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Abstract

The goal of Reverse Engineering is to create an abstract
representation of a system, identifying the concepts it imple-
ments and the relations between them. Both kind of infor-
mation (concepts and relationships) have been the subject
of various studies, but there are very few works that actually
consider them jointly. In this article, we propose a method
trying to remedy this deficiency.

We will present some experiments we performed on the
Mosaic system and discuss their results. They show that
our method is successful and can actually extract significant
conceptual information. Examples of discovery of subsys-
tem wrapping or extraction of concepts inheritance hierar-
chy are presented.

1 Introduction

Reverse Engineering is defined as “the process of analyz-
ing a subject system with two goals in mind: (1) to identify
the system’s components and their interrelationships; and,
(2) to create representations of the system in another form
or at a higher level of abstraction” [22]. Creating an abstract
representation of a system implies discovering what abstract
concepts it implements and what relations hold between
these concepts. The initial efforts concentrated on finding
abstract concepts, and results in this domain are promising.
Extraction of relations between abstract concepts received
less attention and does not extend beyond the classical im-
plementation relations: inheritance and composition. But
very little work, actually considered the extraction of con-
cepts and relations to form abstract constructs.

Another important problem in reverse engineering is the
“concept assignment problem” [6], or how to relate abstract�This work is sponsored by a grant from the Fundação de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ)

concepts with portions of the code that implement them. In
this domain too, research is progressing and solutions are
starting to appear (e.g. [4]).

In this article, we describe an experiment to extract “ab-
stract constructs” from a legacy software. We define these
constructs as being composed of abstract concepts and rela-
tions between them. The concepts are directly connected to
software components in the code and the relations between
the concepts also come from the code. For example, study-
ing the user interface of a software, we discovered a small
inheritance hierarchy of widgets.

The organization of the article is the following: In sec-
tion 2 we discuss thestate of the artin concept and relation
extraction and present therelated works. Then, in section
3, we define more precisely the notion ofabstract construct
and present a first algorithm to extract examples of it. In
section 4, we detail theexperimentswe conducted to find
these constructs and we comment theirresultsin section 5.
Before concluding, we discuss some aspect of this research,
limitations and future works.

2 Conceptual Information for Reverse Engi-
neering

We propose, in this article, a method to extract abstract
concepts and relations between them from a legacy soft-
ware. Some methods already exist in this area and we will
present them, highlighting the differences between these ap-
proaches and our. The discussion is decomposed in two
parts, first we discuss extraction of abstract concepts, a topic
which was well studied by others, then we come to the much
newer problem of extracting conceptual relations.

2.1 Concepts

A fundamental goal of Reverse Engineering is to extract
from the code abstract concepts that are significant to the



software engineers. There are a number of ways to do so
depending on the source of information used:

Clustering: By grouping related things together, one de-
fines concepts “in extension”, that is to say, by the list
of their members. Intuitively, the larger the cluster, the
more abstract the underlying concept.

Software Components: Each and every software compo-
nent can be said to implement a concept. One can as-
sume that the more complex a software component is
(e.g. structured type, long routine), the more abstract
the related concept.

Clichés: A cliché is “a pattern describing salient features
of a concept that supports recognition of that concept”
[22]. Examples of clichés are: traversal of a linked-
list, or handling of a counter. Recognizing cliché is
therefore the action of looking for specific concepts in
the source code. In theory, there is no limit to the level
of abstraction of these concepts.

Documentation: Many words contained in external doc-
umentation, in comments or in identifiers directly re-
late to abstract concepts of the application domain or
other knowledge domains. For example in the routine
identifier “XtRemoveEventHandler”, the word “event”
refers to an abstract concept specific to event driven
programming.

The clustering method can be based on informations
from the code (references between software components)
or on words from identifiers. In either case, the method
leads to concepts that are difficult to understand because,
to discover the “intention” (the semantics) of the concept,
one must analyze the list of its members. This can only be
done manually and with great difficulties. There are numer-
ous examples of this method in the literature, for example
[2, 17, 18].

Concepts extracted fromsoftware componentsare usu-
ally of a very low level of abstraction (e.g. the concept of
a loop counter). Even complex components as structured
types may implement low abstraction level concepts (e.g. a
node structure to implement a linked list). There are also
many examples of application of this method, more spe-
cially for extraction of classes from procedural code [9, 23].
These works are similar to what we propose (particularly for
relations, seex2.2), but the concepts extracted are at a lower
level of abstraction.

The method based oncliché recognition seems now re-
ceding due to scaling problems. It deals only with computer
science concepts (see examples above), no application do-
main clichés has been defined to our knowledge and it is not
clear what these could be. Another problem is that one has
to know beforehand what concepts one will be looking for.

We will see that our method does not have these limitations.
Works in this area include [19, 21].

Words found indocumentationare of mixed qualities,
they may be utility words (the, a, is, . . . ), they may design
concepts of importance or anecdotal, and finally they may
be difficult to relate the source code. To solve the problem
of utility words one can use a “stop list”. Note that this
problem can also be much alleviated by considering words
in identifiers which are rarely adverbs or articles. To sep-
arate anecdotal concepts from important ones, one usually
relies on therepetition heuristic: words which are more fre-
quently repeated, have more chances to denote important
concepts. An example of this is Sayyad [20], who extracted
concepts from the comments of a legacy system. His ap-
proach requires some manual intervention mainly to cor-
rect errors due to the repetition heuristic (words which are
frequent but do not denote important concepts). We avoid
manual intervention because it is not compatible with the
size of the systems usually dealt with in Reverse Engineer-
ing. Also Sayyad does not consider relations between the
concepts.

Internal documentation (comments and identifiers) has
the additional advantage of directly relating the abstract
concepts (the words it contains) to the code (each identifier
relates to a software component, comments can be related
to the piece of code they describe). For example in [4], An-
toniol et al. endeavor to recovering code to documentation
links. Using frequent words in identifier and in sections of
the external documentation, they link classes to parts of the
documentation that describe them.

These two works do not extract relations between the
concepts found.

2.2 Relations

The problem of finding conceptual relations in a legacy
system has draw less attention, and the results are still prim-
itive. For example most of the work only considers the basic
relationships which are synonymy, inheritance and compo-
sition. Again, there are different approaches:

Clustering: Hierarchical clustering algorithms result in hi-
erarchies of clusters, which specifies inheritance rela-
tion between the clusters.

Co-occurrence: If two concepts repeatedly appear jointly
(e.g. the words “directory” and “file”), they have a
good probability of being linked by a conceptual rela-
tion.

Documentation: By analyzing external documentation,
one may be able to discover relations between con-
cepts.



Implementation: It is well established that relationships
like synonymy, inheritance or composition can be
found between structured types from simple analysis
of their definitions.

We already noted that theclustering methodleads to con-
cepts difficult to understand. Also, it is limited to the sole
inheritance relation. This part includes also works on “con-
cept analysis” [5] which, in this context, share the same
problems as the traditional clustering method.

The method based onco-occurrenceonly allow to dis-
cover that there is a relation between two concepts, without
specifying what this relation is. Also, it does not differen-
tiate two related concepts (directory+file) from a nominal
syntagms (data+base). The method is used in [15].

The method usingdocumentation(e.g. [14]) could pro-
vide an improvement, but it requires complex analysis
which is usually very difficult to perform automatically.
The following two works [8, 12] simplify the problem by
considering more structured documentation, Data Flow Di-
agrams, but they become dependent on the existence of this
particular document which we judged over-restricting.

For lack of a better solution,, we chose to apply the
method based onimplementation. Its main problem is that
it is currently limited to the three basic relations cited atthe
beginning of this section. The synonymy function has been
much explored: detection of clone functions in [13, 16], de-
tection of synonymous structured types in [7, 11, 11]. We
say that a structured typeinherits from another if it has the
same fields plus some additional ones; we say that a struc-
tured type iscomposedof another if it has a field of the other
type. Unfortunately, these two heuristics are often invalid.
Inheritance can be implemented in procedural language us-
ing a pointer from the sub-type to the super-type, and in
general, fields of another type (and pointers on another type)
can be used to implement many different associations apart
from composition.

3 Abstract Constructs

In this section we will set the basis of our method to ex-
tract concepts and relations between them from a legacy
software system. For this, we present an introductory ex-
ample and establish some basic definitions.

3.1 Basic Approach

The concepts will be extracted from thedocumentation
and the relations from the code. The naive approach con-
sists in:�.1 Extract concepts deemed important from theinternal

documentation(i.e. words in identifier) using the rep-
etition heuristic

�.2 Relate these concepts to software components�.3 Look for relations between these software components
(method based onimplementation)�.4 Deduce that these relations hold between the associ-
ated concepts

Table 1. First experiment, pairs of concepts
“related” by the inheritance or composition
relation number of occurrence of the pair for
each relation.

Inheritance Composition
48 Event/Event 31 Event/Event
48 Event/X 31 X/Event
48 X/Event 36 Rec/Part
53 X/X 44 HT/HT
56 HT/Stream 62 Event/X
56 Stream/Stream 69 X/X
58 Stream/HT
79 HT/HT

However a first experiment with structured types of the
Mosaic system leads to uninteresting results. Table 1 gives
the most frequent triplet (concept1,relation,concept2) for
the inheritance and composition relations. The only triplet
which intuitively makes sense isfRec,composition,Partg,
which means that a rec(ord) is composed of a part. Study-
ing this example a bit closer, we noted that the Mosaic
system, and the X11 library on which it is based, contain
several structures named xxxRec (ex: CompositeRec, Ob-
jectRec, CompositeClassRec), all having a field member of
type xxxPart (CompositePart, ObjectPart, CompositeClass-
Part). This organization is illustrated in Figure 1 (UML no-
tation).

CompositeClassRec CompositeClassPart

Rec Part

ObjectPart

CompositePartCompositeRec

ObjectRec

Figure 1. Example of abstract constructs
found in Mosaic and the X11 library.



We propose that a reason of the failure of the first experi-
ment is that it is looking for triplet in the entire system with
almost no constraint. An experiment on relevance of iden-
tifiers to their definitions [1] showed that the names tend to
be relevant “locally” and not for an entire system. We will
not expand on the precise definition of this locality, but it
seems normal that, in a legacy system, informal organiza-
tion schemes (as naming convention) can only be followed
locally. In the case of the rec(ord) being composed of a
part, this locality boils down to the X11 library and the part
of Mosaic directly related to it.

One could consider in this case that the locality corre-
sponds to the definition of a subsystem. We felt that this lo-
cality could be difficult to use automatically and chosen to
use another one. We refer here to the fact that the prefixes
to “Rec” and “Part” in the related identifiers are the same.
This seems a good marker of the organization scheme and it
will be integrated in the algorithm (step�.3) as a constraint
on what software components can be related (we will not
consider those with very different identifiers).

3.2 The opposition heuristic

In step�.1 of our algorithm, we applied the traditional
repetition heuristic, that is to say the more frequent a word
the more chances it has to denote an important concept. We
propose to introduce a new heuristic:

Opposition heuristic: If two words are the only difference
between two (long) sequences of words, they have
good chances of denoting important concepts.

Consider, for example, the two identifiers XmRe-
moveEventHandler and XtRemoveEventHandler. Follow-
ing the repetition heuristic, there is a good probability of
the concepts Remove, Event and Handler being important.
We propose that, following ouropposition heuristic, there
is a good probability of the concepts Xm and Xt being im-
portant too because they are the key features (concepts) that
allow to differentiate the identifiers. Intuitively, concepts
from the opposition heuristic will need less repetitions tobe
deemed important.

Note that if the opposition heuristic suppresses the need
for repetition to identify the important concepts, it intro-
duces the notion of acontext of importance(or context of
validity). The context of importance of the concept is de-
fined by the software components it was extracted from. A
possible way to characterize this context would be to con-
sider the rest of the sequences of words from which the con-
cepts were extracted with the opposition heuristic. In the
example above, Xt and Xm would be important concepts in
the context offremove, event, handlerg (what we called lo-
cality earlier). In practice, this context is more useful for the
relations than for the concepts themselves. We found that

the concepts extracted with the opposition heuristic were
usually meaningful independently of their context. How-
ever, we will see that the relationships we will deduce be-
tween these concepts often make sense only in the specific
context of importance of the concepts.

Eventually, if a concept is found in many different con-
texts, one will be able to deduce that it is important without
restrictions, that is to say, the context of importance is the
entire system. This is strictly equivalent to the repetition
heuristic.

The naive algorithm we proposed remains the same,
however, step�.1 will be modified to use the opposition
heuristic instead of the repetition one. The final algorithm
we used is presented in section 4.

3.3 Definitions and Notation

To apply our opposition heuristic, we will need a tool
to compute thelexical differencebetween two sequences of
words.

Lexical difference (between two sequences of words)
A set of modificationswhich, applied to the first
sequence, would produce the second. There are
three possible modifications: add(word), del(word),
chg(word1,word2). For example a valid lex-
ical difference between fthe,blue,houseg andfthe,little,blue,catg is fadd(little),chg(house,cat)g.

Note that our definition of lexical difference does not
specify where to apply the modifications, for example
adding the word little before or after the pronoun. Conse-
quently, there are potentially many valid lexical differences
for two word sequences.

We will see later that there are cases where the difference
between two sequences of words is that one word in the
first is replaced by two words in the second (as “file” being
replaced by “data+base”). In this case, the lexical difference
will look like: fchg(file,data),add(base)g.

We will call the concepts we extract and the relations
between themabstract constructs.

Abstract construct The association of alexical differ-
encebetween two identifiers (considered as word se-
quences) and arelation between the two associated
software components.

In the Rec/Part example, the lexical difference between
the two identifiers CompositeClassRec and Composite-
ClassPart is chg(Rec,Part):Re
 
hange�! Part
The formal relation is the composition:CompositeClassRe
 
omposed�! CompositeClassPart



And the abstract construct is (see also Figure 1):Re
 
omposed�! Part
From now on, we will prefer the more compact nota-

tion: fchg(Rec,Part)g/composition, being understood that
the first concept (Rec) is composed of the second one (Part).
Similarly, in fchg(word1,word2)g/inheritance, it should be
understood that the concept word2 inherits from the concept
word1.

4 Description of the Experiments

We will now detail the experiment we did, to extract our
abstract constructs from the Mosaic system. Mosaic is be-
coming one of thede factobenchmark system in the Re-
verse Engineering community. It is a medium-sized system
(' 140KLOC of C code).

We used a different algorithm than the one specified in
the previous section (although both are equivalent). Be-
cause we now use the opposition heuristic, we don’t expect
to get more than two “important” concepts per identifier pair
(this was not true with the repetition heuristic). As a conse-
quence, we found it easier to base the detailed algorithm on
this notion of software component pair:�.1 Select a set ofsoftware components�.2 Decompose the software component identifiers in

word sequences�.3 Compute thelexical differencebetween pairs of soft-
ware component identifiers�.4 Find all therelationsbetween pairs of software com-
ponents�.5 Find all relatedpairs of software componentswith a
small lexical difference.

In step�.1, we experimented with two sets of software
components, first with structured types and then with rou-
tines.

Decomposing the identifiers into sequences of words for
step�.2 is a simple task which is based on the use of word
markers (capital letters, underscore character). This is sim-
ilar to what is done in [10]. Although not perfect, these
heuristics give sufficiently good results to be used in a com-
pletely automatic way. In cases of problem (lack of word
markers in the identifiers), works like [3] could help im-
prove the results.

To compute the lexical difference between two word se-
quences in step�.3, we designed a simple algorithm. The
algorithm does not allow more than two contiguous words
to be inserted, deleted or changed in a sequences. This re-
duces greatly the space of search and consequently the time

complexity. The algorithm treats the sequences in parallel
from left to right, comparing the first word of each sequence
at a time. When the first word is different, it first tries to re-
move this difference with one add(word) or del(word) mod-
ification, if it fails, it tries then the chg(word1,word2) mod-
ification. The algorithm does not look for a minimal set of
modifications and returns the first acceptable set found. It
only considers the successful lexical differences containing
less than two modifications (consecutive or not). The ratio-
nal is that with more modifications, the identifiers would be
too far apart to be of interest. This heuristic could be fine
tuned to take into account the length (in number of words)
of both sequences. The fact that the algorithm returns the
first lexical difference could theoretically be a problem.
However, it would be very difficult to define an hypothetical
optimal lexical difference. An other deficiency, on which
we will come back (x6), is the absence of a normalized form
for the lexical differences.

The next step,�.4, computes formal relations between
each pair of software components. For structured types,
we used the inheritance and composition relations (see alsox2.2), for routines, we use the call relation (a routinecalls
another if it has a reference to it in its body, i.e. we used
static analysis).

The call and composition relationships are directly rep-
resented in the code, whereas inheritance is less direct, itis
deduced from the comparison of the structured types’ defi-
nitions. Thus, it is based on the assumption that the fields’
names respect some convention. This is a normal assump-
tion that has been used in various works (e.g. [7, 11]).

Finally, the last step,�.5, consists in cross comparing
the results from�.3 and�.4 and find out which software
component pairs appear in both. The pairs are grouped by
candidate abstract constructs: All pairs of components with
the same lexical difference between them, and the same for-
mal relation between them, will be presented together. We
are primarily interested in the candidate abstract constructs
with the most identifier pairs.

5 Some Results

We present first the results from our experiment with
structured types and then the experiment with routines.

5.1 Structured Types

We found 500 structured types, with 472 different
names. For theinheritancerelationship, there are 278 pairs
of related structured types and the algorithm found 22 can-
didate abstract constructs. For thecompositionrelationship,
the algorithm found 27 candidate abstract constructs cover-
ing 63 pairs from a total of 511 related pairs of structured
types.



The first test for this experiment was to establish
if we could rediscover the Rec/Part example already
discussed in section 3.1. This was actually one of
the largest candidate abstract constructs, with 13 pairs
for fchg(Rec,Part)g/composition. There are also 14
additional pairs with a longer lexical difference (e.g.fchg(Rec,Part), chg(Widget,Core)g/composition). The test
seems conclusive, but we should also mention two ap-
parently opposite abstract constructs:fchg(Core,Widget),
chg(Part,Rec)g/composition and fchg(Object,Widget),
chg(Part,Rec)g/composition. These come from an “imple-
mentation trick” where the component (Part structure) has
a pointer to its parent (Rec structure). This feature was
mistaken for a composition relation. This is the kind of
noise one has to deal with when working with the source
code.

Another large candidate isfadd(Class)g/composition
with 24 pairs. This denotes a pattern of organization where
structured types (e.g. HTStream) have a pointer to a
description of their (meta-)class (e.g.HTStreamClass).
Again, the pointer is used in this case to denote something
else than composition, nevertheless it helped finding out an
interesting feature.

Table 2. Some candidate abstract constructs
for structured types and the inheritance rela-
tionship.fchg(Composite,Constraint)gfchg(Composite,HTML)gfchg(Composite,Xm),add(Manager)gfchg(Constraint,HTML)gfchg(Constraint,Xm),add(Manager)gfchg(Widget,Composite)gfchg(Widget,Constraint)gfchg(Widget,HTML)gfchg(Widget,Xm),add(Manager)gfchg(Xm,HTML),del(Manager)g
We singled out some interesting candidates for the in-

heritance relation in Table 2. They suggest a concept inheri-
tance hierarchy which we represented in Figure 2 (UML no-
tation). The dashed lines correspond to abstract constructs
which express only the transitive closure of the actual inher-
itance relations (plain lines).

The context is especially important here as it is certainly
not universally true that HTML (the HyperText Markup
Language) is a sub-concept of Widget. One should rather
understand that, in this context, HTML denotes an HTML
widget which is a kind of constrained composite widget.

One can note that the words Xm and Man-
ager are always associated (in this context):
it is either fchg(xxx,Xm),add(Manager)g or

Composite

Widget

Constraint

Xm + Manager

HTML

Figure 2. A concept inheritance hierarchy
from the Mosaic system and X11 library in
the “widget context”. Dashed lines show the
transitive closure of the inheritance relations.fchg(Xm,xxx),del(Manager)g. This is an example of

a nominal syntagms, the pair Xm+Manager marks a single
concept. This is an advantage of using the opposition
heuristic over the repetition heuristic to find the important
concepts. The repetition heuristic would need some extra
processing (as in [15]) to find such nominal syntagms.

Having identified an interesting group of structured
types, we started to study it more closely. In Table 3, we
present the candidate abstract constructs extracted for these
concepts with the composition relationship. These con-
structs are also pictured in Figure 3.

Table 3. Some candidate abstract constructs
for structured types and the inheritance rela-
tionship.fchg(Rec,Part)g -- note: “Widget” =2 contextfchg(Composite,Core),chg(Rec,Part)gfchg(Constraint,Core),chg(Rec,Part)gfchg(Constraint,Composite),chg(Rec,Part)gfchg(HTML,Core),chg(Rec,Part)gfchg(HTML,Composite),chg(Rec,Part)gfchg(HTML,Constraint),chg(Rec,Part)gfchg(HTML,Xm),add(Manager),chg(Rec,Part)gfchg(Widget,Core),chg(Rec,Part)gfchg(Xm,Core),del(Manager),chg(Rec,Part)gfchg(Xm,Composite),del(Manager),chg(Rec,Part)gfchg(Xm,Constraint),del(Manager),chg(Rec,Part)g
This example shows an organization schema where each

xxxRec structure have a member xxxPart except for Wid-
getRec which owns a CorePart. The dashed lines shows
composition relations that exist but only serve to mimic in-
heritance in the procedural language (C). We are already
familiar with the Rec/Part organization, however, Widget



seems to fail to follow the rule. An hypothesis is that Core
and Widget are synonymous (or quasi-synonymous) and,
maybe by mistake, one is used for the other in this case.
This hypothesis is confirmed by two facts:� Whereas CompositeRec is defined in CompositeP.h,

ConstraintRec in ConstraintP.h and XmManagerRec in
ManagerP.h, WidgetRec is defined in CoreP.h.� In CoreP.h we find the following definition:

typedef struct _WidgetRec {
CorePart core;

} WidgetRec, CoreRec;

One could object that all these structured types form a
highly organized piece of code that is not typical of legacy
software systems. We will come back to this point in the
discussion section (x6).

Widget+Rec

Composite+Rec

Constraint+Rec

Xm+Manager+Rec

HTML+Rec

Composite+Part

Constraint+Part

Xm+Manager+Part

HTML+Part

Core+Part

Figure 3. A concept composition graph from
the Mosaic system and X11 library. Dashed
lines are a consequence of the inheritance
relations (see also Figure 2.

5.2 Routines

We also experimented with software components be-
ing routines. There are 4331 routines with 3700 different
names and 5773 routine pairs caller/called with 1092 differ-
ent caller routines and 1429 different called routines.

Some interesting candidate abstract constructs are pre-
sented in Table 4. The first three show examples of wrap-
ping. The Xmx functions (e.g. XmxAddCallback) are de-
fined in the Mosaic code, the Xt and Xm functions (e.g.
XtAddCallback) are part of the X11 library. For example,
one of the pair forfchg(Xmx,Xt)g/call comes from the fol-
lowing piece of code:

void XmxAddCallback (
Widget w, String name,
XtCallbackProc cb, int cb_data)

{
XtAddCallback ( w, name, cb,

(XtPointer)_XmxMakeClientData(cb_data));
return;

}

Table 4. Some candidate abstract constructs
for routines and the call relationship.fchg(Xmx,Xt)gfchg(Xmx,Xm)gfchg(Xmx,Xm),chg(Make,Create)gfchg(MoCCI,MCCI)gfchg(MCCI,MoCCI),del(Request)g
As it is sometimes the case, the interest of this discov-

ery goes far beyond the two examples we discovered (the
context of this abstract construct) and may impact one’s un-
derstanding of all Xmx functions.

The fchg(Xmx,Xm),chg(Make,Create)g/call abstract
construct also presents two synonyms: Make and Create,
the first being preferred in Mosaic and the second in the
X11 library.

The two final candidates are probably an example of an
implementation problem. They show calls in both direc-
tions from MCCI to MoCCI and the opposite. This suggest
a strong coupling between the two concepts. They come
from two files cciBindings.c (for MCCI) and cciBindings2.c
(for MoCCI) which appear to have the same or very similar
functionality. We believe cciBindings2.c is an afterthought
addition to cciBindings.c, maybe from another programmer
(which would explain the different naming convention).

6 Discussion

An important question about our experiment is its rep-
resentativity. It could be argued that the examples we gave
are particularly lucky ones found in an uncommonly well
organized software. We think differently:� It is true that most of the abstract constructs we found

came from the X11 library which seems particularly
well structured. However, some abstract constructs
did came from Mosaic itself, whether it was by copy-
ing the structure of the X11 library (HTML+Rec com-
posed of HTML+Part in section 5.1) or by introducing
its own (wrapping example in section 5.2).� Our confidence in the representativity of this experi-
ment is corroborated by the fact that we found other ex-



amples of abstract constructs in a large legacy telecom-
munication system (see Figure 4).

The kind of conventions our experimental tool is looking
for need not be strictly enforced, if an organization scheme
appears clearly and has some value, software engineers will
naturally tend to follow the lead. This is what appends in
the case of Mosaic following an organization scheme from
the X11 library.

An other question concerns the interest of the approach
for Reverse Engineering. We believe that the uncovering
of organizational schemas such as those we presented is
important first to help structure a system, but also to keep
alive the informal conventions on which these schemas are
based. The approach we propose can prove useful in various
senses:� Help discover new abstract constructs and point out to

possible things one should look for in the system.� Help confirm (or infirm) the existence of a potential
organizational schema by discovering all its instances.
The schema could have been proposed by the method
itself, or by a software engineer after informal study of
the system.� Help discover outliers that do not follow the organiza-
tional schema (as in the example of Widget+Rec com-
posed of Core+Part,x5.1).

This is an extremely important point since differing
conventions can be more confusing than no convention
at all. These outliers could denounce implementation
errors, misunderstanding of the abstract construct, or
they could signal exceptions, particular configurations
that deserve more attention.

The experiment we conducted, uncovered few abstract
constructs which could be see as a severe limitation on its
utility. We rather believe this is due to the over-simplicity
of the two algorithms we used, first to compute the lexi-
cal difference, and second to find relation between software
components.� The fact that our algorithm to compute lexical dif-

ferences does not look for theoptimal solution does
not seem a big problem because the word sequences
are usually short. But we see as significant that
the algorithm does notnormalize the lexical differ-
ences. Consider the example of two word sequences:fXm,Manager,Classg andfComposite,Classg. The al-
gorithm can compute one of the two following lexi-
cal differences:fchg(Xm,Composite),del(Manager)g
or fdel(Xm),chg(Manager,Composite)g. But the sec-
ond lexical difference does not present any clear sim-
ilarity with other lexical differences found by the tool

(e.g. Table 2 in section 5.1) and would cause it to fail
to identify a relevant instance of an abstract construct.� Another important deficiency of our tool is in the
search of relationship between the software compo-
nent. For example one may mimic inheritance in pro-
cedural languages by copying the superclass structure
in the subclass, which one can adequately detect, or by
putting a pointer in the subclass to a superclass part,
which would be mistaken for a composition relation-
ship. As already mentioned, pointers between struc-
tured types are used to implement many kind of rela-
tionship and not only composition. Having a clue on
how to differentiate these relationship would benefit
not only our research, but the entire Reverse Engineer-
ing community.

Many more relationships should be looked for, each
one possibly bringing in new information. An exam-
ple of this is our experiment with the call relationship
between routines. Other experiments are needed, with
other kind of software components (e.g. variables,
files, classes, etc.), or with relationship between two
different kinds of software components like variables
using types, routines defining or using variables, etc.

Another limitation of this research was that we looked
only for abstract constructs containing pairs of software
components, but more complex examples exist. We
found by chance in a legacy telecommunication system the
“square” presented in Figure 4. In this example we have the
horizontal lexical difference:fdel(overhead)g and the ver-
tical: fadd(trans)g. The horizontal relation is inheritance
and there is no simple vertical relation (neither inheritance
nor composition) between the software components. How-
ever the similitude is clearly not fortuitous and such (highly)
abstract constructs, if there were to be others, would be of
interest to software engineers.

This hints at new research directions where we could
drop some of the constraints we used in this research. To
automatically find the example above, we need to partly
drop the relational part of our abstract constructs (because
there is no vertical relation). Going a step further we could
completely drop this constraint and look only for sophisti-
cated, purely lexical, constructs. This would discover only
concepts without suggesting any relation between them, but
would still be of value.

An other important issue is the performance of the algo-
rithm and how it could scale up (Mosaic is at best a medium
sized legacy system). We have all reasons to believe that
performance will not be an issue. Although the experimen-
tal tool was implemented in Prolog (thus interpreted) and
not optimized (e.g. it kept recomputing the lexical differ-
ences between the software components whereas it could
have saved them once for all), execution was fast enough



Figure 4. Example of an elaborated abstract construct on str uctured types in a telecommunication
legacy system.

write records request overhead write records request
- fid: file id - fid: file id
- requestnumber: byte del(overhead) - requestnumber: byte
- n write: number �! - n write: number

- records: arrayof bytes??y add(trans)
??y add(trans)

write trans record request overhead write trans record request
- fid: file id - fid: file id
- requestnumber: byte del(overhead) - requestnumber: byte
- rec num: recordnum �! - rec num: recordnum

- rec: frecord

so that we could work with the tool on a trial-and-error
basis, experimenting with different formal relations or re-
laxing some constraints. This is one of the advantages of
working at a more abstract level and therefore have to pro-
cess less data.

We would like to mention also the interest of thecon-
ceptualaspect of this research. Things like the small con-
ceptual hierarchy we built in section 5.1 could be useful to
understand the domain of the application rather than the
application itself. Although it may seem a distant goal at
this time, a technique similar to the one we presented could
be used to help building an application domain knowledge
base.

Finally, the notion ofcontextseems important in our ap-
proach. We concealed it a bit, but being able to understand
this context would be central to a better understanding of
the concepts themselves. One should also be able to know
in what situations the context can be safely ignored (e.g.
when there are many different context for one abstract con-
struct, or as in the case of the sub-system wrapping).

7 Conclusion

In this paper, we proposed a new approach to Reverse
Engineering that looks for concepts and relations between
them. We introduced the notion of abstract constructs which
associate a relation between software components and a lex-
ical difference between their identifiers.

We proposed a simple method to automatically discover
abstract constructs. The method was tested on the Mosaic
system and the results are very encouraging:� The tool actually pointed out to informal organization

schemas (Rec and Part composition, subsystem wrap-
ping) and helped verify their pertinence.� The tool also helped in analyzing an outlier of the pre-
viously discovered organization schema and we could

formulate an hypothesis (Widget act as a synonym of
Core in the context studied) that was confirmed by the
code.� The tool helped in discovering a conceptual model of
the structured types.

Finally, we discussed some future work to be done in this
line of research.
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