
Characterizing the Informal Knowledge Contained in Systems�
Nicolas Anquetil

Universidade Católica de Brası́lia
QS 07, lote 01,́Aguas Claras

Departamento de Ciencia da Computação, sala D-004
Taguatinga - DF - 72022-900, Brazil

(55) (61) 356-9000 x.9025
anquetil@ucb.br

Abstract

Program comprehension of legacy systems is a highly
knowledge intensive task. One of the goal of reverse engi-
neering is to propose automated help to relate application
domain concepts to all their implementation instances. It
is generally accepted that to do so would require analyzing
such documentation as identifiers or comments. However,
before attempting to perform this difficult analysis, it would
be useful to know precisely what information the documen-
tation contains and if it is worth trying.

We present here the results of a study of the knowledge
contained in two sources of documentation for the Mosaic
system. This knowledge is categorized in various domains
and the relative proportion of these domains is discussed.
Among other things, the results highlight the high frequency
with which application domain concepts are used, which
could provide the means to identify them.

1 Introduction

Reverse Engineering has set it one of its goals to help
software engineers in the difficult task of understanding a
program. This supposes, among other things, to be able to
uncover the relationships between the code and the appli-
cation domain concepts, or to show how automated oper-
ations affect the operational context of a system. This is
tagged as the “concept assignment problem” in [5]. In this
article, Biggerstaff opposes thehuman orientedconcepts
to the computer orientedconcepts. The formers “live in
a rich context of knowledge about the world”, and are “de-
signed for succinct, intentionally ambiguous communica-�This work was partly sponsored by the Universidade Católica de
Brası́lia and partly by a grant from the Fundação de Amparo à Pesquisa
do Estado do Rio de Janeiro (FAPERJ)

tion”, whereas the latters are “designed for automated treat-
ment” using “vocabulary and grammar narrowly restricted”.

The same article proposes some initial solutions (or re-
search paths) to relate the human oriented concepts to their
implementation instances. These solutions include looking
at suggestive data or function names. However analyzing
and understanding identifiers is a difficult task which raises
problems comparable to those experienced in natural lan-
guage understanding. This is probably one of the reasons
why very few other work actually considered doing it.

With the hope of providing some initial information that
would indicate where to starts, or even if it is possible at
all, we studied the concepts referred to in two documenta-
tion sources (identifiers and comments) of a particular sys-
tem. Each concept was classified in one of several pre-
established knowledge domains (e.g. application domain)
and we analyzed the repartition of each domain. The hope is
to establish whether, and in what conditions, these sources
of documentation may be used to discover what concepts
are implemented. The structure of the paper is the follow-
ing, first we will discuss the decomposition of knowledge in
domains (section 2), then we discuss our experiment setting
in some details (section 3) before presenting results (section
4). We terminate with a discussion of the issues at stake
(section 5), and comparison with related work (section 6).

2 Documentation and Knowledge Domains

To try to establish whether documentation can actually
provide the means to relate abstract concepts to their im-
plementation, we studied what knowledge it contains. The
basic idea is that if comments or identifiers do not refer to
application domain concepts they are of no use to solve the
concept assignment problem [5]. For this study we need to
find out what are the concepts referred to in a source of doc-
umentation, and this will be discussed in section 3. But we



also need to categorize the various domains of knowledge
and establish the interest of each one. In this section we
will present and discuss the knowledge domains we identi-
fied.

However before going to this topic, we will first rapidly
comment on the issue of using documentation (what we call
informal sources of information) for reverse engineering.

2.1 Informal Sources of Information

Using documentation as a source of information for re-
verse engineering is still a controversial issue for many (e.g.
[13]). This is illustrated by the small quantity of work that is
using it. Being informal, they are more difficult to analyze,
furthermore, there is no guarantee that they do correspond
to the actual state of the system (outdated documentation).

We must first state that we place ourselves in the case
where some sort of documentation exists, either in the form
of commented code or in the form of (apparently) meaning-
ful software component identifiers. Although not always
verified, this hypothesis is reasonable in that it corresponds
to many real world legacy software systems as witnessed by
various Reverse Engineering researchers [4, 6, 7, 9, 11].

Another issue is whether this documentation actually
corresponds to the code’s functionality or is mostly obso-
lete. The articles cited above are a demonstration,a poste-
riori , that documentation in many cases is meaningful and
can be successfully used. This issue is also dealt with more
scientifically in [1]. It presents an experiment to test the re-
liability of structured types’ and fields’ identifiers with re-
gard to their definitions. The experiment showed that, for
the legacy system studied, the structured types’ identifiers
significantly relate to their definitions. We conducted the
same experiment on the Mosaic system, which we used in
this paper and the results were similar, showing that vari-
ables’ names, structured types’ names and fields’ names
were actually related to their definitions. This experiment
does not prove beyond all doubts that identifiers in general
are reliable in the system studied. However we consider un-
likely that software engineers would pay particular attention
to structured types or variables names and use completely
incoherent function names. Therefore, we will assume that
if type and variable names are relevant, all identifiers are.

Based on all these works, we will accept the hypothesis
that informal sources of information is useful. Our goal here
will be to study what kind of information it may provide.

2.2 Main Domains of Knowledge

To characterize the knowledge contained in documenta-
tion, we felt the need to decompose this knowledge into
various domains. We follow in this Claytonet al. [10]
who studied what knowledge was required to understand

a short piece of code. In this work, they identified all the
“knowledge atoms” that would be necessary to understand
the program under study. These atoms were classified in
three knowledge types:� domain knowledge,� language knowledge (FORTRAN), and,� programming knowledge.

The article also mention:� five knowledge atoms not related to any of their three
knowledge types.

Another related work is that of Biggerstaff [5] already
cited. He opposes:� the human oriented concepts, and,� the programming oriented concepts.

The first issue to deal with is one of vocabulary. To
Biggerstaff’s “concept types” and Clayton’s “knowledge
types”, we prefer the notion ofdomains of knowledge(or
simply domains). Concepts are elements of one or the other
domain of knowledge (note that we restrained the domains
to be mutually exclusive). To avoid ambiguity, the equiva-
lent of Clayton’s domain knowledge will be referred to as
the application domain. Examples of concepts from this
domain could be: plane, reservation, seat, passenger or ac-
count, bank, client, stock exchange, etc.

Based on the two articles referenced above and our study,
we identified three main domains of knowledge (see also
Table 1):� Application Domain,� Computer Science domain, and,� General Domain.

The first knowledge domain,application domain, is ob-
vious. Claytonet al. recognized it, and, although Bigger-
staff does not explicitly says so, all examples of human ori-
ented concepts he gives, are application domain concepts.

Both articles identify aprogramming domainwhich con-
tains such basic concepts as taught in algorithmic and
data structure undergraduate courses (e.g.: searches, sorts,
linked list management, etc.) Claytonet al. also have a
programming language domain(FORTRAN in their case).
We propose to consider these two as subdomains of a more
generalcomputer science domain. We expect that other
subdomains could be identify as, for example, a hardware
sub-domain (disk, memory, register). We have not yet com-
pletely explored this issue.



Our Knowledge Domains Claytonet al. Knowledge Types Biggerstaff’s Concept Types

General Domain “Five unrelated knowledge atoms” -
Computer Science Domain Language + Programming Knowledge Programming Concepts

Application Domain Domain Knowledge Human Concepts

Table 1. Different Classifications of Knowledge Domains

Finally, we put the five unrelated knowledge atoms iden-
tified by Clayton under the label of ageneral knowledge
domain. We see this general domain as containing “all
other” concepts, for example mathematical notions (square
root, absolute value), or references to actions commonly
performed in the “real world” (read, write, get, set), etc.
Table 1 summarizes our comparison of these three possible
decompositions of knowledge.

We believe this classification in three main knowledge
domains could apply to most program understanding sit-
uations, although it could be necessary to add other main
domains (for example see Table 2).

But this classification is also very coarse and we felt the
need to specify subdomains (as the language and program-
ming subdomains for Computer Science). In the present
study, this finer decomposition will depend on the specific
application domain considered. This is a drawback as it
would restrain us from making comparisons with possi-
ble similar works. Some effort should be devoted to iden-
tify more generally applicable sub-domains. Possible re-
search paths for this are: using recognized decompositions
of Computer Science activities or based on the “3-tiers”
decomposition, etc. In the first case, one might consider
what courses are needed to complete a “typical” computer
science graduation degree: Network, Database, User Inter-
face, Artificial Intelligence, Software Engineering, etc. In
the second case, the subdomains would be: Database, User
Interface and Processing.

We based our work on the assumption that the applica-
tion domain should be predominant. For example, it sets
the boundary of the two other ones. This is obvious for the
general domain which contains “all other” concepts, but the
application domain may sometimes also influence the com-
puter science domain by appropriating some of its concepts
(the domains are mutually exclusive). A good example of
this would be a compiler application for which the applica-
tion domain would obviously include concepts also related
to the computer science domain.

We will now give a more detailed presentation of the par-
ticular application domain studied in this paper.

2.3 Subdomains of Knowledge

The study we conducted was based on the Mosaic sys-
tem, the ancestor of the current Netscape web browser. This

system is a well accepted workbench for reverse engineer-
ing research. It is reasonably old (code dates from 1991
to 1994), it is not a toy program ('140 KLOC of C code,
in more than 380 files), and was developed by various per-
sons. Other, larger,de factoworkbenches exist, for exam-
ple the gcc compiler (460 KLOC) or the Linux kernel (600
KLOC). We do think that reverse engineering experiments,
as a rule, should be performed on systems in the range of a
million lines of code to present some significance, however
for this study, which essentially consisted in manual work,
we wanted to limit the work to some reasonable amount.
The extraction and classification of the concepts already
represented two man/weeks of work.

The number of application subdomains we found is
larger than we expected. We limited ourselves to five subdo-
mains, but actually identified more than that (ex.: a possible
“gopher” subdomain, see below, or an Information Retrieval
subdomain). The choice was based on the number of con-
cepts they contained (we kept the most populated). The five
application subdomains are:

(I)nterface: Everything dealing with the GUI (e.g.: win-
dow, button, slide bar), displaying images in the
browser (e.g.: jpeg, pixel), formatting the text of a web
page for display or printing (e.g.: postscript).

(T)elecommunication: Everything dealing with the low
level aspect of the Internet (e.g.: socket, address, data-
gram, connect, bind, port, protocol). This also includes
concepts related to “DTM” a special language used in
Mosaic to transfer complex data over the net.

(H)TML: Everything dealing with the HTML language
such as URL, anchor, www, http, cookie, etc.

(U)ser related features: High level concepts that concern
directly the user like browser, mail, news, thread, arti-
cle, telnet, etc.

(W)AIS: Everything that relates to the WAIS application.
The Mosaic web browser included the ability to in-
teract with two “concurrent” applications: WAIS and
gopher. We found few things directly related to go-
pher and they were included in the user sub-domain.
WAIS was a kind of world wide web information re-
trieval experiment (somehow like today’s Yahoo, Al-
taVista, InfoSeek, ...). We found enough concepts to



(G)eneral Domain (C)omputer Science Domain (A)pplication Domain Organization Domain . . .

Mathematics Programming Language (i)nterface Working Environment
“Name” Data Structure (t)elecommunication Organization Rules

. . . Algorithmic (h)tml . . .
Specific Software (u)ser feature

. . . (w)ais

Table 2. Some Possible Main Knowledge Domains Relating to Software Reverse Engineering and
Their Subdomains. Domains in bold are those that we actually used in this study. Application
subdomains are specific to the system studied.

justify the creation of a separate application subdo-
main. This subdomain includes concepts referring to
WAIS (e.g.: wais), information retrieval (e.g.: hit, li-
braryOfCongress, informationRetrieval) or particular
types of documents that WAIS could deal with (e.g.:
bibtex, medline).

The interface and telecommunication subdomains are an
example of the predominance of the application domain
over the computer science domain. We would normally
consider them as part of the second, however, in the case
of a web browser, we judged that they should be integrated
in the application domain.

For the sake of consistency, we should also mention that
we identified aname subdomainof the general domain.
Concepts of the name subdomain were found only in the
comments and are the names of maintainers, their email, in-
cluding the name of computers they were using (ex.: watd-
scu . waterloo . edu), places where they lived (ex.: Los
Alamitos), organizations (ex.: ANSI, Bellcore, Berkeley,
CERN), etc.

The application domain differs from the two others in
that we have decomposed it completely in subdomains. An
application domain concept must belong to exactly one of
the five subdomains presented above, whereas a computer
science concept may or not belong to one the two subdo-
mains identified previously (language or programming).

For brevity, we will refer to all the domains by their first
letter, capitalized for the three main domains (G, C and A)
and lower case for the application subdomains (i, t, h, u, and
w). We will also refer to a concept belonging to domain X
as an X-concept. For example “cookie” is an A-concept and
more precisely an h-concept.

We present an overview of all the knowledge domains
and subdomains identified in Table 2. Not all these domains
will be actually used in this study. We marked in bold those
which will. Note that, as explained in the previous section,
the decomposition of the Application domain is specific to
the system studied and should be revised should we wish to
establish a more general framework allowing comparison
with possible similar studies.

3 Extraction and Classification of Concepts

We studied two different documentation sources, global
identifiers (of variables, functions, types and macros) and
comments. We assumed that each word, coming from an
identifier or found in a comment, denoted a potential con-
cept. The restriction to global identifiers is for practical rea-
sons, these are the data we already had available and it lim-
its the size of the experiment (we spent more than 30 hours
analyzing this particular source).

The experiment consisted in organizing and classifying
the words found in the documentation into concepts from
the knowledge domains. The general approach we followed
was to (i) extract all words from the documentation, (ii) as-
sign each word to a concept, and (iii) assign each concept
to a domain. This process is summarized in Figure 1.

3.1 Extracting Words

Finding the words in comments is a simple matter.
Identifiers can usually be easily decomposed into “words”
following some simple rules such as decomposing on
the underscore sign “”, or usage of upper and lower
cases (e.g.: [2, 3, 8]). In this case we manually cor-
rected the automatic decomposition to facilitate the suc-
cessive steps. As a minor point, one should note that
although the identifiers are globally significant in Mo-
saic, we did found a few peculiar examples such as:
“mo herewe areson”, “mo beenherebeforehuh dad”,
“dont nukeafter me”, etc.

In the first step, the major difficulty was to deal with
acronyms that became part of our vocabulary. Things like
“printf” or “IO” (also “I/O”) raise the question of deciding
if they should be included “as is” or be decomposed (re-
spectively: “print” + “formatted” and “input” + “output”).
As non expert of the application domain(s), another diffi-
culty to discover the meaning of some acronyms as “apdu”
or “vdata”. When we found the meaning of an acronym,
we faced the same problem of deciding whether to keep the
acronym or decompose it.



Words

Concepts

Comments Identifiers

Decompose in Words

Expand Abbreviations
Decompose identifiers

Correct Misspelled

Stop List

Knowldege
Domains

Filter

Assign Words
to Concepts

Classify
Concepts

Figure 1. The Different Steps of our Experi-
ment

Cimitile reports the same difficulties in [8]. He proposes
some heuristics to help formalize the process. We used a
similar approach and applied the following heuristics:� The majority of acronyms was completely decom-

posed. This may actually be an error and we now think
that the list of special strings (next heuristic) could
have been larger.� As proposed by Cimitile, we established a small list of
“special strings” which are the acronyms we kept “as
is” (not decomposed). The “jpeg” acronym is a good
example of this.� Another small set of unknown acronyms was also kept
“as is” for lack of knowledge of their meaning (e.g.
“apdu”).� Finally, to try to deal with the hierarchical nature of the
concepts, we sometimes decomposed an acronym (or

a composed word) and also kept it “as is”, such that
“colormap” give “color”, “map” and “colormap”, thus
sharing one subconcept with “keymap”.

The acronym problem mainly occurs with words found
in identifiers. On the other hand, comments contain mis-
spelled words which identifiers rarely do (the compiler
checks for misspelled identifiers).

For both sources of documentation, we terminate the first
step by applying a standard stop list to remove utility words
as “the”, “a”, “you”, etc. The stop list comes from the Infor-
mation Retrieval system Smart [12]. It is a general purpose
stop list for english texts, a more specialized one should
probably be created. For example, this stop list eliminates
all single letter words, including the word “C” (we actually
re-included this particular one afterward).

3.2 Assigning Words to Concepts

In the second step, nouns, verbs, abbreviations, etc. are
associated to standardized concepts. For example, the four
words “alloc”, “allocate”, “allocator” and “allocation” are
all associated to the same concept.

This step presents few difficulties, beyond the tedious-
ness of having to consider individually several thousands of
words. We tried to automate the process using a stemmer
which attempts to discover the “root” of inflected words, by
removing the “ing” and “ed” at the end of verbs, or the “s”
at the end of nouns, etc. This did not give the results we
expected, the tool did not stem many words like “allocator”
and “allocation” or adverbs. Most of the work still had to be
done manually. It must be noted that comments offer more
difficulties here, because they do include more variations of
a concept.

3.3 Assigning Concepts to Knowledge Domain

Finally in the third step, we assigned each concept to
a domain. Clearly our lack of profound knowledge of the
application domain complicated the classification of vari-
ous concepts. We had to rely on the context of use of the
concepts, this context sometimes spanning over several files
(concepts from identifiers).

Another difficulty was to decide for a clear border be-
tween the different domains: border between (G)eneral and
(C)omputer science domains, between (C)omputer science
and (A)pplication domains, and between some application
subdomains. We tried to structure our work along these
lines:� Consider the semantics of a concept as used in each

particular places. We, sometime, assigned one word to
two concepts when it was used with two different se-
mantics, for example, the concept “address” can be the



Concepts and their frequencies

(A)pplication html(h)=479; mosaic(u)=372; xm(i)=198; ink(i)=181; jpeg(i)=172;
dtm(h)=163; xmx(i)=144; cci(t)=128; wais(w)=123; anchor(h)=108

(C)omputer data=259; file=210; type=174; record=163; tag=135; string=122;
science class=120; function=108; table=101; id=100

(G)eneral set=243; header=208; text=176; size=172; list=170; document=163;
read=145; write=139; make=119; initial=117

Table 3. The 10 most frequent concepts from identifiers found in each knowledge domain with their respective
frequency (number of software components where they appear). For A-concepts, the subdomain is indicated in
parenthesis (see text for a description of the domains).

postal address of someone (G domain), an IP-address
(t domain), an email address (u domain), or an address
in memory (C domain).� Assign unknown concepts (like abbreviations) to the
most probable domain given the context of use. For
example, the apdu concept is only used in files from
the WAIS library or from the file HTWAIS.c in the
Mosaic source. Since we don’t know what it means,
we classified it as a w-concept. This is clearly not the
best solution and more effort should be spent on dis-
covering the meaning of these acronyms.� Assign irreducible concepts to the G domain. When it
was not possible to assert a probable domain from the
context of use, we put the concept in the G domain.

Note that the last two points actually concern a small
number of concepts with no significant impact on the re-
sults.

The lack of clear boundaries between (sub-)domains, ac-
tually prevented us from using the two computer science
subdomains (language and programming). We have not
yet found a satisfactory definition of these subdomains that
would allow to identify their concepts without doubt. We
believe part of the problem may be the fact that we don’t
have a complete partition of the C domain as we do for the
A domain.

4 Discussion of some results

As already stated, we are experiencing with the Mosaic
system. We will first provide some general information
about this system to try to give an idea of the context of
the experiment. We will then discuss some results (i) for
the entire system, and (ii) decomposed by “subsystems”.

4.1 Concepts Extracted

We found close to 6200 global identifiers from which
we extracted about 2900 words. After filtering out with the
stop list, normalization into concepts, and classification in
the domains, we ended up with 1020 different concepts.

We found 7818 different words in the comments, which
gave after filtering out, normalization and classification in
domains, 3000 concepts, from which, 939 were common to
both documentation sources. Actually, the identifiers source
is almost included in the comments one with only 14% of
its concepts not found in the latter.

The first remark we wish to make concerns the small
number of concepts found in the identifiers. Considering
that there are close to 6200 global identifiers and that each
contains on average 2.67 concepts, there was a potential for
more than 16000 possible concepts. Another way to see it is
that, in Mosaic, a concept is repeated, on average, in almost
16 global identifiers. This high repetition factor cannot be
imputed to the fact that we duplicated some acronyms by
keeping them “as is” and decomposing them as well. There
are too few such cases to have a significant impact.

We see this high repetition factor as a good point. It
means identifiers are well “focused” on a few important
concepts. Comments are less focused which is not a sur-
prise, there is an obligation of concision in identifiers which
does not exist with comments.

We present, in Table 3, examples of the most frequent
concepts extracted from identifiers and their classification.
All these concepts are also found in comments and almost
all are also frequent in this source of documentation. Con-
cepts “xm” and “xmx” relate to the X-Window system, they
are i-concepts. Concept “ID” is one of the concepts that
exercise the definition of the border between G and C do-
mains. We decided to classify it as a C-concept based on its
use in the identifiers (mostly as a kind of primary/foreign
key). Conversely, “list” could have been a C-concept, but it
was mostly used in the general sense of list (e.g. “hotlist”,



the ancestor of the current bookmarks) rather than the more
specific sense of linked-list and thus was classified as G-
concept.

Frequencies of concepts common to both sources are
highly correlated (� = 0:7), probably indicating that these
are the most important concepts in their respective knowl-
edge domains. However, it would be interesting to study the
outliers, frequent in one source and not the other, to estab-
lish whether they represent a significant subset.

4.2 Domain distribution for Mosaic

In this subsection, we will discuss the overall distribution
of the concepts. Results are summarized in Table 4.

Comments Identifiers

Total 2998/100% 1020/100%
G 2389/80% 604/59%
C 323/11% 190/19%
A 286/10% 226/22%

Table 4. Repartition of concepts found in com-
ments and identifiers in Mosaic.

There is a very high proportion of G-concepts in general
(80% for comments, almost 60% for identifiers). This is
understandable for comments which being free text would
contain more general consideration. But we were surprised
to see the high proportion of G-concepts coming from iden-
tifiers. It could be a consequence of the experimental con-
ditions and namely our decision to decompose most of
the acronyms we found. An acronym like “printf” which
kept as a “special string” would be a C-concept, was de-
composed in “print” and “format”, a C-concept and a G-
concept.

Although the metrics are different, we can compare the
relative repetition factor of concepts from comments or
from identifiers (see Table 5). In the comments the most
repeated are the C-concepts (on average, 83 appearance
of words containing a given C-concept), then A-concepts
and finally the G-concepts. In the identifiers, the most re-
peated are the A-concepts (on average, 23 identifiers refer
to a given A-concept), then the C-concepts and finally the
G-concepts. This indicates that, although both sources of
information contain a larger diversity of G-concepts, they
refer more frequently to the A or C-concepts. Thus, al-
though only 22% of the concepts from identifiers pertain
to the application domain, 59% of the identifiers contain an
A-concept.

One could hypothesize that, in Mosaic, comments are
more focused on implementation (or at least computer sci-
ence concepts) whereas identifiers relate more to the appli-

Comments Identifiers
Avg. StdDev Avg. StdDev

all 34.8 94.8 15.9 34.8
G 26.6 75.7 12.5 27.2
C 83.3 172.3 18.2 33.0
A 48.6 97.0 22.7 50.1

Table 5. Repetition factor of concepts found
in comments and identifiers in Mosaic. Com-
ments: Total number of appearance of all
words referring to the concept; Identifiers:
Number of identifiers referring to the concept.

cation domain. This would make sense, identifiers imple-
ment the A-concepts when the comments explain the im-
plementation tricks. It would be interesting to see if this
characteristic is shared by other systems.

4.3 Domain distribution per Directories

As a kind of validation of our classification in A-
subdomains, we will now analyze the repartition of each of
these five subdomains among the main directories of Mo-
saic. This experiment also shows how one could try to “un-
derstand” an unknown decomposition of a system using the
subdomains each one refers to most frequently.

As described in [2], the Mosaic system’s source files are
organized in various directories that can be considered as
forming a reasonable functional decomposition, where each
directory is a subsystem. There are two directories that are
part of the WAIS system and seven which belong more di-
rectly to the Mosaic system (see Table 6).

We noticed the following facts:� Results for the two sources of documentation are con-
sistent.� W-concepts are mainly found in the “WAIS/ir” direc-
tory.� Reciprocally, there is only one HTML concept in the
WAIS directories.� “Libjpeg” and “libXmx” contain almost exclusively
interface concepts. The first is a library to manipulate
images in JPEG format, and the second an interface
with the X Window System library.� “Libhtmlw” also has a strong interface composition. It
is the part of the code responsible for parsing the web
pages and displaying them.



Concepts from Comments
i t h u w

WAIS/ir 25 29 1 8 19
WAIS/lib 1 1 0 0 3

libXmx 28 2 0 4 0
libdtm 19 24 4 3 2

libhtmlw 99 9 7 8 1
libjpeg 83 5 1 4 2
libnet 12 11 2 1 0

libwww2 36 26 14 15 3
src 73 22 15 19 2

Concepts from Identifiers
i t h u w

WAIS/ir 10 13 1 6 21
WAIS/lib 0 0 0 0 1

libXmx 27 0 1 2 0
libdtm 14 13 4 0 0

libhtmlw 69 3 5 2 0
libjpeg 43 0 1 1 0
libnet 15 9 4 0 0

libwww2 18 18 13 11 4
src 71 16 7 15 1

Table 6. Number of concepts found in the comments and identifiers of Mosaic’s directories.� “Libwww2” and “src” seem polyvalent as they contain
concepts from all application subdomains (including
w-concepts). The first one is responsible for manag-
ing all the modules that can be inserted into Mosaic
(FTP connection, telnet connection, compression util-
ity, WAIS and Gopher clients, etc.), and the second one
is the main directory of Mosaic which links everything
together.� The “WAIS/lib” directory is interesting in that it has
almost no A-concepts and few C-concepts from iden-
tifiers (Identifiers: 11 G-concepts and 3 C-concepts;
Comments: 50 G-concepts and 25 C-concepts). The
small size of this directory could explain this outliers
behavior.

5 Discussion

The objective of the study was to establish the possibil-
ity of solving the concept assignment problem using docu-
mentation by asserting whether it does contain the required
knowledge. Another issue is whether it seems possible to
do it automatically or not. We will now discuss these two
points based on the results we presented. We will also con-
sider other relevant issues.

We will assume here that the concept assignment prob-
lem concerns primarily application domain concepts.

The low percentage of A-concepts and C-concepts in
both documentation sources apparently dismiss them as
useful sources of information in this case. We think this
conclusion needs to be reconsidered to the light of the fol-
lowing two facts:� Both A and C concepts have a higher frequency of ap-

parition than the G-concepts.� The low percentage could be representative of the
smaller size of these two domains in comparison with
the full range of knowledge expressed.

The fact that G-concepts are globally less frequent in
both documentation sources could allow to tell them apart
from the other concepts (if it proves to be a property shared
by other systems). For example, it seems probable that sta-
tistical clustering of Mosaic’s software components, based
on the common concepts their identifiers refer to, would
naturally leads to application domain clusters since these
concepts are more frequent in identifiers. A first interpreta-
tion of these cluster could follow a path similar to the ex-
periment presented in section 4.3.

This low percentage could also be a consequence of
the smaller number of A and C-concepts. This hypothesis
would be supported by the fact that comments have almost
four times more G-concepts than identifiers, but little more
A-concepts.

A possible “light weight” research to assert whether A-
concepts are more frequent in identifiers of other systems
would be to extract the more frequent concept of identifiers
of a system and see if they are A-concepts. This would be
simpler than analysing all the concepts of the system as we
did in this study.

The second issue is whether it seems possible to auto-
matically solve the concept assignment problem. We must
admit that we did not foresaw the extreme difficulty of
analysing the concepts present in these two sources of in-
formation and the extent of knowledge from all kinds of do-
mains it requires (see example further down). This is a very
strong point against using informal sources of information
because they are so difficult to analyze. Manually establish-
ing a base of application domain concepts is a poor solution
as it compares to reverse engineering a system manually.
Possible ways out should integrate various approaches like
establishing a base of computer science concepts, establish-
ing a base of the most frequent general concepts, taking ad-
vantage of the higher frequency of A-concepts. All these
approaches would be based on the (still unproven) fact that
the results listed here for Mosaic apply as well to other sys-



tems.
An other relevant issue here is the choice of a source of

information among the two considered here. This could be
based on the potentials and treats each offers.

Extraction of words is relatively easy in the two cases
and does not make a significant difference.

Relating words to the concepts they design is a much
more difficult task. The problem of deciphering abbrevia-
tions is common to both sources of documentation although
to a much lesser degree for comments. But comments usu-
ally suffer the additional problem of containing misspelled
words.

Assigning the concepts to knowledge domains requires a
good understanding of all the domains involved as well as
a strong general culture. Comments especially have a much
larger coverage. They raise problems as identifying names
(see discussion on the n-subdomain in section 2), or rec-
ognizing apparently unrelated domains. For example, we
found in WAIS’ comments 80 biology concepts that came
out of document examples that WAIS could deal with. They
include such things as amoebida, acetylate, or accaagcgac (a
particular DNA string). This is a very good illustration of
the fact that program comprehension is a highly knowledge
intensive task.

There is also the problem of code commented out. We
were not sure what to do with this since it does not have a
documentation function, but rather uses a property of com-
ments to implement some kind of program editing. We de-
cided to consider it as regular comment, which raises all the
issues specifically related to identifiers (e.g.: dealing with
abbreviations).

Another problem is that the domain of a concept often
depends on its context of use which supposes very sophisti-
cated analysis methods. This is common to both sources of
documentation.

On the whole, we estimate it would be easier to work
with identifiers than comments. With Mosaic, it would also
offer the advantage of having to deal with less G-concepts
and being more focused on A-concepts (higher average rep-
etition factor).

6 Related and Future Work

We found few research relating to our. The closest work
is the ZEROIN experiment [10] which analyzes the knowl-
edge contained into a very short program. We already men-
tioned their three categories of knowledge (domain knowl-
edge, language knowledge and programming knowledge)
and how they map to our domains (see section 2.3).

This work is mostly oriented toward analysing what
knowledge is required to understand a program, thus taking
a path complementary to our. Their results show a similar
number of “knowledge atoms” needed in the (C)omputer

science (60 atoms) and (A)pplication (57 atoms) domains.
This confirms that these are the two predominant domains.
They do have 5 “knowledge atoms” not related to any of
their knowledge types, which suggest that G-concepts can
not be completely dismissed. We believe that the small size
of both the program (102 lines of code) and the problem for
ZEROIN make it non-typical. Therefore a more extensive
study of what type of knowledge is mostly needed would be
very useful here.

Another work by von Mayrhauser [14], is remotely re-
lated in that it could hint at what kind of knowledge soft-
ware engineers need when doing maintenance. In this work,
von Mayrhauser looks at strategies used by software en-
gineers during program comprehension: in thetop-down
approach the engineer starts from his knowledge of the
domain and looks for possible implementations of known
application domain concepts; in thebottom-upapproach
the engineer studies the code and formulates hypotheses
on what it implements. Her conclusion is that both ap-
proaches are used alternatively. In our view, the top-down
approach would mainly require application domain knowl-
edge, whereas the bottom-up approach would mainly re-
quire computer science domain knowledge. This is clearly a
very imperfect match since it does not take into account the
general domain and each approach cannot be solely based
on one domain.

To get a better idea on the software engineers needs, we
plan to start another study to identify more precisely what
domains of knowledge they typically use and in what pro-
portion.

7 Conclusion

In this paper, we propose to evaluate whether program
documentation in the form of identifiers or comments could
help in solving the “concept assignment problem”, that is
to say the problem of linking a portion of the code with ab-
stract concepts familiar to the software engineer. Given the
difficulty of analyzing these informal sources of informa-
tion, it is important to know beforehand if they are actually
worth it and can produce the kind of knowledge required.

We classified the concepts found in three main domains:
Application, Computer science and General domain con-
taining all other concepts. We mentioned the fact that this
decomposition is very coarse and subdomains should be
considered (for example: programming knowledge and lan-
guage knowledge).

The experiment showed that, for Mosaic (the system
studied):� Both sources of documentation contain a large propor-

tion of general concepts (60% for identifiers and 80%
for comments). We were surprised by this fact, espe-
cially for identifiers. Comments tend to refer slightly



more to computer science concepts (11% of all con-
cepts) and identifiers more to application domain con-
cepts (22% of all concepts).

It is not yet clear if these small proportions would be
sufficient to resolve the concept assignment problem,
however, other results (see next point) are encouraging
and this low percentage could also be the consequence
of the small size of these two domains in comparison
with the full range of knowledge expressed.� Computer science and application domain concepts are
repeated with greater frequency than general concepts.
This is a very good news since it suggests a means to
tell G-concepts from the other two.

Comments and identifiers differ in this regard since
comments have a higher repetition factor for C-
concepts and identifiers for A-concepts. One may sup-
pose that clustering of software components based on
the concept referred to in their identifiers would results
in a decomposition according to application domain
concepts.� Identifiers are “focused” on a small set of concepts.
With close to 6200 identifiers and an average 2.67 con-
cepts per identifiers, we found only 1100 concepts.
This seems to be another proof that in Mosaic iden-
tifiers were globally well chosen.

We believe the use of documentation source to solve the
concept assignment problem is a valid option in many sys-
tem, especially if we consider identifiers. This study also
pointed to a possible solution to help in the very difficult
analysis task, taking advantage of the higher frequency of
A-concepts. However, there is absolutely no indication
whatsoever that the results presented here can be general-
ized to other systems. This means that other similar experi-
ments should be conducted to get a better understanding of
the use of documentation means in general.

References

[1] N. Anquetil and T. C. Lethbridge. Assessing the Relevance
of Identifier Names in a Legacy Software System. In J. H. J.
Stephen A. MacKay, editor,CASCON’98, pages 213–22.
IBM Centre for Advanced Studies, Dec. 1998.

[2] N. Anquetil and T. C. Lethbridge. Experiments with clus-
tering as a software remodularization method. InWorking
Conference on Reverse Engineering, pages 235–255. IEEE,
IEEE Comp. Soc. Press, Oct. 1999.

[3] N. Anquetil and T. C. Lethbridge. Recovering software ar-
chitecture from the names of source files.Journal of Soft-
ware Maintenance: Research and Practice, 11:1–21, 1999.

[4] G. Antoniol, G. Canfora, and A. D. lucia. Recovering code
to documentation links in oo systems. InWorking Confer-
ence on Reverse Engineering, pages 136–144. IEEE, IEEE
Comp. Soc. Press, Oct. 1999.

[5] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. Pro-
gram Understanding and the Concept Assignement Prob-
lem. Communications of the ACM, 37(5):72–83, May 1994.

[6] E. Burd, M. Munro, and C. Wezeman. Extracting Reusable
Modules from Legacy Code: Considering the Issues of
Module Granularity. InWorking Conference on Reverse En-
gineering, pages 189–196. IEEE, IEEE Comp. Soc. Press,
Nov 1996.

[7] B. Caprile and P. Tonella.Nomen est Omen: Analyzing the
language of function identifiers. InWorking Conference on
Reverse Engineering, pages 112–122. IEEE, IEEE Comp.
Soc. Press, Oct. 1999.

[8] A. Cimitile, A. R. Fasolino, and G. Visaggio. A software
model for impact analysis: A validation experiment. In
Working Conference on Reverse Engineering, pages 212–
222. IEEE, IEEE Comp. Soc. Press, Oct. 1999.

[9] A. Cimitile, A. D. Lucia, G. D. Lucca, and A. Fasolino.
Identifying Objects in Legacy Systems. In5th International
Workshop on Program Comprehension, IWPC’97, pages
138–47. IEEE, IEEE Comp. Soc. Press, 1997.

[10] R. Clayton, S. Rugaber, and L. Wills. On the knowledge
required to understand a program. InWorking Conference
on Reverse Engineering, pages 69–78. IEEE, IEEE Comp.
Soc. Press, Oct. 1998.

[11] P. Newcomb and G. Kotik. Reengineering Procedural Into
Object-Oriented Systems. InWorking Conference on Re-
verse Engineering, pages 237–49. IEEE, IEEE Comp. Soc.
Press, Jul 1995.

[12] Smart v11.0. Available via anonymous
ftp from ftp.cs.cornell.edu, in
pub/smart/smart.11.0.tar.Z. Chris Buckley
(maintainor).

[13] H. M. Sneed. Object-Oriented COBOL Recycling. In
Working Conference on Reverse Engineering, pages 169–
78. IEEE, IEEE Comp. Soc. Press, Nov 1996.

[14] A. von Mayrhauser and A. Vans. Program comprehension
during software maintenance and evolution.IEEE Com-
puter, pages 44–55, aug. 1995.


