an important one and should be for-
mally tested.

Also since informal features are intended for human readers, the results should be readily
understandable to the software engineers.

Hypothesis 3: Non-formal feature kinds have less redundancy with formal ones than the
formal ones among themselves.

As mentioned in the previous section, one of the difficulties with the formal features is that
there is redundancy among them due to the nature of modern programming languages. We
hope that, since non-formal features are not so tightly restricted by programming languages,
they would not exhibit this redundancy, and instead provide different and independent points
of view about the system. We designed two experiments, discussed in §VI, to test this issue.

Observation 3: The non-formal feature kinds we chose are much easier to extract than the
formal ones.

For example, extracting words from comments is a simple task once one knows the com-
ment delimiters. Extracting the formal feature kinds requires either that one has a robust
parser for the language, or else that one has tracing capabilities (e.g. for features based
on inter-process communication.) Features like the C’s conditional compilation and macros
raise real problems (yet to be fully solved) when it comes to parsing a program.

SWe used the stop list from the information retrieval system Smart [30].
"Word stemming consists of extracting the “root” of a word, for example by removing the
nouns. We used the stemming functions provided by WordNet [31].

]
S
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Observation 4: The non-formal feature kinds we chose are more versatile than the formal
ones.

These feature kinds are independent of the programming language and can even be applied
to sources of information other than code (e.g. scripts associated with databases, compilation
or configuration).

Hypothesis 4: Non-formal features provide more information, on average, than the formal
ones.

Since they are more versatile, non-formal features are almost always present in all entities.
On the other hand it is common for an entity to have no reference to a given formal feature
kind. For example, a system with well-encapsulated data would have very few references
to global variables. Our results show that for many formal feature kinds the percentage of
entities having an empty description is high (more than 10% and up to 65%). The lack of
enough information provided by each feature kind further restricts an already limited choice.
On the other hand, we always found our non-formal feature kinds to have below 5% of empty
descriptions.

We do not presume however that every non-formal feature kind is necessarily useful. It

is one of the purposes of this paper to study and compare two of these non-formal feature
kinds.

C. Direct or Sibling Links

The direct and sibling links, presented in §II are two different ways for computing the cou-
pling between entities. Although this distinction between types of link is mainly of concern
in the discussion about similarity metrics, it has some bearing on the entities’ descriptions.

Observation 5: The sibling link approach is more versatile than the direct one.

The direct link approach has an appealing simplicity; that is, if a routine calls another
routine, the two are coupled to some degree. However, using only the direct link approach
limits one to features that record dependencies between the types of entities that one is
trying to cluster, e.g. files including other files, or structured types built from other types.
Among other things, this rules out non-formal features. The sibling link approach, on the
other hand, puts fewer constraints on the form of the descriptions; all it requires is to be
able to compute the similarity between them.

Therefore we experimented mostly with sibling links. All the feature kinds presented in
§IV-A have been used as sibling links. We also performed a few experiments using all the
formal features as direct links. It was not clear in advance which approach would work
better since we cannot use the taxonomy domain as a reference. We found only one paper
comparing the two approaches: In [36] (see also [26]), Kunz reports that he found direct link
to be inferior to sibling link.

Hypothesis 5: The sibling link approach does not perform worse than the direct link ap-
proach.

Table I gives a summary of the different characteristics that each of the eight feature kinds
we tested may have.



TABLE 1
SUMMARY OF THE CHARACTERISTICS OF THE DIFFERENT FEATURE KINDS. “BOTH” MEANS SUITED FOR
THE DIRECT AND SIBLING LINK APPROACH.

var. type rout. macro file all cmt ident.

Formal yes yes  yes yes yes  yes no no
Link  both both both both both both sibling sibling

V. OTHER ISSUES IN CLUSTERING
A. Similarity Metrics

Similarity metrics compute a coupling value between two entities. This is an important
issue, according to Jackson et al. [37] the choice of a proper similarity metric has more
influence on the result than does the clustering algorithm.

These metrics may use the direct link or the sibling link approach. In the direct link
approach, the coupling between two entities will be stronger if they have more links between
themselves. For finer tuning, links can be weighted (if an entity calls a routine 15 times,
this is a more significant link than calling it only once). We did a few experiments with the
direct link approach using an independent tool (Bunch [7], [8]).

We focused our efforts on metrics for the sibling link approach. In this approach, one
computes the similarity between the descriptions of two entities. The more similar two
entities are, the higher the coupling between them. There are many similarity metrics, which
are grouped, by Sneath and Sokal [38], into the following four broad categories: Distance
coeflicients, association coefficients, correlation coefficients and probabilistic coefficients. We
experimented with the first three.

The following is a brief description of each of the categories of similarity metrics:
Association coefficients: These compare the references that two entities have in common
considering the dimensions only as boolean (i.e. = 0 or # 0). Similarity between two entities,
X and Y, is expressed using four quantities: ¢ = [|[X NY|, b= || X \ Y|, ¢ = ||V \ X|| and
d=||F\ (X UY)| where F is the set of all possible dimensions. The quantity d is usually
much larger than a, b or ¢ which may cause some difficulties (see the end of this subsection).
Distance coefficients: Entities are considered as geometrical points and the coefficients com-
pute the distance (e.g. Euclidean distance) between these points. These distances consider
common zero-dimensions as a sign of similarity which potentially raises some problems (again
see the end of this subsection).

Correlation coefficients: Compute the linear correlation between values for all the dimen-
sions. The [—1, 1] linear correlation interval is then mapped into a [0, 1] similarity interval.
There are different mappings, some consider a strong negative correlation as a sign of sim-
ilarity, others don’t. We opted for the second possibility (negative correlation is a sign of
dissimilarity).

Probabilistic coefficients: Compute the probability that two entities are similar given their
respective vectors. We did not experiment with this one for practical reasons. According to
Sneath and Sokal [38], they are close to the correlation coefficients.

We experimented with two distance coefficients, three association coefficients and one
correlation coefficient, all proposed in [38]%:

8Note that the formulas are actually for dissimilarity metrics (i.e. distance metrics). The higher the similarity, the
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Tazonomic: (distance) sim(X,Y) = \/ Eyﬂ(xi — y;)? where z; and y; are coordinates of
respectively X and Y.

Camberra: (distance) sim(X, V) = Y070 (|2 — il /(2 + 1))

Jaccard: (association®) sim(X,Y) =1 — (a/(a+ b+ c)).

Simple Matching: (association®) sim(X,Y)=1— ((a+d)/(a+ b+ c+ d)).
Sprensen-Dice: (association®) sim(X,Y) =1 — (2a/(2a + b+ ¢)).

Correlation: (correlation'®) sim(X,Y) = /(1 —r)/2

For example the similarity between F1.c and F2.c of Figure 1 according to Jaccard associa-
tion coefficient where entities are described according to the files they include (“file” feature
kind) would be: a = ||[{Fa.h}|| =1, b = ||0|]| = 0, ¢ = ||[{Fb.h}|| = 1, sim(Fl.c,F2.c) =
1—-(1/(1+0+1))=0.5

These metrics, useful in taxonomy, may not all be well adapted to software remodular-
ization. In taxonomy, the number of features (dimensions) for one feature kind is much less
than it is for software remodularization. A feature kind such as references to routines may
have tens of thousands of dimensions in a real legacy system, yet most entities will be linked
to only a few of these routines. As a rule, for each entity, the description vector is therefore
very sparse, with many zero-dimensions.

Observation 6: Traditionally, feature kinds for software remodularization have a large
number of dimensions, of which very few will be non null for any particular entity.

We distinguish two particular conditions that may raise problems:

Empty description: Some entities have no references at all for a given feature kind. The
vectors describing such entities all lie at the origin.

Quasi-empty description: Other entities have very few references for a given feature kind.
They are described by a vector with only one or two non-zero dimensions.

Clearly, the entities with an empty description raise a problem: How can we cluster them
if they have no connection to any other entity? We choose to treat the empty descriptions
separately in all the similarity metrics and consider such entities infinitely dissimilar to any
other entity. This yields a number of singleton clusters (the entities with empty descriptions)
left after the clustering process. Bunch [7], [8], used to experiment with the direct link
approach, makes the same choice.

Hypothesis 6: Similarity metrics that consider zero-dimensions as a sign of similarity tend
to cluster all entities together in a huge meaningless cluster.

Entities with quasi-empty descriptions all have very similar descriptions and will often be
considered strongly coupled. Metrics that consider zero-dimensions as a sign of similarity
(such as the Simple Matching association coefficient or the two distance coefficients), will
be misled by the high proportion of zero-dimensions. The quasi-empty descriptions can
form a core cluster which will attract to it all other entities with only a few more non-zero-
dimensions. The clustering method would ultimately gather all the entities into one single
cluster, rendering it useless. This problem is linked to Observation 6:

Hypothesis 7: Feature kinds with fewer dimensions are less subject to the problem identi-
fied in the previous hypothesis regarding zero-dimensions.

lower the dissimilarity. This will simplify the discussion on height of clusters in a later section.
9see the definition for a, b, ¢ and d above.

10, _ ZXYf(EXZY)/n
(S0 ) (Sr-(20)n)
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For example, the “file” feature kind tends to have fewer dimensions (there are fewer files
to include than routines to call or global variables to use) and should give better results than
other feature kinds with the similarity metrics that do consider null-dimensions as a sign of
similarity.

Note that, whereas it does consider null-dimensions as a sign of similarity, the correlation
coefficient will be little affected by them. This coefficient looks for similar variations in
values, many identical points have barely more influence on the correlation coefficient than
a single one. Therefore, for the correlation coefficient, many null values are very close to a
single null one, and it will not be impacted by the large amount of zero-dimension in the
descriptions.

B. Clustering Algorithms

The next step consists of choosing a clustering algorithm. In this paper, we concentrate
on agglomerative hierarchical algorithms. For software remodularization, non-hierarchical
algorithms have also been used (see [9]). Again, we performed a few experiments with non
hierarchical algorithms using Bunch [7], [8]. It uses a hill climbing algorithm, which tries
to minimize an objective function that subtracts the average “inter-connectivity” (Bunch’s
measure of coupling) of the partition from the average “intra-connectivity” (Bunch’s measure
of cohesion).

Agglomerative hierarchical algorithms start from the individual entities, gathering them,
two by two, into small clusters which are in turn gathered into larger clusters up to one
final cluster that contains every entity. The result is a binary tree of clusters. A notable
advantage of such algorithms is that they are unsupervised, that is, they don’t need any extra
information such as the number of clusters expected or the possible region of the search space
in which to look for clusters. On the other hand, we will see in the next subsection that it
can be difficult to choose which clusters in the final hierarchy are valuable and which ones
only represent partial results.

Fig. 2. Distance of a new cluster (C4) to other clusters (C%) in agglomerative hierarchical clustering
algorithms.

These algorithms are differentiated by the way they compute the distance from a new
cluster to all other ones'!. The distance between a newly created cluster (e.g. C4, in Figure
2), to another one (C%) is computed from the distances of its two members (C1 and C2) to
this other one. There are four main algorithms:

Single linkage'?: (or closest neighbor rule) the new distance will be d = min(d;, ds).
Complete linkage: (or furthest neighbor rule) d = maz(d;, dy).

" Similarity metrics compute similarity between individual entities. The algorithms extend this to clusters.
12D no mistake the Simple Matching coefficient (§V-A) for the single linkage algorithm.
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Weighted average linkage: d = (di + d2)/2. Since clusters C1 and C2 may not have the
same number of entities, these entities have different weights depending on which cluster
they belong to.

Unweighted average linkage: d = (||C1||d1 + ||Cal|d2)/(||Ci|| + ||C2|]). In this one, we take
into account the size of the clusters C1 and C2, such that all entities have the same weight
(i.e. they are not weighted).

Which of the above algorithms is chosen can have a considerable influence on the resulting
clusters. For example, single linkage is known to favor non-compact but more isolated
clusters; whereas complete linkage usually results in clusters that are more compact but less
isolated (see Figure 3). Unweighted and weighted average linkages are intermediate on the
following scale: complete, weighted, unweighted and single linkages.

Hypothesis 8: Single linkage results in clusters that are less coupled, while complete linkage
results in clusters that are more cohesive.

®_ o ® i N

Fig. 3. Influence of the clustering algorithm on the clusters (from [2]). Left: Single linkage. Right: Complete
linkage.

There is no a priori reason to favor cohesion or coupling, but because the descriptive
vectors (on which cohesion and coupling are based, see §VI-B) used are very sparse, coupling
naturally tends to be good (i.e. low). As a consequence, we propose to give more importance
to cohesion. Note that this approach departs from the traditional one which attempts to
obtain both good cohesion and good coupling. It is our experience that one often needs to
favor one metric at the expense of the other.

Table II presents a summary of the three parameters we studied.

TABLE II
SUMMARY OF THE THREE CLUSTERING PARAMETERS STUDIED. “ZERO” IDENTIFIES THE SIMILARITY
METRICS WHICH CONSIDER NULL-DIMENSIONS AS A SIGN OF SIMILARITY.

Feature Kind || Similarity Metric | zero || Algorithm
var.
type Jaccard
formal | macro || association | Simple Matching | 4/ | Complete linkage
rout. Sgrensen-Dice Weighted linkage
file correlation Correlation Unweighted linkage
all distance Taxonomic v/ || Single linkage
non- ident. Camberra Vv
formal | cmt
formal features Bunch (direct link) Bunch (hill climbing)
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C. System Partitions

For software remodularization, we often need a partition of the system instead of a hier-
archy of clusters. Bunch does provide us with such a partition, but with the hierarchical
algorithms described in the previous subsection, the partition is best obtained by pruning
the hierarchy of clusters at the appropriate height and considering only the top-most clusters
(see Figure 4). If we cut at height 0, the partition will contain only singleton clusters. If we
cut at the maximum height, the entire system will be the only cluster.

MAX
""" - Ihei ght

0
D)

Fig. 4. A hierarchy of clusters and how to cut it to get a partition of the data set.

One can draw a useful analogy between the height of a cluster and its “diameter”. The
farther apart two entities are (less similarity), the greater is the height of a cluster that
contains both of them. The height of a cluster is always greater than the height of the
clusters it contains. This height (or diameter) is directly dependent on the similarity metric
chosen. For example, with the association coefficients, the maximum height will be 1, which,
for the formulas we gave in §V-A is the farthest apart'® that any two entities can be. With
other similarity metrics, notably the distances, the maximum can be much higher. We see
heights over 150 in our results.

Finding the appropriate height at which to cut is a difficult problem in itself and there may
be more than one choice. We did not attempt to solve this problem; instead, we sliced the
hierarchy at many different heights, thus obtaining a succession of “cuts” for each hierarchy.
This proved to be useful for analyzing the behavior of the clustering methods.

VI. EVALUATION CRITERIA

Evaluation criteria are central to any formal comparison as well as to the precise definition
of a scientific research domain. We will use two types of criterion: General criteria to evaluate
the quality of the clustering, and specific criteria to test some particular hypotheses. This
part is made difficult by the following observation.

Observation 7: There are few well established formal criteria available to compare the
results of various remodularization approaches.

The general criteria should aim at measuring the quality of a clustering approach in its
normal use, which is to remodularize an old software system to help maintainers understand
and manage it. As such, we propose that an ideal clustering method should have the following
properties:

1. Actually represent the system (and not an ideal view of the domain for example).

2. Make sense to the software designers, i.e. extract modules implementing known concepts.
3. Greatly reduce the amount of information that software engineers have to cope with
(abstract the system).

13The “similarity” formulas given actually measure the dissimilarity (or distance) between entities.
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4. Be adaptable to different needs, e.g. help novices understand the system or help experts
assert the consequences of a modification in the code.

5. Be general, i.e. adaptable to different software systems, programming languages, etc.

6. Be stable, i.e. give similar results when minor changes are introduced to the entities being
clustered (see [39]).

Unfortunately not all of these properties are easily measured formally. For example, re-
modularization techniques are often evaluated manually by an expert in the system (which
addresses properties 1 and 2 above). Due to the fact that we perform thousands of experi-
ments to analyze various combinations of variables, manual evaluation is not feasible in our
work. The reverse engineering literature suggests two alternative evaluation criteria that
can provide a suitable substitute, while still verifying that the approach being evaluated
represents the system and makes sense to users:

Design criterion: Clusters should reflect a good design (as evaluated by cohesion and cou-
pling).

Reference decomposition criterion: Clusters should match a reference decomposition (estab-
lished by “experts”).

We added the following criterion, to verify that the approach being evaluated makes sense
to users:

Size criterion: In order to be useful, clusters should have an appropriate size. For example,
one very large cluster and many small ones is not good.

In addition, some hypotheses will be evaluated using specific criteria based on information
theory (entropy criterion) and a method known as k-nearest neighbors (nearest neighbors
criterion). We will discuss each of the evaluation criteria in the next five sections.

A. Reference Decomposition Criterion

An important way of evaluating clustering approaches is to have a real expert give his or
her opinion of the results. Due to the very large number of experiments we performed, it was
not possible to proceed that way, and we used an automated comparison with a reference
decomposition. We call this the reference decomposition criterion. This criterion will test
Hypotheses 2 and 5.

The source files for two of our systems (Linux and Mosaic) are organized in several direc-
tories which form a reasonable decomposition of the systems. We used them as reference
against which to compare the clusters obtained. These decompositions may not be ideal,
but two factors contribute to their significance:

o The directories themselves help to keep the initial design by giving a framework to the
maintainer.

« The high granularity level used in our experiments (files) is less sensitive to design drift
during maintenance.

Although, the clustering algorithms and the directories both potentially provide tree struc-
tures, we compared them as partitions of the system. In the last section, we explained how
to cut a hierarchy of clusters to obtain a partition of the system. For the directory tree, we
considered the lower directories (the ones containing only files) as forming subsystems. This
should match the abstraction level of the clusters extracted which is usually low.

The difficulty with this criterion is to compare two sets of clusters, when the clusters are
only defined by their members. A question arises about how to compare two clusters when
one of them has one entity more than the other. It is clear that they are not equal, but we
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need to acknowledge the fact that there is very little difference between them. We propose
to consider pairs of entities: Two entities are either in the same cluster (an “intra” pair) or
in two different clusters (an “inter” pair). We can then use precision and recall* for a given
partition as follows:

Precision: The percentage of intra pairs proposed by the clustering method which are also
intra in the reference partition.

Recall: The percentage of intra pairs in the reference partition which were found by the
clustering method.

We will often witness good precision and low recall. This is a consequence of the clustering
methods extracting smaller clusters than the ones in the reference partition. Since the
clusters are smaller, they have fewer intra pairs and a higher probability that they are correct
(good precision); at the same time there will be many missing intra pairs (bad recall). In
other words, the extracted clusters are at a lower abstraction level than the reference partition
because each cluster covers less entities.

One problem with this automated comparison is that it does not have the flexibility of
human evaluation. An expert judging a partitioning will try to establish if it is reasonable,
whereas our criterion will reject a possibly interesting partitioning if it does not happen to
match the pre-selected reference. On the other hand, human evaluation is highly subjective
and not easily quantified.

B. Design Criterion

Software engineers are more likely to be interested in cluster sets that correspond to a
good design of the system. Design quality is traditionally evaluated using cohesion and
coupling (e.g. [41]) which we now briefly describe. This design criterion will be used to test
Hypotheses 2, 5 and 8.

Cohesion and coupling are both based on pair-wise coupling between entities. This in turn
is computed with a scheme similar to that used for clustering. Entities are described using
one of the features already discussed (usually formal features: §IV-A), and the coupling
between entities is evaluated by some kind of similarity metric. We use a similarity metric
(proposed in [22] and [6]) different than those described in §V-A:

Similarity between entities' is: sim(ex, ey) = (XT.Y) /(I XY I)-

Cohesion of a partition is the average similarity between any two entities clustered together
(i.e. any intra pair, see previous section). Cohesion ranges from 0 (worst) to 1 (best).
Coupling of a partition is the average similarity between any two entities in two different
clusters (i.e. any inter pair). Coupling ranges from 0 (best) to 1 (worst).

For example the similarity between files Fl.c = (1 0) and F2.c = (1 1) in Figure 1, is:
sim(Fl.c,F2.c) = 1/(1 x /2).

This similarity metric does not consider null-dimensions as a sign of similarity.

This design criterion is not entirely objective when applied to automatically generated
clusters. As we have discussed, clustering algorithms partition the set of entities, trying to
optimize intra cluster similarity and to minimize inter cluster similarity. This computation
is based on a similarity metric between abstract descriptions of the entities. The design
criterion measures cohesion and coupling between the clusters, also based on a similarity

precision and Recall are standard metrics in Information Retrieval, see for example [40].
15X and Y are vectors describing the two entities ex and ey; || X|| and ||Y|| are their Euclidean norms; X7 is the
transposed vector.
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metric between abstract descriptions of the entities. In other words we measure the quality of
the results with methods similar to those we used to obtain the results. Even if the similarity
metrics used in both case are different, and if we are careful to use two different feature
kinds, some doubts remain about the validity of this criterion. Remember, for example, the
interdependence between some formal features we hypothesized in §IV-A.

Similarly, the design criterion is probably biased towards the unweighted average linkage
algorithm. Both approaches compute an (unweighted) average of some similarity metric
between the members of the clusters.

C. Size Criterion

In [42], Hutchens draws an analogy between partitions of a system and star systems. He
defines three types of system:

« The planetary system, where several subsystems (planets) are interconnected to form the
system. This is the ideal case.

o The black hole system has no visible planets, one key subsystem absorbs everything re-
volving around it.

« The gas cloud system, has no cluster. All entities tend to stand alone.

Each particular configuration may be an inherent property of the software system —poorly
designed systems may naturally lead to black hole or gas cloud configurations— but it may
also depend on the specific similarity metric or clustering algorithm chosen.

This criterion will mainly test the two hypotheses regarding the pertinence of similarity
metrics that consider zero-dimensions as a sign of similarity (Hypotheses 6 and 7).

Since the hierarchical algorithms we use produce trees of clusters, with leafs being single-
tons and the root containing all entities, we need to be more precise about what we consider
to be a gas cloud or a black hole configuration. We define a black hole configuration as a
situation where the algorithm tends to create one big cluster that grows regularly during
the clustering process and drags, one after the other, all entities to it. We define a gas cloud
configuration to be a situation where the algorithm tends to create very small clusters and
then “suddenly” clusters all of them into one big cluster near the top of the hierarchy.

We will quantify this criterion with three values, which are: the number of singleton
clusters, the number of entities in the largest cluster, and the number of other entities (in
the intermediate clusters). We would like to avoid solutions having many singleton clusters (a
gas cloud) or only one huge cluster (a black hole). Figure 5 shows an example of a good and a
bad partitioning method. On the left, we can see the number of singleton clusters decreasing
steadily, with many entities in intermediate clusters. This corresponds to a planetary system
configuration. On the right, the largest cluster grows fast and there are few entities in the
intermediate clusters. This is a black hole configuration.

In our experiments, the gas cloud and black hole configurations arise from different factors.
The gas clouds were always a consequence of the special treatment we imposed on entities
with empty descriptions (§V-A). This is illustrated by the high number of singleton clusters
remaining at the end of the clustering process in both graphs. The gas clouds arise as a sign
of a bad feature kind (many empty descriptions) and it is simple to detect this beforehand
(see §IV-B). The black hole configuration, on the other hand, is usually a consequence of
an ill-adapted algorithm or similarity metric. The two problems can also combine as in the
right graph in Figure 5.
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Fig. 5. Size criterion for two algorithms. The algorithm with more entities in intermediate clusters (complete
linkage on the left) is better. System: gcc. Feature: “rout.”. Similarity metric: Jaccard coefficient.

Note that for the left graph, the intermediate clusters completely disappear in the very last
stage of the clustering process at the maximum height (here, with Jaccard similarity metric:
value=1). This is normal since at the end of the algorithm all entities must be contained in
one cluster. If there are still singleton clusters at this stage, it is because we forced entities
with empty descriptions to be infinitely far from all others, which actually corresponds to
the clustering process ignoring these entities (as also proposed by Mancoridis [8]).

D. Entropy Criterion

We referred several times to the quantity of information a feature kind can provide to the
clustering process (Hypothesis 4). We also mentioned a possible redundancy (or correlation)
between some feature kinds (Hypotheses 1 and 3). These hypotheses can be evaluated using
information theory.

In information theory, the quantity of information of an event is equal to its uncertainty.
The uncertainty of an event e depends on the probability of this event, P(e), and is measured
by the function: h(e) = —log P(e).

Using this, we can compute the quantity of information conveyed by the fact that an entity
refers to a particular feature f, given P(f) = (#refTof /#entity) (i.e. the number of entities
referring to f divided by the total number of entities).

The average quantity of information of a set, X, of possible outcomes of an event is given
by the entropy function: H(X) = Y, cx P(x;)h(z;) (i.e. sum of the information of each
possible outcome weighted by the probability of this outcome). In our case, an “event”
would be a feature (dimension of a feature kind), and there are two possible outcomes: an
entity either refers to the feature or not. From this, we can compute the entropy of a single
feature: (P(refer)h(refer) + P(notRefer)h(notRefer)).

Finally, we can compute the average entropy of a particular feature kind which should
give us an idea of the amount of information this feature kind provides. However, one
should remember that the amount of information a particular feature conveys may have
little relation with its usefulness to remodularize a system. The fact that an entity refers or
not to a particular global variable could carry little information per se and yet this global
variable could be very useful to help pinpoint one particular subsystem

Another measure of the information that a feature kind can provide is the proportion of
entities with null descriptions it contains (discussed in section VII-A).



10

Information Theory also allows one to evaluate the correlation between two events. Let’s
us define:
H(XY): (Alsonoted H(X,Y)) = ¥4 yiexy P (@i, y;).-—1og P(zi, yj) = X, yjexy P(@is i) (i, y5).
The joint entropy of X and Y; it represents the average quantity of information of knowing
whether an entity refers to feature X and to feature Y.
H(X|Y): = Y yexy P(i,y5)-1og P(wily;) = o ypexy P(@i; yj)h(zily;). The condi-
tional entropy of X knowing Y'; this is the average quantity of information that remains
about (an entity referring to) X when we know whether an entity refers to Y.
HX;Y):=H(X)-HY|X)=H(Y;X) = HY)— HX|Y). The mutual information
between X and Y'; this is the average reduction of uncertainty about (an entity referring to)
X when we know whether an entity refers to Y.

| H(XY) |
| H(X) |

| H(Y) |
| H(X]Y) [HX:Y) | HY[X) |

Fig. 6. Relation between the various entropies: H(XY') = joint entropy; H(X|Y) = conditional entropy of
X knowing the outcome of Y and H(X;Y) = mutual information between X and Y.

The relations between all these values are given graphically in Figure 6. Our intent is to
use them to evaluate the redundancy between two feature kinds. The idea is to compute the
mutual information between any two features from two different feature kinds. Redundancy
between two feature kinds should appear as a high average mutual information between their
respective features. However, we saw that each feature kind has many features (Observation
6) and we cannot expect one feature (say a reference to a routine) to be correlated with all
the features of another feature kind (say reference to all types), rather we expect one feature
to be highly correlated to a single (or only a few) other features. For example a reference to
one routine would likely be correlated with references to one type. To take this into account,
we propose to use the following algorithm to compute bestMI(X, YV):

a.1 sumBests = 0

«.2 For each feature X, of feature kind X do

«.3  For each feature Y; of feature kind ¥ do

a4 Compute the mutual information MI(i,j) = H(X;;Y;)
a.5  Endfor

a.6  Add the n highest values of M (3, j) to sumBests

(e.g. for n = 1: sumBests = sumBests + maz;(MI(i,7)))

«.7 Endfor
«.8 The final result is: bestMI = sumBests/(n.||X||)

(i.e. the average of the n highest mutual information values for each feature of feature kind

X
In our) experiments, we used n = 2.

This algorithm is not symmetric, bestMI (X, V') usually differs from bestMI(Y, X). Since,

in step .6, we only consider the few n highest mutual informations, it is probable that some
features of feature kind Y never appear in the final result because they intrinsically carry
little information and, therefore, cannot have a high mutual information with anybody else.
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On the other hand, all features of feature kind X will enter in the final result whether or not
they carry a lot of information.

To help understand and remember this non symmetry, we use the notion of coverage. We
will say that bestMI(X,Y') gives an idea of how well X is covered by Y (see mathematical
definition of cover(Y, X) a bit later). The intuition is that, if Y covers X well, all features
of X have high correlation with at least n features of Y. In the facts, saying that Y covers X
well could actually be the consequence of a subset of Y (with at least n elements) covering
X well.

The quantity bestMI(X,Y) needs to be normalized (i.e. divided) by the average joint
entropy H(XY'). That is to say, the quantity of information common to X and Y needs to
be normalized by the total quantity of information that X and Y carry. Again have a look
at Figure 6 for the relationship that exists between H(XY') and H(X;Y).

To get a notion of what is a good coverage, we also compute cover(X, X). Again, this value
and the idea of “covering” could prove counter intuitive, as cover(X, X) is not a maximum
value for coverage. For n > 1, we can find Y such that Y covers X better than X itself, for
example if there is very little correlation between the features inside X, whereas each feature
of X is highly correlated to at least n features of Y.

E. Nearest Neighbor Criterion

To compare feature kinds between themselves, we will also use the k-nearest neighbors
criterion. For each entity, this criterion will compare the entity’s k-nearest neighbors calcu-
lated using one feature kind, with the k-nearest neighbors calculated using another feature
kind. The more nearest neighbors in common, the more similar the two feature kinds should
be. This criterion was used for example in [27].

A problem with this criterion is that it is likely to be dependent on the similarity metric
used. That is to say, two feature kinds could look very similar when using one similarity
metric and less so when using another. Another problem is to decide for a proper value of k.

The k-nearest neighbors can also be used to estimate the quality of a similarity metric,
using a reference partitioning (the same as in section VI-A). We can pick each entity and
look how many of the k-nearest neighbors according to the similarity metric studied are
actually in this entity’s subsystem in the reference partitioning.

VII. EVALUATING THE HYPOTHESES

We will now present the results of some experiments to evaluate the hypotheses we formu-
lated in the first part of the article. In the experiments, entities are files and the clusters may
be thought of as subsystems. Each file is described according to eight feature kinds, labeled
as follows: Type (types referred to in the file, references include definition of the types and
their use), Var. (global variables referred to in the file), Rout. (routines called), File (files
included), Macro (macros referred to), All (union of the five previous formal features), Ident.
(words in identifiers referred to in the file) and Cmt (words in comments). These feature
kinds were discussed in detail in (§IV).

We experimented with four systems: Linux kernel [43], Mosaic [44], gcc [45] and a real
world legacy telecommunication system. Table III gives some information about the four
systems. Note that, in the legacy telecommunication system, the high number of global
variables referenced is due to the nature of the system which uses shared memory to exchange
information between its numerous processes.



TABLE III
SOME INFORMATION ON THE FOUR SYSTEMS WITH WHICH WE EXPERIMENTED, AND NUMBER OF
DIMENSIONS FOR EACH FEATURE KIND

gcc  Mosaic Linux telecom.

Language C C C Pascal
# LOC 460K 140K 600K 2M
# files 215 225 875 1817
var. 684 152 770 12982
type 209 323 906 6586
macro 1710 1292 8827 -
rout. 1753 1091 1904 7306
file 129 262 457 1655
all 4460 3110 12844 28504
ident. 4739 3821 11111 7105
cmt 6072 5967 14431 12446

The design criterion (§VI-B) uses the “all” feature kind (see §IV-A). The rationale for
this choice is that first, we wanted a formal feature because the use of non-formal features
is not yet well established, and second, we did not want to give an advantage to the basic
formal features.

We also did a few experiments with Bunch, a clustering tool using direct links between the
entities. We experimented with Bunch on Mosaic using all formal features. Bunch offers two
different algorithms: Hill-climbing and genetic, both having an optimal and a sub-optimal
version. For efficiency reasons we experimented mainly with the sub-optimal hill-climbing
algorithm. This algorithm finds a local optimum for its own version of the design criterion.
We also performed one experiment with the optimal hill-climbing algorithm, using the “all”
feature kind. The results according to our quality criteria were similar to the sub-optimal
results for the same feature.

It is impossible to present here all experimental results. We will concentrate on Linux and
Mosaic, the two systems to which the reference criterion applies. The results are consistent
for the four systems. All the results, programs and input data are available on the web at:
http://www.site.uottawa.ca/ ~anquetil/Clusters/.

A. Quantity of Information (Hypothesis 4)

The hypothesis concerning the quantity of information was:

Hypothesis 4: Non-formal features provide more information, on average, than the formal
ones.

This hypothesis was tested using information theory metrics, and the percentage of entities
with empty-descriptions for each feature kind. If the hypothesis is correct, the non-formal fea-
ture kinds should have a higher average entropy and fewer entities with empty-descriptions.

We present, in Table IV, the average entropy of each feature kind for all the systems.
The data largely confirm the hypothesis, since all formal feature kinds have a lower average
entropy than the non-formal ones. “File” is the exception, it has one of the highest average
entropy.
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TABLE IV
AVERAGE QUANTITY OF INFORMATION OF ALL FEATURE KINDS FOR THE FOUR SYSTEMS

gcc  Mosaic Linux telecom.
var. 0.087 0.0564 0.019 0.013
type  0.085 0.086 0.033  0.015
macro 0.107 0.069  0.021 -
rout. 0.088 0.071 0.020  0.011
file 0.202 0.120 0.084  0.040

all 0.095 0.072 0.023  0.013

ident. 0.170 0.115  0.042 0.056
cmt 0.185 0.132  0.064 0.063

In Table V, we give the percentage of entities with empty descriptions for each feature.
Again the results agree with the hypothesis, since the two non-formal feature kinds have the
lowest percentage of empty-descriptions.

TABLE V
PERCENTAGE OF ENTITIES WITH EMPTY-DESCRIPTIONS FOR THE DIFFERENT FEATURE KINDS.

gcc Mosaic Linux telecom.

var. 44 65 53 28
type 23 24 21 19
macro 22 12 27 -
rout. 33 29 42 38
file 18 12 24 21
all 8 6 10 12
ident. 4 0 0 15
cmt 3 1 6 2

The two experiments do not entirely agree with each other, particularly in the case of
the “file” feature kind. We tend to prefer the second experiment which measures a quantity
clearly important when doing clustering: The more empty descriptions there are, the more
difficult the clustering will be.

Experimental results agree with the hypothesis.

B. Redundancy Between Feature Kinds (Hypotheses 1 and 3)

We formulated two hypotheses related to redundancy between feature kinds:
Hypothesis 1: There are redundancies among all the formal feature kinds extracted from the
source code.
Hypothesis 3: Non-formal feature kinds have less redundancy with formal ones than the
formal ones among themselves.

We proposed to evaluate them using two criteria: one based on k-nearest neighbors and
one based on information theory.



Table VI gives the results of the information theory experiment for the gcc system. Each
row shows how a feature kind covers other feature kind. Conversely, the columns show how
well feature kinds are covered. The last row and column give an idea of how well a feature
kind is generally covered by others or generally covers others. Finally, the last number
provides an idea of a mean value of coverage for this system.

TABLE VI
AVERAGE COVERAGE (SEE SECTION VI-D) BETWEEN FEATURE KINDS FOR GCC. EACH ROW SHOWS HOW
WELL A FEATURE KIND COVERS OTHERS; EACH COLUMN SHOWS HOW WELL A FEATURE KIND IS

COVERED.
var. macro rout. file type all cmt  ident. Awerage
var. 0.477 0.304 0.346 0.253 0.290 0.355 0.212 0.314 0.519
macro 0.317 0.454 0.308 0.293 0.308 0.356 0.220 0.328 0.323
rout. 0.357 0.284 0.536 0.297 0.303 0.375 0.220 0.329 0.338
file 0.134 0.125 0.137 0.377 0.129 0.136 0.112 0.140 0.161
type 0.301 0.263 0.262 0.258 0.430 0.277 0.177 0.230 0.275
all 0.453 0.488 0.450 0.547 0.435 0.943 0.252 0413 0.498
cmt 0.231 0.228 0.225 0.222 0.217 0.227 0.467 0.233 0.256

ident. 0.297 0323 0.288 0.291 0.280 0.300 0.206 0.476 0.308
Average 0.321 0.308 0.319 0.8317 0.299 0.371 0.233 0.308 0.310

Results appear to be independent of the quantity of information contained in each feature
kind as measured in the previous experiment. For example the three feature kinds with the
highest quantity of information (previous experiment) behave differently in this experiment,
as do the three feature kinds with the lowest quantity of information.

From our experiments we established the following scale for the gcc system: Coverage is
considered high over 0.375, such that all feature kinds cover themselves well. Coverage is
considered average between 0.245 and 0.375, such that the mean value (0.310) marks the
center of this interval. Coverage is considered low below 0.245. Scales for other systems
would differ in values from this one.

The salient points are:

« The “cmt” feature kind is the least covered by all other feature kinds (e.g. lower value
in the last row), and it is one of those who cover least the other feature kinds (e.g. second
lower value in the last column).

« The “ident.” feature kind presents no salient characteristic, it covers and is covered as the
average formal features.

« The “all” feature kind best covers the other feature kinds.

« The “file” feature kind covers the other feature kinds the least and is normally covered by
the others.

The first point seems to agree with our hypotheses, whereas the second point does not. In
retrospect, it seems normal that a non-formal feature kind based on words extracted from
identifiers has some redundancy with formal feature kinds based on references to identifiers.
The results for “cmt” on the other hand provide very strong evidence that non-formal features
may provide a novel perspective to entity description.



The third point confirms the validity of the experiment. Since the “all” feature kind is the
union of all other formal features, the fact that it covers them well (and that the converse is
not true) confirms expectations.

We have no simple explanation for the last point.

The second experiment was done using k-nearest neighbors. Results are given in Table VII
for the Linux system; closest pairs of entities were computed with the Jaccard association
coefficient.

TABLE VII
REDUNDANCY AMONG FEATURE KINDS FOR GCC WITH THE JACCARD ASSOCIATION COEFFICIENT.
AVERAGE NUMBER OF COMMONALITIES AMONG THE 1-NEAREST NEIGHBOR.

var. macro rout. file type all cmt ident. Awverage

var. 0.332 0.399 0.236 0.274 0.496 0.270 0.458 0.352
macro (.332 0.318 0.259 0.245 0.546 0.270 0.460 0.347
rout. 0.399 0.318 0.268 0.259 0.579 0.268 0.518 0.373
file 0.236 0.259 0.268 0.214 0.310 0.207 0.280 0.253
type  0.274 0.245 0.259 0.214 0.353 0.208 0.308 0.266
all 0.496 0.546 0.579 0.310 0.353 0.281 0.649 0.459
cmt 0.270 0.270 0.268 0.207 0.208 0.281 0.313  0.260
ident. 0.458 0.460 0.518 0.280 0.308 0.649 0.313 0.427

From the example data in Table VII, as well as from experiments with other systems and
other similarity metrics, we conclude that:

« “Cmt.” and “file” have the least redundancy with other feature kinds (see last column in
the table).

o The “ident.” and “all” feature kinds have the highest redundancies with other feature
kinds.

These results are largely in accord with the ones from the previous experiment — especially
the fact that the “cmt” and “file” feature kinds seems to have the least redundancy. Also,
as before, “ident.” has particularly high redundancy in this experiment.

In conclusion, the results are partly as expected and partly not. There is strong evidence
for hypothesis 3 with regard to “cmt.”, but not with regard to “ident”. We suggested an
explanation why “ident.” has a high redundancy with “all” and also with other formal feature
kinds. Hypothesis 1 was partly confirmed since most of the formal features have considerable
redundancies among themselves; however, the fact that “File” has a low redundancy was not
expected.

C. Utility of Non-Formal Feature Kinds for Clustering (Hypothesis 2)

We hypothesized that:

Hypothesis 2: Non-formal feature kinds can be used for software remodularization.

To verify this, we tested the resulting clusters using the design criterion (coupling and
cohesion) and reference criterion (intra and extra pairs as compared to an ’expert’ decom-
position). Results are presented in Figures 7 and 8 for the Mosaic system. In the figures,
non-formal feature kinds are represented by dashed curves and the formal ones by plain
curves. The dots show Bunch’s results.



For the last graph in Figure 7, the point at which a clustering approach would be “ideal”
is the lower right hand corner (high cohesion, low coupling). The curves evolve from the top
of the graph (lower cuts at bottom of the hierarchy) towards the bottom of the graph (higher
cuts at top of the hierarchy). For the last graph in Figure 8, on the other hand, the “ideal”
point is the upper right corner (high recall and precision), and the curves evolve towards
the top. We consider that only the last few cuts (except the very last) represent interesting
partitions, with the earliest ones giving many very small or singleton clusters. The very last
cut can safely be ignored for the opposite reason, since this is the stage where all entities are
gathered into one big cluster which offers no interest.
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Fig. 7. Comparison of feature kinds with the design criterion. To improve readability the first five and
the very last cuts were ignored. System: Mosaic. Similarity metric: Jaccard coefficient. Algorithm:
Complete linkage (curves), Bunch (dots).
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Fig. 8. Comparison of feature kinds with the reference criterion. To improve readability the five first and
the very last cuts were ignored. System: Mosaic. Similarity metric: Jaccard coefficient. Algorithm:
Complete linkage (curves), Bunch (dots).

From this experiment, it can be seen that “Ident.” gives good results according to the de-
sign criterion, but average results according to the reference criterion. “Cmt” has reasonably
good reference results if a cut is made at the optimum height — it is clearly more sensitive to
cut height than most other feature kinds. On the other hand, it has particularly poor design
results. This is also seen when data for Linux is plotted (not shown).

It must be noted that although “all” appears to have the best design results, this could
be a consequence of the design criterion being based on this very feature kind. “Ident.”,
which has high redundancy with “all” (see previous section) also gives good design results.
On the opposite end, “file” and “cmt”, which were the feature kinds with least redundancy
with “all”, have the worst cohesion. The facts could be linked.
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Fig. 9. Proportion of 5-nearest neighbors within the same reference subsystem.

We also compared generated clusters to those of the reference decomposition using the
k-nearest neighbors approach. Data for this is shown in Figure 9. Each column gives the
average number of 5-nearest neighbors of each entity which are in the same subsystem as
the entity in the reference partition. Higher numbers indicate that the similarity metric
and feature kind are good because they give results close to the reference partition of the
system. One can see that, for the Linux system, the two non-formal features give good
results independently of the similarity metric used; for Mosaic, the results are slightly worse,
but always better than “rout.”, “type” or “macro”.

We can conclude from the above that there is weak evidence to support hypothesis 2 in
our experiments. We found various cases where the non-formal feature kinds scored better
than the formal ones, but these results lack constance.

D. Sibling/Direct Link Approaches (Hypothesis 5)

The hypothesis regarding link types is:

Hypothesis 5: The sibling link approach does not perform worse than the direct link ap-
proach.

This hypothesis is difficult to test, since each approach is used by different algorithms:
hierarchical algorithms for the sibling link approach, and a hill climbing algorithm (Bunch)
for the direct link approach. This is why we expressed the hypothesis in a negative form.

To test the hypothesis, we primarily use the reference and design criteria. The results
for the sibling link approach with the Mosaic system can be found in Figures 7 and 8. The
experiment for Bunch’s direct link approach are shown as small black circles (rightmost
graphs).

When simply comparing the quality of results for the two approaches, there does not
seem to be any advantage from either. However we do see an advantage in the sibling link
approach, in that it allows for a wider range of feature kinds (e.g. non-formal features, see
Observation 5).

The experiment provide good evidence to support hypothesis 2.

E. Similarity Metrics and Zero-Dimensions (Hypotheses 6 and 7)

We formulated two hypotheses related to the way similarity metrics deal with zero-
dimensions:
Hypothesis 6: Similarity metrics that consider zero-dimensions as a sign of similarity will
tend to cluster all entities together in a huge meaningless cluster.



Hypothesis 7: Feature kinds with fewer dimensions are less subject to the problem identified
in the previous hypothesis regarding zero-dimensions.
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Fig. 10. Comparison of three similarity metrics using the size criterion. System: Mosaic; Feature: “macro”;
Algorithm: Complete linkage.

Figure 10 uses the size criterion to compare the results from three similarity coefficients.
Note that, due to the use of different similarity metrics, the x-axes differ (see also §V-C).
One could normalize the cut height by expressing it as a fraction of the maximum height for a
given hierarchy. The results confirm that it is best not to consider zero-dimensions as a sign of
similarity between entities. The Jaccard association coefficient (left graph) and the Sgrensen-
Dice coefficient (not shown) which do not consider zero-dimensions give good results, i.e. a
planetary system configuration. The Simple Matching association coefficient (not shown) and
the two distances (such as Taxonomic distance, shown in the right graph) which consider
zero-dimensions tend to give a black hole configuration and are less satisfactory for this
criterion. Finally, the correlation coefficient (middle graph) which includes zero-dimensions
but is not really affected by them (see explanation in section V-A) also gives good results.

The results for the design and the reference criteria are similar: Jaccard and Sgrensen-
Dice give the best results, correlation follows closely and the three others (Simple Matching,
Taxonomic distance and Camberra distance) give poor results.
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Fig. 11. Comparison of two feature kinds using the size criterion. System: Mosaic; Similarity metric:
Taxonomic distance; Algorithm: Complete linkage.

To further establish the role of null dimensions in the bad results obtained with some
similarity metrics (e.g. Taxonomic distance in figure 10), we also compared feature kinds
with different propensities for null-dimensions. As already mentioned in section V-A, the



“File” feature kind, because it has fewer dimensions, tends to suffer less from the null-
dimension problem. As a consequence, it gives slightly better results, even with a similarity
metric that does consider null-dimensions as a sign of similarity. See Figure 11 and also the
third graph in Figure 10 for an example of this.

The above discussion shows that there is strong evidence confirming hypotheses 6 and 7.

F. Comparison of Clustering Algorithms (Hypothesis 8)

We formulated the hypothesis that:

Hypothesis 8: Single linkage results in clusters that are less coupled, while complete linkage
results in clusters that are more cohesive.

The results of design criterion experiments shown in Figure 12 provide very strong evidence
in support of this hypothesis. The leftmost graph shows that complete linkage has the best
(highest) cohesion, and the middle graph shows that single linkage has the best (lowest)
coupling. The rightmost graph presents cohesion and coupling together, allowing better
comparison of each algorithm’s performance. The ideal point is the lower right corner (high
cohesion, low coupling). The graph shows that unweighted linkage offers the best compro-
mise. However, remember that the design criterion could be biased towards this algorithm.

Cohesion Coupling Design Criterion
T T T 01 T T T
0.06 - 4  complete
0.08 - 1 weighted
o unweighted
£004 4 single
Q.
>
8 g
L lower cutg
0.02 ~— higher cut$
0 1 1 1 o 1 1 1 - o | | |
0 0.2 04 0.6 0.8 0 0.2 04 0.6 0.8 0 0.1 0.2 0.3
Height of cut Height of cut Cohesion

Fig. 12. Comparison of four algorithms using the design criterion. System: Linux. Feature: “file”. Similarity
metric: correlation.

The same conclusions apply with the reference criterion. We can also note that single
linkage has a tendency to gather all the entities into one cluster, resulting in a black hole
configuration (see Figure 5). Overall, there is a gradation from complete linkage, to weighted,
unweighted and single linkage for the design, reference and size criteria.

VIII. PrRACTICAL TIPS

In this subsection, we try to summarize some of the results to help practitioners actually
use hierarchical clustering for software remodularization.

From our experiments, it can be seen that hierarchical clustering provides results that
are as good as other algorithms. The advantage of the hierarchical approach is that it can
be used to obtain different partitions of the system at different levels of abstraction. This
might, for example, prove useful when developing a browser. On the other hand, one must
choose the appropriate height at which to cut. We address this issue below.

As to the choice of algorithm, we suggest using complete linkage which gives the best
results, especially regarding cohesion. Unweighted linkage is also a good choice if one cares
more about coupling, as it provides the best compromise. Single linkage seems to be a



popular choice among other researchers (see Lakhotia’s review [9]) but we saw that it tends
to result in a black hole configuration.

For similarity metrics, we suggest either the Jaccard coefficient or the correlation coeffi-
cient. We prefer Jaccard for its conceptual and implementation simplicity.

We recommend taking the results of a hierarchical algorithms and presenting the user with
several different cuts, at different levels of abstraction. However, if one single cut is desired,
then choosing it can pose a problem. Maarek proposes a simple heuristic to do so in [20],
but her proposal does not fit the experimental results we obtained. Designing an algorithm
to find the “optimal” height where to cut the hierarchy of clusters could be a good research
topic, but one would first need to define the criteria on which to base the optimization.

The lower cuts are not normally useful because few clusters are created and they are too
small to provide valuable abstractions. We suggest not to cut below half of the maximal
height. It is advisable neither to cut at the maximum height nor too close to it, because at
these levels the clustering algorithms start to gather all entities together, so the clusters are
too big to be of interest. One can usually notice a sudden drop in the number of entities in
intermediate clusters. This marks the highest point of interest in the hierarchy.

Finally, we will mention some conclusions that came out as a result of our experiments
and that could deserve more attention:

« “Var.” (references to global variables) gives poor results for Mosaic and Linux, average
results for gcc and good results for the telecommunication system. The implication is that its
results are highly system-dependent. The positive results for the telecommunication system
may be related to the fact that it relies heavily on global variables in its design, as shown in
Tables III and V.

« “Rout.” (routine calls) generally performed poorly (except for gec) in both the design and
reference criteria. This surprised us since routine calls is one of the most natural feature
kinds to use when clustering.

« “File” (file inclusion) gives clusters that match our reference subsystems (i.e. good results
for the reference criterion). This could be a result of the experimental conditions since these
partitions were based on the directory hierarchy. This feature kind is also programming
language dependent, some languages (e.g. C) use it much more than others (e.g. Pascal).

IX. FUTURE WORK

As mentioned in the introduction, clustering is a sophisticated research domain, with many
alternative methods, and numerous influencing factors. It was not possible to deal with all
the issues in a single paper and many more studies need to be conducted.

The following are some of the research questions raised in this paper, in which more

research is needed:
« To what extent can software engineers actually use clustering techniques to perform re-
modularization in practice? We have presented experimental evidence showing how to use
the techniques effectively, and showing that they can produce sets of modules that appear to
be useful. But it is important to give tools to software engineers that actually implement the
techniques, and then study how the software engineers make use of them. Currently there
are many unanswered questions about what software engineers really need, hence we agree
with Clayton et al. [1] who says that the goals of reverse engineering researchers remain
somewhat unclear.



« How valuable are the “batch clustering” techniques discussed in this paper, as compared
to “incremental” approaches that improve modularization by moving around a few elements
instead of creating a new remodularization from scratch [46]? The incremental approaches
have become the focus of much recent research; they include techniques such as “orphan
adoption” [4] and “maverick analysis” [27]. We believe that for systems that are very disor-
ganized, a complete remodularization may be warranted; but where is the dividing line at
which incremental techniques become better?

« To what extent can software engineers make effective use of clustering techniques for gen-
erating different views or interpretations of a system, as opposed to actually remodularizing
it? We hypothesize that software engineers might be able to make use of such views to more
rapidly become acquainted with a software system, but this hypothesis needs testing.

« Using the evaluation criteria we defined, how do non-hierarchical algorithms compare to
the hierarchical ones?. We performed some experiments with the Bunch tool, but further
work is needed.

« How useful are non-formal feature kinds when clustering? We studied two of them, but
this is fertile ground for additional research.

o Is there any value in pre-filtering the data? One problem with the formal feature kinds
(and to a lesser extent the non-formal ones) is the noise they contain. One could try to
use information theoretical analyses to detect and eliminate redundant features, or features
providing very little information. Note however that this is a complex issue. A previous
study [15] showed that in some cases, noise can actually be a good thing and lead to the
discovery of additional concepts.

« How valid are the evaluation criteria, and should other evaluation criteria also be used?
We mentioned in the paper that there are few well established criteria to evaluate the results
of clustering (Observation 7), and used several criteria in our analysis. Other researchers
[47] have suggested additional criteria such as: the variance of the cluster hierarchy depth
(to analyse gas cloud, black hole and planetary configurations); using information theory to
compare features (as opposed to feature kinds); and using the K-nearest neighbor approach
to compare generated clusters to a validated reference clustering ([48], [49]). It would be
interesting to compare the usefulness of the different evaluation techniques.

X. CONCLUSION

In this paper, we presented an analysis of three parameters that may influence the cluster-
ing results when doing software remodularization with agglomerative hierarchical clustering
algorithms. The three parameters are, how the entities are described, how coupling between
the entities is computed and what algorithm is used.

During our analysis, we formulated a series of hypotheses. Our experiments then provided
strong evidence, largely confirming most of the hypotheses. The hypotheses are as follows:
1. There are redundancies among all the formal feature kinds extracted from the source code.
There was some evidence in favor of this; but the “file” (file inclusion) feature kind was an
exception, showing low redundancy.

2. Non-formal feature kinds can be used for software remodularization. There was good
evidence for this hypothesis; both non-formal feature kinds we used (words in comments and
in identifiers) gave good results. This agrees with our previous research.

3. Non-formal feature kinds have less redundancy with formal ones than the formal ones
among themselves. There was evidence supporting this for the “cmt” feature kind, which



had one of the lowest level of redundancy. On the other hand, “ident.” behaved like the
formal features. We can conclude that non-formal feature kinds like “cmt” can provide a
novel way of looking at a system, but this independence cannot be taken for granted for all
non-formal feature kinds.

4. Non-formal feature kinds provide more information, on average, than the formal ones.
There was strong evidence for this.

5. The sibling link approach does not perform worse than the direct link approach. This
appears true; in addition, due to the wider range of application of sibling links, we suggest
to use this approach.

6. Similarity metrics that consider zero-dimensions as a sign of similarity will tend to cluster
all entities together in a huge meaningless cluster. Our data clearly support this hypothesis.
This is an important conclusion which should be taken into account when doing clustering.
7. Feature kinds with fewer dimensions are less subject to the problem identified in the
previous hypothesis regarding zero-dimensions. The data from our experiments also support
this; however, one should still use similarity metrics which do not consider zero dimensions
as a sign of similarity.

8. Single linkage results in clusters that are less coupled, while complete linkage results in
clusters that are more cohesive. This was also supported by our data. We conclude that
the best choice of algorithm should be either complete linkage, which favors good cohesion,
or else unweighted average linkage, which gives the best compromise between cohesion and
coupling.

We experimented only with file clustering. Other tests should be done on clustering differ-
ent entities (routines, classes, processes, etc.) We predict the results would be similar when
the same quality criteria are used. For example, the problem of quasi-empty descriptions
would be the same whether entities were routines or classes. Note however, that when clus-
tering other entities, the purpose of the clustering may also change. For example in [12],
variables are clustered to discover possible classes in procedural code. Although we believe
that the criteria we used are still valid in this context, other criteria should be considered
such as the possibility that a single entity may appear in more than one cluster.
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