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entities desribing some software system).IntrodutionThe reverse engineering ommunity showedreently a lot of interest in an approah alledConepts Analysis [6, 11, 14℄. Researhers haveompared this new approah to more tradition-al ones, as lustering, and found it to havequalities that lustering does not exhibit. Inthese works, Conepts Analysis is usually asso-iated to a struture alled a lattie of onepts(or Galois lattie).Although we agree that Conept Analysishas some interest for Reverse Engineering, wewill disuss an important problem of the lat-tie of onepts: It usually outputs muh moreinformation (onepts) than what it was givenin input. The ratio an go from thrie, up tohundreds of times, more information output;thus overwhelming the user instead of helpinghim to get an abstrat view of a set of data.In this paper, we denoune this fat and pro-pose some solutions to try to extrat only themost signi�ant onepts. We will �rst presentthe notion of onept, whih is entral to thisdisussion. We will then propose various algo-1



rithms to build graphs of onepts, inludingthe traditional Conept Analysis resulting in alattie of onept. Finally before onluding,we propose some experimental results to helpompare the algorithms previously introdued.1 ConeptsConepts are groups of entities, that may bedesribed by their properties. Wille in [17℄ de-�ne a onept as having three omponents: Aname, a list of attributes desribing the on-ept (alled the intent) and a list of entitiesbelonging to the onept (alled the extent). Aonept an be indi�erently referred to by anyof these three omponents. More spei�allythis means that a onept is uniquely identi-�ed by its intent or its extent. In other words,given the intent of a onept, one an alwaysreonstrut its extent, and vie-versa, the twoare isomorphi.
Table 1. Description of some files with the rou-
tines they refer to.File DesriptionF1. fsizeof, mallo, reallo, freegF2. ffopen, printf, fprintf, flose, freegF3. ffopen, fsanf, printf, mallo, freegFormally, onepts are (named) ouples:(<entity-list>,<attribute-list>). Themeaning of suh a ouple is that:� All the objets in <entity-list> possessall the attributes in <attribute-list>,or it is not possible to �nd an entityin <entity-list> and an attribute in<attribute-list> suh that the entitydoes not have the attribute.(fF2.,F3.g,ffopen,freeg) is a valid ou-ple based on the data presented in Table 1.

However, all ouples are not onepts.To that e�et, a ouple must respets alsothe following requirements: Given a ouple(fEg,fIg) where E is the extent (list of en-tities) of the ouple and I is the intent (list ofattributes) of the ouple,� there is no entity that has all the at-tributes in I and is not member of E;� there is no attribute that belongs to allentities in E and is not member of I.The ouple (fF2.,F3.g,ffopen,freeg)is not a onept beause printf al-so belongs to F2. and F3. whihviolates the seond requirement.(fF2.,F3.g,ffopen,printf,freeg) isa onept for the data set proposed in Table 1.The two extra requirements to be a onept,insure that there is an isomorphism betweenthe intent and the extent of the ouple.Note that one an easily de�ne a generaliza-tion/speialization relation between suh on-epts. Given two onepts C1 = (E1; I1) andC2 = (E2; I2), we will say that C1 is more gen-eral than C2 i�: I1 � I2That is to say if C2 is desribed with all C1attributes plus some other ones, then C2 is aspeialization of C1. Beause of the isomor-phism between intent and extent, we have thefollowing property:I1 � I2 , E2 � E1This onforms to intuition, sine it is naturalthat a speialization of a onept (here C2 spe-ializes C1) has less instanes than this oneptE2 � E1 (but more attributes).One an de�ne hierarhial graphs of on-epts based on this relation.In the literature, the onepts are always as-soiated with the lattie of onepts (or Ga-lois lattie) whih is a onvenient hierarhial2



graph to extrat all the onepts from a dataset. We will see that there are other hierarhi-al graphs whih may be of interest too.2 Graphs of ConeptsWe now present di�erent graph struturesthat may be used to organize the onepts ex-trated from a data set into a inheritane hi-erarhy. Given a data set, there is a �nite(maximal) set of onepts that an be extrat-ed from it. This is the set extrated by thelattie of onepts. The di�erent other stru-tures present di�erent possible subsets of thismaximal set of onepts.The name of \struture" an be misleading,sine the di�erene resides in the method (al-gorithm) used to extrat the onepts. Thestrutures themselves depend diretly and un-equivoally on the partiular set of oneptsextrated. They onsist in a graph of all theonepts extrated, related by the inheritanerelation de�ned in the previous setion.We will �rst present the lattie of oneptswhih ontains all onepts from a given dataset. This partiularity makes it a referene forthe other whih may be onsidered as ontain-ing subsets of all the onepts in the lattie.The idea that the lattie of onepts exhib-it all the possible onepts ontained in a setof entities is interesting beause it allows tosee the it as a searh spae where any oneptextration method will look for important on-epts. This ontributes to set a ommon baseon whih to ompare all the methods. For ex-ample, a method's ability of abstration ouldbe simply measured in the perentage of on-ept from the lattie of onepts it aept.In [5℄ we present the onlusions of some ex-periments in designing suh methods to seletthe most important onepts from a lattie ofonepts. One of our onlusions was that anysuh method should not onsider the onept-s independently (e.g. \a onept is important

if it has more than 5 instanes and less than7 attributes"), but rather try to ompare theonepts between themselves (e.g. \a oneptis important if it has stritly more attributesthan all its super-onepts").We will �rst present the lattie of onepts,and then two methods to limit the set of ex-trated onepts.
2.1 Lattices of conceptsThis struture proved its utility for browsingpurposes [7℄. This is the one usually assoiatedwith Conept Analysis. The set of onepts ofthe lattie and the lattie itself or presentedrespetively in Figure 1 and Table 2.
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Figure 1. Lattice of concepts for the data set
in Table 2.The lattie has the interesting property thatit ontains all the onepts from a set of data.This, however, may also prove to be a draw-bak sine the lattie ontains usually muhmore onepts than the number of data it wasgiven in input. It has absolutely no synthesisapabilities. The maximal number of oneptsontained in a set of data is theoretially ex-ponential in the number of objets in the dataset (although in pratie is is usually linear inthe number of objets [9℄. In our experimentswe got from 3 to thousand of times more on-3



Table 2. All concepts contained in the data set of Table 1.Name Extent IntentC0 fF1., F2., F3.g ffreegC1 fF1., F3.g fmallo, freegC2 fF2., F3.g ffree, fopen, printfgC3 fF1.g fsizeof, mallo, reallo, freegC4 fF3.g fmallo, free, fopen, printf, fsanfgC5 fF2.g ffree, fopen, flose, printf, fprintfgC6 ; fsizeof, mallo, reallo, free, fopen,flose, printf, fprintf, fsanfgepts outputs than the number of entities in-trodued.
2.2 Graph Based on ClusteringWe have developed an alternative methodto build a graph of onepts based on a hierar-hial lustering method, that we will desribehere However, we will not desribe in lengththe partiular hierarhial lustering algorith-m used1.Clustering is a statistial mean that aims atgathering into oherent lusters, some set ofentities. The goal to ahieve is to reate lus-ter with high internal ohesion (entities withina luster are highly related) and low externaloupling (few relations between entities in d-i�erent lusters). Agglomerative hierarhialalgorithms start from individual entities, gath-er them two by two into small lusters whihare in turn gathered into larger lusters up toone �nal luster ontaining everything. Theyresult in a binary tree of lusters.To get a hierarhy of onepts from this bi-nary tree, we need to solve four problems:� Clusters are not thought of as ouples,they are usually only onsidered as setsof entities and have no intent.� The tree of luster being binary, it mustrepresent a onept with more than two1This information may be found in [10, 15, 16℄

sub-onepts as an arti�ial hierarhy ofouples, all with the same \intent" but d-i�erent extents2.� The tree only allows simple inheritanebetween the ouples, whereas a typial setof onepts heavily relies on multiple in-heritane.� Due to these last two problems, the ou-ples in the tree may not respet the extrarequirements for a ouple to be a onept(see setion x1): Beause of the arti�ialhierarhy of ouples, the sub-ouples maylaks some entities in their extent. Be-ause of the simple inheritane onstraint,some ouples, do not know all their sub-onepts and also laks some entities intheir extent.In [4℄ we propose a solution to remedy theseproblems, it builds a general graph of oneptsfrom the binary tree of lusters. This is donein three steps, the �rst one being presented inTable 3 (lower part) for a possible luster set(upper part) extrated from the data in Table1. First we need to see lusters as ouples andnot only as a gathering of entities, whih meanswe should see them as a pair intent/extent and2The binary tree atually ontains lusters whihdon't have intent. They will be ouples only after wesolve the �rst problem.4



Table 3. Converting clusters (left column) to concepts (rig ht column).Clusters Conepts(=Extent) Name Extent IntentfF1.g C0 fF1.g fsizeof,mallo,reallo,freegfF2.g C1 fF2.g ffree,fopen,flose,printf,fprintfgfF3.g C2 fF3.g fmallo,free,fopen,printf,fsanfgfF2.,F3.g C3 fF2.,F3.g ffree,fopen,printfgfF1.,F2.,F3.g C4 fF1.,F2.,F3.g ffreegnot only an extent. We propose to do it simplyby taking for intent of a ouple, the interse-tion of the desriptions of all the entities in theextent of the luster.Note that the entities' attributes may beweighted, in that ase we onvert them toboolean attributes (present in the entity ornot). A weight of zero indiates that the at-tribute is absent from the entity, otherwise itis present.Seond, we need to turn these ouples intoonepts, whih means reomputing the exten-t of eah ouple from its intent. As a rule theouples from the previous step ontain less en-tities in their extents that they should. Thenew extent is reomputed by inluding all en-tities whih have all attributes of the ouple'sintent in their desription.We now have onepts, and there is no needto reompute intents from the new extents.Finally, we put all these onepts into agraph struture by omputing the inheritanelinks between the onepts.We believe that this method has the advan-tage that it atually builds an abstration ofthe data orpus by extrating only the mostinteresting onepts.In [5℄, we propose an algorithm that givessimilar results by mimiking hierarhial lus-tering inside the lattie of onepts.

2.3 Godin’s Pruning MethodGodin in [8℄ propose his own version of apruned lattie of onepts.Some onepts inherit attributes from theirsuper-onept(s) and introdue some new at-tributes as well. Other onepts do not in-trodue any new attributes, but only reord apartiular ombination of two (or more) super-onepts through multiple inheritane. For ex-ample C4 has �ve attributes in Table 2, butonly one is represented in Figure 2. C6 doesnot introdue any new attribute.Similarly, some onepts ontain all the in-stane of their sub-onept(s) and have in-stanes of their own. Other onepts, onlyontain the union of all their sub-onepts' in-stanes. Making an analogy with the objetmodel, one ould all these latter abstrat on-epts by opposition to the former onrete on-epts with instanes of their own. For exampleC2 ontains two entities in Table 2, but noneis represented in Figure 2.Godin proposes to onsider as non-important those abstrat onepts that do notintrodue any attributes of their own.Given this new graphial representation(Figure 2), the onepts Godin proposes to e-liminate are those that appear with an emptyintent and empty extent (note that this is onlya di�erent representation of the same onepts,they are not atually empty).Other pruning methods similar to this onehave been proposed: [12, 13℄.5
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Figure 2. Illustration of Godin’s pruning method. The graph is the same as in Figure 1. Compare the
information represented with the actual intents and extent s of the concepts in Table 2.3 Simplifying the data setThe last two strutures exhibit sub-sets ofthe set of onepts extrated by the lattie.They extrat (a lot) less onepts that the lat-ter. But we should also ompare them on othergrounds.In [5℄ we ompared the resistane to noiseand errors in the data (see below the de�nitionof these two terms) of the lattie of oneptsand the graph based on lustering.In the ontext of this experiment, we hadtwo types of attributes, those that atuallybelonged to the domain and those whih didnot. Noise was de�ned as the presene ofnon-domain attribute in an entity's desrip-tion. Errors were de�ned as the absene ofa domain attribute in an entity's desriptionthat should have ontained it, or addition ofa domain attribute in an entity's desriptionthat should not have ontained it.We showed that the graph based on lus-tering is muh more resistant to noise thanthe lattie of onepts (and ould atually takeadvantage of some noise), and that the latterwas more resistant to errors. One expliationis that the lattie of onepts extrat all thepossible onepts in the data, therefore, noiseprodues many (erroneous) onepts, whereas

lustering was intended from the beginning todeal with noise.If we, now, onsider entities whih are �lesdesribed by the list of routines they all (eahroutine is a possible attribute): We proposeto say that utility routines (in C, it ould bemallo, free, . . . ) are non-domain attributes,they are alled only for implementation pur-poses and do not atually represent the do-main. Therefore alls to these routines will beonsidered noise.In the same ontext, errors ould take theform of dead ode, whih would result in theentities' desriptions as alls to domain rou-tines whih should not be there. The oppositeerror (absene of a domain attribute in a de-sription that should ontain it, i.e. a missingroutine all) would be rarer if we assume thatthe ode is working.This analysis points to the graph based onlustering as a better solution beause it shouldnot su�er from error in the ode whereas itwould provide better results when dealing withnoise.To try to improve the results of the lattieof onept, one ould tried to remove the noisefrom the ode before extrating the lattie ofonepts.6



3.1 Utility attributesVan Deursen, in [6℄, applies the approahproposed above. His solution di�ers from theprevious ones in that, instead of trying to sim-plify the set of onepts extrated, he proposesto simplify the data set before extrating on-epts.This solution has two interests:� It an be used in onjuntion with the twoprevious struture: First one simpli�es thedata set then one selets the most inter-esting onepts existing in this new dataset. Suh a ombined solution should givebetter results.� It introdues the issue of the desriptionof the entities in the data set (what vanDeursen tries to simplify). We will seethat this issue is of the utmost impor-tane.Van Deursen used the lattie to �nd possi-ble lasses from Data Division \strutures" inCobol programs. In his work, eah data is anentity and the attributes are the programs inwhih the data are used. Van Deursen not-ed that some programs are utilities that a-ess many or all data. These introdue noisein the data set to whih the lattie of onept-s is extremely sensible. By removing them, hewas able to larify the data set and extrat lessonepts.We identify suh utility attributes by thelarge number of entities that possess them.4 Some Experimental ResultsWe onduted a few simple experiments toompare the various methods proposed above.We will now present and omment their results.Data are extrated from the Mosai system.For this omparison, the kind of entity used(�les, routines, strutured types, et.) has lit-tle importane. We used �les. The various

shema (we all them desriptive features, see[3℄) used to desribe these entities are3:Inluded �les: Aording to the �les inlud-ed by eah entity.Words in ident.: Aording to the wordsfound in all identi�ers eah entity ontain-s.Combination: Aording to all routines, us-er de�ned types, global variables, �les ormaros referened in eah entity. Notethat Inluded �les is a part of Combina-tion.We will use two metris to ompare the var-ious graphs of onept obtained:Number of onepts: This measures thedegree of abstration a method anahieve.Design quality: This is measured using tra-ditional ohesion and oupling metris.The exat formula for these two metrisis given for example in [2℄.Cohesion and oupling should be omput-ed either for a single onept (onsideredas a subsystem in this ase) or for a par-tition of the entire data set. However, allmethods produe graphs of onept. Thenumbers we will present are an average ofthe ohesion (or oupling) of all onepts.One should use these results with au-tion4.Table 4 presents some information on thesystem studied. \Non util." are attributeswhih are not utilities. Following van Deursen,they were de�ned as attributes possessed by3For more information on the desriptivefeatures, see http://www.site.uottawa.a/�anquetil/Clusters/ or [1℄4See also [3℄ or [1℄ for a disussion of other problemsassoiated to these two metris.7



Table 4. Some information on the data sets
used. Combination, Included file and Word-
s in ident. are three descriptive features for
files. Attrib.’s “use” gives the average num-
ber of entities in which attributes appear. “#
non util.” gives the number of attributes
which are not considered utilities (i.e. which
appears in less than 20 entities.)Combin- Inluded Wordsation �les in ident.# entity 225# attribute 3059 211 3821attrib.'s \use" 3.021 4.553 4.228# non util. 2996 202 3781less than a given number of entities. In ourexperiments, utility attributes are those whihare possessed by 20 entities or more. See inthe table the average \use" of the attributes;for the three desriptive features, it is below�ve entities possessing an attribute.The results are given in Table 5. From these,we draw the following onlusions:� Clearly, the Lattie of onepts may on-tain a great deal of onepts. In most as-es, it is doubtful that a user an have anyuse of suh a quantity of information (e.g.tens of thousand of onepts from only 225entities).The pruning method proposed by Godinis more reasonable and the method basedon lustering is the one with less oneptsoverall. This is why we say it has betterabstration apability.� Cohesion seems very good for the lattieof onepts, however this good result isfavored by the singleton onepts (whihontain only one entity). Cohesion is notde�ne for these onepts and we arbitrar-ily set it to 0. For the lattie of onepts,where the singleton onepts or a small

portion of the total, they have few inu-ene on the average, but for the two oth-er methods they ontribute greatly to re-due (worsen) the average ohesion. Theseond ohesion, exluding singleton on-epts shows a muh better result for thetwo other methods than for the lattie ofonepts.� Coupling does not hange muh for all ex-periments and is always worse (higher) forthe lattie of onepts.� Van Deursen's method to eliminate noisefrom the data does work. However, it doesnot seem to have a deisive impat on theresults (for example the lattie of oneptsstill have many more onepts than thetwo other).Results on average ohesion seem unpre-ditable; there seems to be a slight in-rease of the ohesion without utility at-tributes; and no signi�ant modi�ationof the average oupling.The improvement introdued by thismethod does not seem as interesting aswhat seletion in the set of onepts anprovide. However, we did not try to �ne-tune the threshold value used to de�ne u-tility attributes (� 20 entities possessinga utility attribute). This ould improvefurther the results.� The hoie of desriptive feature has moreimpat on the lattie of onepts. For ex-ample, \Combination" is not very good(too many onepts) beause eah desrip-tive feature in the ombination will pro-due its own set of many simplisti on-epts whih are probably of little interest.5 ConlusionWe have presented and disussed variousmethods to extrat onepts from a set of data.8



Table 5. Comparison of three graphs of concepts according to different metrics, for three descriptive
features. #pts Cohesion #singl. Cohesion Coupl.(normal) (no singl.)CombinationLattie of Conepts 19971 0.235 204 0.237 0.058same, no util. attrib. 3787 0.256 372 0.284 0.056Godin's pruning 1048 0.237 197 0.246 0.049same, no util. attrib. 981 0.199 295 0.284 0.050Based on Clustering 364 0.058 189 0.320 0.049same, no util. attrib. 330 0.148 186 0.338 0.050Inluded �lesLattie of Conepts 791 0.200 125 0.238 0.054same, no util. attrib. 476 0.193 114 0.254 0.054Godin's pruning 164 0.076 111 0.234 0.048same, no util. attrib. 255 0.119 110 0.208 0.048Based on Clustering 235 0.125 113 0.241 0.049same, no util. attrib. 194 0.111 104 0.240 0.049Words in ident.Lattie of Conepts 114285 0.172 415 0.172 0.053same, no util. attrib. 31455 0.193 372 0.181 0.051Godin's pruning 1893 0.160 233 0.183 0.046same, no util. attrib. 1851 0.119 232 0.184 0.046Based on Clustering 392 0.147 215 0.326 0.046same, no util. attrib. 380 0.111 213 0.333 0.046One of these methods, the lattie of onepts,has reently reeived a lot of attention. Ourmain point is that although this is an inter-esting onstrut, it also have a very signi�antdrawbak for reverse engineering beause it hasno abstration apability. It extrats absolute-ly all onepts ontained in the set of data andommonly returns tens of onepts for everyentity it is given in input.Conepts (and Conept Analysis) are usu-ally presented and studied in the ontext ofthis partiular struture, but we rather pro-pose to use them with other onstruts thatwould make a seletion in the set of all pos-sible onepts. A new interest of the lattie
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