A Comparison of Graphs of Concept for Reverse
Engineering*

Nicolas Anquetil
COPPE — Universidade Federal do Rio de Janeiro
C.P. 68511, Citade Universitaria
RJ, 21945-970, Brazil
(55) (21) 590-2552 x.334
nicolas@cos.ufrj.br

Abstract

To group related things together (for exam-
ple to form subsystems), researchers in Reverse
Engineering are looking for algorithms that cre-
ate meaningful groups.

One such algorithm, Concept Analysis, re-
ceived a lot of interest recently. It creates a
lattice of concepts which have some advantages
over the more traditional tree of clusters from
clustering algorithms.

We will argue that the main interest of Con-
cept Analysis lies in the concepts themselves
and can be disconnected from the particular
structure (the lattice of concepts) in which the
concepts are usually arranged. We will com-
pare Concept Analysis to various other algo-
rithms trying to select the most important con-
cepts contained in a set of entities.

Our main conclusion is that although it have
advantages, the lattice of concepts suffer from
a major drawback that other constructs do not
have: it returns much more information (con-
cepts) than what it was given in input (a set of

*This work is sponsored by a grant from the Fun-
dagdo de Amparo a Pesquisa do Estado do Rio de
Janeiro (FAPERJ)

entities describing some software system,).

Introduction

The reverse engineering community showed
recently a lot of interest in an approach called
Concepts Analysis [6, 11, 14]. Researchers have
compared this new approach to more tradition-
al ones, as clustering, and found it to have
qualities that clustering does not exhibit. In
these works, Concepts Analysis is usually asso-
ciated to a structure called a lattice of concepts
(or Galois lattice).

Although we agree that Concept Analysis
has some interest for Reverse Engineering, we
will discuss an important problem of the lat-
tice of concepts: It usually outputs much more
information (concepts) than what it was given
in input. The ratio can go from thrice, up to
hundreds of times, more information output;
thus overwhelming the user instead of helping
him to get an abstract view of a set of data.

In this paper, we denounce this fact and pro-
pose some solutions to try to extract only the
most significant concepts. We will first present
the notion of concept, which is central to this
discussion. We will then propose various algo-

rithms to build graphs of concepts, including
the traditional Concept Analysis resulting in a
lattice of concept. Finally before concluding,
we propose some experimental results to help
compare the algorithms previously introduced.

1 Concepts

Concepts are groups of entities, that may be
described by their properties. Wille in [17] de-
fine a concept as having three components: A
name, a list of attributes describing the con-
cept (called the intent) and a list of entities
belonging to the concept (called the extent). A
concept can be indifferently referred to by any
of these three components. More specifically
this means that a concept is uniquely identi-
fied by its intent or its extent. In other words,
given the intent of a concept, one can always
reconstruct its extent, and vice-versa, the two
are isomorphic.

Table 1. Description of some files with the rou-
tines they refer to.

File Description

Fl.c {sizeof, malloc, realloc, free}

F2.c {fopen, printf, fprintf, fclose, free}
F3.c {fopen, fscanf, printf, malloc, free}

Formally, concepts are (named) couples:
(Kentity-list>,<attribute-list>). The
meaning of such a couple is that:

e All the objects in <entity-1ist> possess
all the attributes in <attribute-list>,
or it is not possible to find an entity
in <entity-list> and an attribute in
<attribute-list> such that the entity
does not have the attribute.

({F2.c,F3.c},{fopen,free}) is a valid cou-
ple based on the data presented in Table 1.

However, all couples are not concepts.
To that effect, a couple must respects also
the following requirements: Given a couple
({E},{1}) where E is the extent (list of en-
tities) of the couple and I is the intent (list of
attributes) of the couple,

e there is no entity that has all the at-
tributes in I and is not member of E;

e there is no attribute that belongs to all
entities in E and is not member of I.

The couple ({F2.c,F3.c},{fopen,free})

is mnot a concept because printf al-
so belongs to F2.¢ and F3.c which
violates the second requirement.

({F2.c,F3.c},{fopen,printf,free}) is
a concept for the data set proposed in Table 1.

The two extra requirements to be a concept,
insure that there is an isomorphism between
the intent and the extent of the couple.

Note that one can easily define a generaliza-
tion/specialization relation between such con-
cepts. Given two concepts C} = (E1, ;) and
Cy = (Fy, 1), we will say that C} is more gen-
eral than C) iff:

Iy C Iy

That is to say if C5 is described with all C
attributes plus some other ones, then C, is a
specialization of C;. Because of the isomor-
phism between intent and extent, we have the
following property:

L Cclhe BEy,CE

This conforms to intuition, since it is natural
that a specialization of a concept (here Cy spe-
cializes C) has less instances than this concept
E, C E; (but more attributes).

One can define hierarchical graphs of con-
cepts based on this relation.

In the literature, the concepts are always as-
sociated with the lattice of concepts (or Ga-
lois lattice) which is a convenient hierarchical

graph to extract all the concepts from a data
set. We will see that there are other hierarchi-
cal graphs which may be of interest too.

2 Graphs of Concepts

We now present different graph structures
that may be used to organize the concepts ex-
tracted from a data set into a inheritance hi-
erarchy. Given a data set, there is a finite
(maximal) set of concepts that can be extract-
ed from it. This is the set extracted by the
lattice of concepts. The different other struc-
tures present different possible subsets of this
maximal set of concepts.

The name of “structure” can be misleading,
since the difference resides in the method (al-
gorithm) used to extract the concepts. The
structures themselves depend directly and un-
equivocally on the particular set of concepts
extracted. They consist in a graph of all the
concepts extracted, related by the inheritance
relation defined in the previous section.

We will first present the lattice of concepts
which contains all concepts from a given data
set. This particularity makes it a reference for
the other which may be considered as contain-
ing subsets of all the concepts in the lattice.

The idea that the lattice of concepts exhib-
it all the possible concepts contained in a set
of entities is interesting because it allows to
see the it as a search space where any concept
extraction method will look for important con-
cepts. This contributes to set a common base
on which to compare all the methods. For ex-
ample, a method’s ability of abstraction could
be simply measured in the percentage of con-
cept from the lattice of concepts it accept.

In [5] we present the conclusions of some ex-
periments in designing such methods to select
the most important concepts from a lattice of
concepts. One of our conclusions was that any
such method should not consider the concept-
s independently (e.g. “a concept is important

if it has more than 5 instances and less than
7 attributes”), but rather try to compare the
concepts between themselves (e.g. “a concept
is important if it has strictly more attributes
than all its super-concepts”).

We will first present the lattice of concepts,
and then two methods to limit the set of ex-
tracted concepts.

2.1 Lattices of concepts

This structure proved its utility for browsing
purposes [7]. This is the one usually associated
with Concept Analysis. The set of concepts of
the lattice and the lattice itself or presented
respectively in Figure 1 and Table 2.

Co

C1 Cc2

C3 c4 C5

C6

Figure 1. Lattice of concepts for the data set
in Table 2.

The lattice has the interesting property that
it contains all the concepts from a set of data.
This, however, may also prove to be a draw-
back since the lattice contains usually much
more concepts than the number of data it was
given in input. It has absolutely no synthesis
capabilities. The maximal number of concepts
contained in a set of data is theoretically ex-
ponential in the number of objects in the data
set (although in practice is is usually linear in
the number of objects [9]. In our experiments
we got from 3 to thousand of times more con-

Table 2. All concepts contained in the data set of Table 1.

Name Extent

Intent

Co0 {Fl., F2.c, F3.c}
Cl {Fl.c, F3.c}
C2 {F2.c, F3.c}

C3 {Fl.c}
C4 {F3.c}
Cs {F2.c}
c6 0

{free}

{malloc, free}

{free, fopen, printf}

{sizeof, malloc, realloc, free}
{malloc, free, fopen, printf, fscanf}
{free, fopen, fclose, printf, fprintf}
{sizeof, malloc, realloc, free, fopen,

fclose, printf, fprintf, fscanf}

cepts outputs than the number of entities in-
troduced.

2.2 Graph Based on Clustering

We have developed an alternative method
to build a graph of concepts based on a hierar-
chical clustering method, that we will describe
here However, we will not describe in length
the particular hierarchical clustering algorith-
m used?!.

Clustering is a statistical mean that aims at
gathering into coherent clusters, some set of
entities. The goal to achieve is to create clus-
ter with high internal cohesion (entities within
a cluster are highly related) and low external
coupling (few relations between entities in d-
ifferent clusters). Agglomerative hierarchical
algorithms start from individual entities, gath-
er them two by two into small clusters which
are in turn gathered into larger clusters up to
one final cluster containing everything. They
result in a binary tree of clusters.

To get a hierarchy of concepts from this bi-
nary tree, we need to solve four problems:

e Clusters are not thought of as couples,
they are usually only considered as sets
of entities and have no intent.

e The tree of cluster being binary, it must
represent a concept with more than two

!This information may be found in [10, 15, 16]

sub-concepts as an artificial hierarchy of
couples, all with the same “intent” but d-
ifferent extents?.

e The tree only allows simple inheritance
between the couples, whereas a typical set
of concepts heavily relies on multiple in-
heritance.

e Due to these last two problems, the cou-
ples in the tree may not respect the extra
requirements for a couple to be a concept
(see section §1): Because of the artificial
hierarchy of couples, the sub-couples may
lacks some entities in their extent. Be-
cause of the simple inheritance constraint,
some couples, do not know all their sub-
concepts and also lacks some entities in
their extent.

In [4] we propose a solution to remedy these
problems, it builds a general graph of concepts
from the binary tree of clusters. This is done
in three steps, the first one being presented in
Table 3 (lower part) for a possible cluster set
(upper part) extracted from the data in Table
1.

First we need to see clusters as couples and
not only as a gathering of entities, which means
we should see them as a pair intent/extent and

2The binary tree actually contains clusters which
don’t have intent. They will be couples only after we
solve the first problem.

Table 3. Converting clusters (left column) to concepts (rig ht column).
Clusters Concepts
(=Extent) Name Extent Intent
{Fl.c} Co {Fl.c} {sizeof,malloc,realloc,free}
{F2.c} Cl {F2.} {free,fopen,fclose,printf,fprintf}
{F3.c} C2 {F3.c} {malloc,free,fopen,printf,fscanf}
{F2.c,F3.c} C3 {F2.F3.c} {free,fopen,printf}
{Fl.c,F2.c,F3.c} | C4 {Fl.c,F2.c,F3.c} {free}

not only an extent. We propose to do it simply
by taking for intent of a couple, the intersec-
tion of the descriptions of all the entities in the
extent of the cluster.

Note that the entities’ attributes may be
weighted, in that case we convert them to
boolean attributes (present in the entity or
not). A weight of zero indicates that the at-
tribute is absent from the entity, otherwise it
is present.

Second, we need to turn these couples into
concepts, which means recomputing the exten-
t of each couple from its intent. As a rule the
couples from the previous step contain less en-
tities in their extents that they should. The
new extent is recomputed by including all en-
tities which have all attributes of the couple’s
intent in their description.

We now have concepts, and there is no need
to recompute intents from the new extents.

Finally, we put all these concepts into a
graph structure by computing the inheritance
links between the concepts.

We believe that this method has the advan-
tage that it actually builds an abstraction of
the data corpus by extracting only the most
interesting concepts.

In [5], we propose an algorithm that gives
similar results by mimicking hierarchical clus-
tering inside the lattice of concepts.

2.3 Godin’sPruning Method

Godin in [8] propose his own version of a
pruned lattice of concepts.

Some concepts inherit attributes from their
super-concept(s) and introduce some new at-
tributes as well. Other concepts do not in-
troduce any new attributes, but only record a
particular combination of two (or more) super-
concepts through multiple inheritance. For ex-
ample C4 has five attributes in Table 2, but
only one is represented in Figure 2. C6 does
not introduce any new attribute.

Similarly, some concepts contain all the in-
stance of their sub-concept(s) and have in-
stances of their own. Other concepts, only
contain the union of all their sub-concepts’ in-
stances. Making an analogy with the object
model, one could call these latter abstract con-
cepts by opposition to the former concrete con-
cepts with instances of their own. For example
C2 contains two entities in Table 2, but none
is represented in Figure 2.

Godin proposes to consider as non-
important those abstract concepts that do not
introduce any attributes of their own.

Given this new graphical representation
(Figure 2), the concepts Godin proposes to e-
liminate are those that appear with an empty
intent and empty extent (note that this is only
a different representation of the same concepts,
they are not actually empty).

Other pruning methods similar to this one
have been proposed: [12, 13].

CO:({} {free})

cL:({} {maloc})

C2:({} {fopen,printf})

C3:({F1.c} { sizeof redloc})

C4:({F3.} { fscanf})

C5:({ F2.c} {fprintf,fclose})

CB:({34})

Figure 2. lllustration of Godin’s pruning method. The graph
information represented with the actual intents and extent

3 Simplifying the data set

The last two structures exhibit sub-sets of
the set of concepts extracted by the lattice.
They extract (a lot) less concepts that the lat-
ter. But we should also compare them on other
grounds.

In [5] we compared the resistance to noise
and errors in the data (see below the definition
of these two terms) of the lattice of concepts
and the graph based on clustering.

In the context of this experiment, we had
two types of attributes, those that actually
belonged to the domain and those which did
not. Noise was defined as the presence of
non-domain attribute in an entity’s descrip-
tion. FErrors were defined as the absence of
a domain attribute in an entity’s description
that should have contained it, or addition of
a domain attribute in an entity’s description
that should not have contained it.

We showed that the graph based on clus-
tering is much more resistant to noise than
the lattice of concepts (and could actually take
advantage of some noise), and that the latter
was more resistant to errors. One explication
is that the lattice of concepts extract all the
possible concepts in the data, therefore, noise
produces many (erroneous) concepts, whereas

is the same as in Figure 1. Compare the
s of the concepts in Table 2.

clustering was intended from the beginning to
deal with noise.

If we, now, consider entities which are files
described by the list of routines they call (each
routine is a possible attribute): We propose
to say that utility routines (in C, it could be
malloc, free, ...) are non-domain attributes,
they are called only for implementation pur-
poses and do not actually represent the do-
main. Therefore calls to these routines will be
considered noise.

In the same context, errors could take the
form of dead code, which would result in the
entities’ descriptions as calls to domain rou-
tines which should not be there. The opposite
error (absence of a domain attribute in a de-
scription that should contain it, i.e. a missing
routine call) would be rarer if we assume that
the code is working.

This analysis points to the graph based on
clustering as a better solution because it should
not suffer from error in the code whereas it
would provide better results when dealing with
noise.

To try to improve the results of the lattice
of concept, one could tried to remove the noise
from the code before extracting the lattice of
concepts.

3.1 Utility attributes

Van Deursen, in [6], applies the approach
proposed above. His solution differs from the
previous ones in that, instead of trying to sim-
plify the set of concepts extracted, he proposes
to simplify the data set before extracting con-
cepts.

This solution has two interests:

e [t can be used in conjunction with the two
previous structure: First one simplifies the
data set then one selects the most inter-
esting concepts existing in this new data
set. Such a combined solution should give
better results.

e It introduces the issue of the description
of the entities in the data set (what van
Deursen tries to simplify). We will see
that this issue is of the utmost impor-
tance.

Van Deursen used the lattice to find possi-
ble classes from Data Division “structures” in
Cobol programs. In his work, each data is an
entity and the attributes are the programs in
which the data are used. Van Deursen not-
ed that some programs are utilities that ac-
cess many or all data. These introduce noise
in the data set to which the lattice of concept-
s is extremely sensible. By removing them, he
was able to clarify the data set and extract less
concepts.

We identify such utility attributes by the
large number of entities that possess them.

4 Some Experimental Results

We conducted a few simple experiments to
compare the various methods proposed above.
We will now present and comment their results.

Data are extracted from the Mosaic system.
For this comparison, the kind of entity used
(files, routines, structured types, etc.) has lit-
tle importance. We used files. The various

schema (we call them descriptive features, see
[3]) used to describe these entities are?:

Included files: According to the files includ-
ed by each entity.

Words in ident.: According to the words
found in all identifiers each entity contain-
S.

Combination: According to all routines, us-
er defined types, global variables, files or
macros referenced in each entity. Note
that Included files is a part of Combina-
tion.

We will use two metrics to compare the var-
ious graphs of concept obtained:

Number of concepts: This measures the
degree of abstraction a method can
achieve.

Design quality: This is measured using tra-
ditional cohesion and coupling metrics.
The exact formula for these two metrics
is given for example in [2].

Cohesion and coupling should be comput-
ed either for a single concept (considered
as a subsystem in this case) or for a par-
tition of the entire data set. However, all
methods produce graphs of concept. The
numbers we will present are an average of
the cohesion (or coupling) of all concepts.

One should use these results with cau-
tion?.

Table 4 presents some information on the
system studied. “Non util.” are attributes
which are not utilities. Following van Deursen,
they were defined as attributes possessed by

3For more information on the descriptive
features, see http://wuw.site.uottawa.ca/
~anquetil/Clusters/ or [1]

4See also [3] or [1] for a discussion of other problems
associated to these two metrics.

Table 4. Some information on the data sets
used. Combination, Included file and Word-
s in ident. are three descriptive features for
files. Attrib’s “use” gives the average num-
ber of entities in which attributes appear. “#
non util” gives the number of attributes
which are not considered utilities (i.e. which
appears in less than 20 entities.)

Combin- | Included Words
ation files | in ident.

entity 225
attribute 3059 211 3821
attrib.’s “use” 3.021 4.553 4.228
non util. 2996 202 3781

less than a given number of entities. In our
experiments, utility attributes are those which
are possessed by 20 entities or more. See in
the table the average “use” of the attributes;
for the three descriptive features, it is below
five entities possessing an attribute.

The results are given in Table 5. From these,
we draw the following conclusions:

e Clearly, the Lattice of concepts may con-

tain a great deal of concepts. In most cas-
es, it is doubtful that a user can have any
use of such a quantity of information (e.g.
tens of thousand of concepts from only 225
entities).

The pruning method proposed by Godin
is more reasonable and the method based
on clustering is the one with less concepts
overall. This is why we say it has better
abstraction capability.

Cohesion seems very good for the lattice
of concepts, however this good result is
favored by the singleton concepts (which
contain only one entity). Cohesion is not
define for these concepts and we arbitrar-
ily set it to 0. For the lattice of concepts,
where the singleton concepts or a small

portion of the total, they have few influ-
ence on the average, but for the two oth-
er methods they contribute greatly to re-
duce (worsen) the average cohesion. The
second cohesion, excluding singleton con-
cepts shows a much better result for the
two other methods than for the lattice of
concepts.

Coupling does not change much for all ex-
periments and is always worse (higher) for
the lattice of concepts.

Van Deursen’s method to eliminate noise
from the data does work. However, it does
not seem to have a decisive impact on the
results (for example the lattice of concepts
still have many more concepts than the
two other).

Results on average cohesion seem unpre-
dictable; there seems to be a slight in-
crease of the cohesion without utility at-
tributes; and no significant modification
of the average coupling.

The improvement introduced by this
method does not seem as interesting as
what selection in the set of concepts can
provide. However, we did not try to fine-
tune the threshold value used to define u-
tility attributes (> 20 entities possessing
a utility attribute). This could improve
further the results.

The choice of descriptive feature has more
impact on the lattice of concepts. For ex-
ample, “Combination” is not very good
(too many concepts) because each descrip-
tive feature in the combination will pro-
duce its own set of many simplistic con-
cepts which are probably of little interest.

Conclusion

We have presented and discussed various
methods to extract concepts from a set of data.

Table 5. Comparison of three graphs of concepts according to

different metrics, for three descriptive

features.
#ccpts | Cohesion | #singl. | Cohesion | Coupl.
(normal) (no singl.)
Combination
Lattice of Concepts 19971 0.235 204 0.237 | 0.058
same, no util. attrib. 3787 0.256 372 0.284 | 0.056
Godin’s pruning 1048 0.237 197 0.246 | 0.049
same, no util. attrib. 981 0.199 295 0.284 | 0.050
Based on Clustering 364 0.058 189 0.320 | 0.049
same, no util. attrib. 330 0.148 186 0.338 | 0.050
Included files
Lattice of Concepts 791 0.200 125 0.238 | 0.054
same, no util. attrib. 476 0.193 114 0.254 | 0.054
Godin’s pruning 164 0.076 111 0.234 | 0.048
same, no util. attrib. 255 0.119 110 0.208 | 0.048
Based on Clustering 235 0.125 113 0.241 | 0.049
same, no util. attrib. 194 0.111 104 0.240 | 0.049
Words in ident.
Lattice of Concepts || 114285 0.172 415 0.172 | 0.053
same, no util. attrib. 31455 0.193 372 0.181 | 0.051
Godin’s pruning 1893 0.160 233 0.183 | 0.046
same, no util. attrib. 1851 0.119 232 0.184 | 0.046
Based on Clustering 392 0.147 215 0.326 | 0.046
same, no util. attrib. 380 0.111 213 0.333 | 0.046

One of these methods, the lattice of concepts,
has recently received a lot of attention. Our
main point is that although this is an inter-
esting construct, it also have a very significant
drawback for reverse engineering because it has
no abstraction capability. It extracts absolute-
ly all concepts contained in the set of data and
commonly returns tens of concepts for every
entity it is given in input.

Concepts (and Concept Analysis) are usu-
ally presented and studied in the context of
this particular structure, but we rather pro-
pose to use them with other constructs that
would make a selection in the set of all pos-
sible concepts. A new interest of the lattice

of concepts would be to serve as a comparison
base for all other methods.

References

[1] N. Anquetil and T. C. Lethbridge. A com-
parative study of clustering algorithms and
abstract representations for software remod-
ularization. submited for publication.

[2] N. Anquetil and T. C. Lethbridge. Extract-
ing Concepts from File Names; a New File
Clustering Criterion. In International Con-
ference on Software Engineering, ICSE’98,
pages 84-93. IEEE, IEEE Comp. Soc. Press,
Apr. 1998.

3]

[12]

N. Anquetil and T. C. Lethbridge. Experi-
ments with clustering as a software remodu-
larization method. In Working Conference on
Reverse Engineering, pages 235-255. IEEE,
IEEE Comp. Soc. Press, Oct. 1999.

N. Anquetil and J. Vaucher. Acquisi-
tion et classification de concepts pour la
réutilisation. In 4°™¢ Collogque International
en informatique cognitive des organisations
/ 4™ International Conference on Cognitive
and Computer Sciences for Organizations,
pages 463-472, 1255, Carré Phillips Bureau
602, Montréal (Québec) Canada H3B 3Gl1,
1993. ICO, GIRICO.

N. Anquetil and J. Vaucher. Extracting Hi-
erarchical graphs of concepts from an object

set : Comparison of two methods. In Knowl-
edge Acquisition Workshop, 1CCS’94, 1994.

T. K. Arie van Deursen. Identifying object
using cluster and concept analysis. In 215t
International Conference on Software Engi-
neering, ICSE’99, pages 246-55. ACM, ACM
press, may 1999.

R. Godin. L’utilisation de treillis pour l'accés
aux systémes d’information. PhD thesis, U-
niversité de Montréal, 1986.

R. Godin and H. Mili. Building and Main-
taining Analysis-Level Class Hierarchies Us-
ing Galois Lattices. ACM SIGplan Notices,
28(10):394-410, 1993. OOPSLA’93 Proceed-
ings.

R. Godin, R. Missaoui, and H. Alaoui. Incre-
mental Algorithms for Updating the Galois
Lattice of a Binary Relation. Technical Re-
port 155, Université du Québec & Montréal,
septembre 1991.

J. Hartigan. Clustering Algorithms. Mc

Graw-Hill, 1975.

C. Lindig and G. Snelting. Assessing Modu-
lar Structure of Legacy Code Based on Math-
ematical Concept Analysis. In 19th Interna-
tional Conference on Software Engineering,
ICSE’97, pages 349-59. ACM SIGSoft, ACM
Press, May 1997.

G. Mineau, J. Gecsei, and R. Godin. Struc-
turing Knowledge Bases Using Automatic

10

[17]

Learning. 1In Proceedings of the sizth In-
ternational Conference on Data Engineering,
pages 274-280, 1990.

G. Oosthuizen, C. Bekker, and C. Avenant.
Managing Classes in Very Large Class Repos-
itories. In Tools’92 proceedings, pages 625—
633, 1992.

M. Siff and T. Reps. Identifying modules
via concept analysis. In M. J. Harrold and
G. Visaggio, editors, International Concep-
t on Software Maintenance, ICSM’97, pages
170-79. IEEE, IEEE Comp. Soc. Press, oct.
1997.

P. H. Sneath and R. R. Sokal.
Taxzonomy. Series of books in biology. W.H.
Freeman and Company, San Francisco, 1973.
T. A. Wiggerts. Using clustering algorithm-
s in legacy systems remodularization. In
Working Conference on Reverse Engineering,
pages 33-43. IEEE, IEEE Comp. Soc. Press,
Oct. 1997.

R. Wille. Concept Lattices and Conceptual
Knowledge Systems. In F. Lehmann, editor,
Semantic Networks in Artificial Intelligence,
pages 493-516. 1992.

Numerical

