
Breakpoint support for Live Environments:
The case of Pharo

Clara Allende
Inria RMoD - Universidad Tecnológica Nacional

clari.allende@gmail.com

Guille Polito
Inria RMoD - Institute Telecom Mines Douai

guillermopolito@gmail.com

Abstract
Interactive debugging is an important part of the software
development process for live environments such as Pharo
[2]. As such, widely used Integrated Development Environ-
ments (IDEs) and frameworks provide means to help the de-
veloper in this task, for example, the introduction of a break-
point i.e., a moment at runtime where the execution of a pro-
gram will be halted. In Pharo Smalltalk the only means to
add a breakpoint is to insert a message-send to the Halt class
in the source code. Inserting this message-send poses the
following problems: it mixes concerns by inserting debug-
ging code within the application code; it generates noise in
the versioning tools because it creates a new version of the
source code; and it may cause infinite recursions if we try to
debug system-level code such as system libraries, the IDE or
the language kernel.

To overcome this problems, we developed a Pharo IDE
plugin called SmartBreakpoints. SmartBreakpoints anno-
tates the Abstract Syntax Trees (AST) of the method to
debug with breakpoint code. Annotating AST introduces
breakpoints in the source code transparently for the devel-
oper and versioning tools. Additionally, our plugin provides
with a single point of control for breakpoints. This single
point of control shows itself beneficial to avoid infinite re-
cursions: we control whether a breakpoint is being triggered
from application code or not.

Keywords debugging, breakpoints, live environments, pharo,
smalltalk, reflection, metaprogramming

1. Introduction
In a living, dynamic environment such as Pharo Smalltalk a
big part of the development process occurs during debugging

[Copyright notice will appear here once ’preprint’ option is removed.]

sessions. The debugger is a very important tool, for it allows
to inspect a program’s execution in the same environment
where it runs. It is also important to notice that by using the
reflective capabilities of the language, no special debugging
support must be included in the VM. During the history
of Pharo, the debugger has changed and evolved: recent
research shows that it can become a highly customisable tool
[5].

In spite of this, debugging is not such a simple task within
the Pharo IDE. There is not any simple means of halting the
execution of a program, other than manual breakpoints i.e.,
introducing a message-send to the Halt class. This leads to
several problems: first, modifying the source code to add
the breakpoint creates a new version of the source code
in the versioning tools; second, given that breakpoint sup-
port in Pharo is hosted in the same environment as the de-
bugged application, the code managing a breakpoint can
trigger another breakpoint, leading to an infinite recursion.
Third, manual breakpoints are global: they cannot be con-
strained to a particular context, and thus they can interfere
between themselves.

To address these problems we propose SmartBreakpoints,
a plugin adding breakpoint support to the Pharo IDE. Smart-
Breakpoints annotates the AST of methods and message
sends to add the corresponding code interruptions. AST an-
notations do not modify the source code of the debugged ap-
plication, which remains unchanged for the versioning tools
and the developer. Our plugin avoids infinite recursions by
controlling whether a breakpoint is being triggered from ap-
plication code or not. This is achieved by accounting that
a breakpoint does not trigger another breakpoint, which is
possible as we have a single point of breakpoint manage-
ment. Finally, global interference is leveraged with break-
point reification.

This paper is structured as follows: In Section 2 we re-
visit and explain more in detail the problems generated by
Halt usage. In section 3, we explain the ideas behind Smart-
Breakpoints and we detail its implementation in section 4 .
Finally, we give a brief description of the related work in
section 5 and we present our conclusions and further work
in section 6.

1 2014/10/27

2. Motivation
2.1 Background: Manual Breakpoints in Pharo
Since debugging is per se a non trivial task: developers
need tools as helpful and smart as possible [12]. From this
perspective, breakpoints are very useful: they allow to spot
bugs, and set entry points to inspect a running program.

The current means to add a breakpoint in a program writ-
ten in Pharo are manual breakpoints. A manual breakpoint
is the insertion of a message send to the Halt class or any
of its variants (e.g.,self halt, Halt once, Halt now, etc). Figure
1 shows an example of a manual breakpoint in the method
Task»timeToRun inserted as a self halt just before the return
statement.

Task >> timeToRun
self halt.
^ self fixedTime + self variableTime.

Figure 1. Adding a manual breakpoint in a method. We
add a breakpoint as a self halt message send in the source
code.

When a breakpoint is reached during execution, the Halt
class throws an exception. If this exception is not caught by
the application code but it is caught by the IDE code, the
IDE launches a debugger on the point where that exception
was thrown. It is important to notice that as we are in a living
environment the application code, the breakpoint code (the
exception throwing and its handling) and the debugger run
altogether with no distinction i.e., they share the infrastruc-
tural elements such as the compiler, the collection library
and the language kernel.

The Halt class currently provides some breakpoint spe-
cialisation:

• Halt»haltOnce. If enabled, this message interrupts the ex-
ecution on the next call to haltOnce found in the system.
Once executed, it will disable the next calls to haltOnce
until it is re-enabled manually by the developer.

• Halt»if:. This message triggers a breakpoint if the passed
condition is met. The condition can be a block, an expres-
sion, or a selector.

• Halt»onCount:. This message halts the execution when a
given number of halt calls is reached. However, the calls
are accounted globally and not for each breakpoint.

2.2 Problems
The current breakpoint support in Pharo leads to several
problems. The introduction of debugging code within the ap-
plication code has an impact in the semantics of the method,
but it also can have an impact in the tools and in the IDE
itself. We identify three main problems, stated as follows:

Code Versioning. Modifying the source code to add a
breakpoint generates a new version it. Versioning tools,

unaware of breakpoints, will undesirably version the
code. On one hand, this unwanted versioning generates
noise for the developer. On the other, we could acci-
dentally commit a manual breakpoint among the other
application-specific changes. This can produce unex-
pected failures in test runs and automated builds.

Manual breakpoints are Global. Manual breakpoints can-
not be constrained to a particular context. Because of this,
multiple halts can interfere themselves: for instance, let’s
consider the example in Figure 2.

Workspace 1: Workspace 2:
aTask := Task new. aTask := Task new.
aTask timeToRun. MyClass new example.
MyClass new example. aTask timeToRun.

Task >> timeToRun
self haltOnce.
^ self fixedTime + self variableTime

MyClass >> example
self haltOnce.
^ 3+ 4

Figure 2. Manual breakpoints can interfere themselves.
The message haltOnce halts at the next haltOnce found in the
system, thus we can have an unexpected result if there are
other halts that we are not aware of.

We can see that if we change the order in which we eval-
uate the statements in the workspace, we get the break-
point at different moments. Let’s suppose we want to
break in the method Task»timeToRun but we are not aware
that there is a haltOnce placed in MyClass»example. When
we execute the code written in Workspace 1 the execution
will be interrupted where it was expected. However, the
code in Workspace 2 doesn’t work in the same way: the
breakpoint in MyClass»example is found before, and so it
disables the following executions of haltOnce. Then, pro-
ceeding the execution after this breakpoint was found will
not stop in Task»timeToRun as expected. This problem be-
comes more evident when debugging unrelated pieces of
code within a larger code base.

Manual Breakpoints are not Scoped. Manual breakpoints
require especial care when we want to debug infras-
tructural and debugging elements of the Pharo live en-
vironment (e.g., the debugger, the compiler, the collec-
tion library, the language kernel.). A carelessly placed
breakpoint may trigger, undesirably, another breakpoint
in an unrelated context. Additionally, this chained break-
point activation can be triggered recursively, possibly ad-
infinitum [6]. Then, we can say that breakpoints may af-
fect execution scopes that they were not meant to. Figure
3 shows an example of the activation of a badly placed

2 2014/10/27

Set >> add: newObject
"Include newObject as one of the receiver’s elements, but only if
not already present. Answer newObject."
| index |
self halt.
index := self scanFor: newObject.
(array at: index)

ifNil: [self atNewIndex: index put: newObject asSetElement].
^ newObject

Stack trace when method is installed:
...
ClassOrganization>>classify:under:
Set>>add:
Halt
...
Set>>add:
Halt
...

Figure 3. Infinite recursion triggered by a breakpoint.
We add a manual breakpoint in the method Set»add:. This
method is used to categorise the method and triggers a sec-
ond breakpoint, which in turn triggers a third breakpoint, and
so on.

breakpoint in Set»add:. When we install this breakpoint,
the modified method is compiled and installed in the Set
class. Then, the IDE tries to classify it (see ClassOrga-
nization»classify:under:) and the breakpoint is recursively
triggered. This infinite recursion freezes the environment.
Most likely it was not desired to halt the execution in ev-
ery send of add:, but only when that message-send was
invoked from application code. Nevertheless, there is no
simple way to specify it by just manually adding the mes-
sage send in the code.

3. SmartBreakpoints
SmartBreakpoints is a Pharo IDE plugin that allows devel-
opers to insert breakpoints transparently in the code. This
is achieved by modifying the executable representation of
a method without changing its source code. For this pur-
pose, we adapt an Abstract Syntax Tree (AST) through an-
notations: we add meta-data to an AST node to dynamically
modify its behaviour to add the breakpoint managing code.
These AST annotations are taken into account during com-
pilation to generate the corresponding executable code (cf.
Section 3.1).

SmartBreakpoints manages our other two problems by
using first class breakpoints. Instead of simply throwing an
exception, as it was the case of manual breakpoints, we
delegate the breakpoint management to a Breakpoint object.
A Breakpoint object avoids to interfere with other Breakpoint
instances by holding its own state (cf. Section 3.2). They

also avoid infinite recursions by controlling whether they are
being triggered from another breakpoint execution or not (cf.
Section 3.3).

3.1 SmartBreakpoints in Action
We will show how SmartBreakpoints works through an ex-
ample. Given the method Task»isComplete in Figure 4, we
would like to insert a breakpoint at the start of the method,
before the execution of the return statement. To insert a
breakpoint using SmartBreakpoints, we create a Breakpoint
instance using the node where we want to place it and its
corresponding method. We then enable the breakpoint: it an-
notates the AST node with the code to trigger the break-
point (breakpoint breakNow), expands the AST tree to contain
the breakpoint message-send, compiles it and installs it into
the corresponding class. This means that even though the
static representation of the method (i.e., the source code) re-
mains unchanged, we can change the behaviour it describes
in runtime. The fact that the addition of a breakpoint does not
change the source code implies that there is no change on its
version as well. Figure 5 shows the state of a method in its
several representations (source code, AST, executable code)
before and after breakpoint installation: the source code re-
mains the same, the AST is annotated and new instructions
are added to the executable code.

Task >> isComplete
^ self timeToRun isZero

theMethod := (Task >> #isComplete)
theFirstStatement := theMethod ast statements first.
breakpoint := Breakpoint

inMethod: theMethod
forNode: theFirstStatement.

breakpoint enable.

Figure 4. Breakpoint insertion example.

3.2 Scoping with Reified Breakpoints
The reification of the breakpoints solves the interference
problem as we have dedicated objects for each inserted
breakpoint. Each breakpoint object encapsulates its own
state without interfering with other ones. This makes break-
points independent of the order in where we find them.

Halt once. A halt once breakpoint in SmartBreakpoints
knows whether it was already triggered or not. When
it is triggered, it will disable itself without affecting
other breakpoint instances. As a consequence, subse-
quent breakpoints remain active and work as expected.

Halt on count. A halt on count breakpoint in SmartBreak-
points accounts how many times the execution passed
through him. When it is triggered it increments an in-
ternal counter, and if it reaches the given count it will
interrupt the execution. Other breakpoint instances are as

3 2014/10/27

Figure 5. Method state comparison before and after
breakpoint insertion. The table shows that the annotated
AST will generate different instructions (i.e., IR) but it
doesn’t affect the source code.

well not affected and the count actually depends on the
real times the method was executed.

3.3 Avoiding Infinite Recursion
To solve the possibly infinite recursions, we introduce a
meta-object which accounts the meta-levels of execution[6]:

(...) we cannot apply behavioral reflection to any sys-
tem library or to any other code that is executed as
part of the meta-object. To enable reflection in main-
stream languages, (there is a need of) a reflective ar-
chitecture where meta-objects control the different as-
pects of reflection offered by the language..

For a program run, we identify levels of execution. The
first level, or base-level, is where application code is exe-
cuted. Every time we use reflection, even for browsing or
debugging code, we jump one level above: the meta-level
of our base-level. If a reflective operation appears during an
execution inside a meta-level, we jump to a second meta-
level (the meta-level of the first meta-level), and so on. Ad-
ditionally, when the reflective execution is finished, the jump
down one level. Figure 6 sketches the code that checks the
meta-level, and jumps one level and evaluates a block if cor-
responds.

RecursionHandler >> executeBlock: aBlock
(currentContext isValid: self level) ifTrue: [

currentContext jumpLevelUp.
^aBlock ensure: [currentContext jumpLevelDown]]

Figure 6. Meta-level check. The code in the meta-
object (enclosed in a block) is only executed in the base-
level. This avoids infinite recursions.

In SmartBreakpoints, a breakpoint is a meta-object that
accounts in which level of execution we are. Triggering a
breakpoint, as it is debugging code, is considered a reflective
invocation and provokes therefore a level jump. To avoid
infinite recursions it checks if the current level of execution
is the proper one and interrupts the execution if so.

4. Implementation
Pharo is a reflective language. The IDE, the compiler, and
tools are implemented using its reflective features instead
of depend on special VM support and external tools. That
means that all these components are executed nowadays at
the same level of execution than the application code. Any
change on either one can affect the other, which may cause
meta-level recursions. We want to provide a solution that
keeps avoiding special VM support or external tools.

4.1 Our Cornerstone: Reflectivity
Reflectivity [6] is a framework to dynamically adapt methods
through annotations on AST nodes. These annotations add
an special object, a meta-link, to the adapted node’s prop-
erties. These meta-links are used to insert message-sends to
meta-objects and control the level of execution. Some exam-
ples of possible applications are profilers, test coverage, and
several applications in debugging support. Figure 7 shows
how reflectivity could be used to log a line every time we
increment a counter. In this example, we create a meta-link
that will be activated in level 0 (i.e., the base-level) and ex-
ecute the message send Transcript logCr: ’plus 1’. In this case,
Transcript is our meta-object.

Counter >> inc
count := count +1.

loggerLink := Metalink metaObject: Transcript selector: #logCr:
arguments: ’plus 1’ level: 0.

theMethod := (Counter >> #inc).
theNode := theMethod sourceNode.
theNode link: loggerLink.

Wrapper adaptMethod: theMethod.

Figure 7. Simple logging with Reflectivity. We set the
meta-object to be the Transcript, to which we send the mes-
sage logCr: with a ’plus 1’ as logging message.

After creating the meta-link, we get the AST node where
we want to install the breakpoint and annotate that node with
the meta-link. After annotating the AST, we expand it: a spe-
cialised visitor generates a new node for calling the action
in the meta-object for those nodes that have meta-links in-
stalled. This expanded AST is used in the following steps of
the compiler chain [1] to generate a new compiled method.
Afterwards, the adapted method is installed in exchange of

4 2014/10/27

the original one. This adaptation process is managed by the
Wrapper class.

When we create a meta-link, Reflectivity allows to refine
where and when the added information is to be executed, as
shown in our logger example:

• execution level: A number that denotes at which level
(base-level or meta-level) is valid to execute the code
from the link. This provides a solution for the meta-
level recursion problem. Before executing the code in the
meta-object, we check that we are in the correct level. If
not, we skip the call.

• position: Whether the execution of the meta-object should
be done before, instead or after the selected AST node.
The default is before.

• condition: A BlockClosure or an expression with boolean
value. It allows to set a particular condition to be met for
the link to be executed.

4.2 SmartBreakpoints and Reflectivity
SmartBreakpoints relies on Reflectivity to add the breakpoint
code transparently. We create Breakpoint instances which
utilise meta-links to add the halt message-send, as shown
in Figure 8. There is no explicit modification of the source
code, since it is performed via the reflective mechanisms
provided by the language [1, 6, 9], i.e., AST manipulation
and method recompilation. Moreover, there is no need of
a dedicated view to debug a program, nor of special VM/
compiler support to insert a breakpoint.

Breakpoint >> haltLink
^ Metalink metaObject: self selector: #halt level: 0.

Figure 8. Breakpoint link creation. We use the Breakpoint
instance itself as meta-object, to keep track of its activation
state.

Since a breakpoint is installed in an specific node it is
very easy to set breakpoints within nested blocks, cascaded
messages, etc.

4.3 Specialized Breakpoints
Breakpoint specialisation options currently are as follows:

• halt once: once installed, it interrupts the execution only
for the next call of the adapted method (in contrast to the
functionality of Pharo’s haltOnce). Then it is automati-
cally uninstalled.

• halt always: stops the execution for all the following
message sends of the method, until explicitly uninstalled.

• halt on condition: given a condition (a block closure or
any statement with a boolean value), once installed, only
stops the execution if and only if that condition is met.

We create a particular kind of breakpoint by specifying
a particular argument during during its creation: #always,

#once, and #when:. Figure 9 shows examples of specialised
breakpoint creation.

Breakpoint class >> break: aSymbol withArguments: anArgArray
inMethod: aCompiledMethod inNode: aNode

^(self new node: aNode; method: aCompiledMethod; yourself)
break: aSymbol withArguments: anArgArray.

Workspace
theMethod := (Task >> isComplete).
theNode := theMethod ast statements first.
condition := [Counter counter isZero].

aHaltAlways := Breakpoint
break: #always
inMethod: theMethod
inNode: theNode.

aHaltOnce := Breakpoint
break: #once
inMethod: theMethod
inNode: theNode.

aHaltIf := Breakpoint
break: #when:
withArguments: condition
inMethod: theMethod inNode: theNode.

Figure 9. Breakpoint instantiation. When creating break-
point instances we define which specialisation we want to
use.

5. Related Work
Debugging at full speed [10]. There is currently an imple-
mentation of AST based breakpoints, presented by Seaton
et al from Oracle labs. They introduce a prototype debug-
ger for Ruby Truffle. This implementation of Ruby includes
an AST interpreter for the language that applies aggressive
dynamic transformations. This AST Interpreter profiles AST
execution to discover frequently executed trees, and inlines
the methods involved into a single method.

The authors also propose that all nodes where a developer
may want to perform a debugging action are adapted. This
is an important difference with our approach: to bypass the
performance cost of instrumenting all the nodes, Ruby Truf-
fle requires a custom interpreter and a modified VM to per-
form several optimisations. In contrast, SmartBreakpoints
takes advantage of Pharo’s infrastructure without changing
it (VM, AST Interpreter, and Compiler).

A Pointcut Language for setting Advanced Breakpoints [12].
In this work, the authors present a breakpoint implementa-
tion based on AspectJ’s pointcuts. These breakpoints are
named, and can be composed into higher level breakpoints.
In addition, the language provides reifications on the execu-
tion context that can be used in the conditions. The debug-
ging tool is completely separated from the debugged pro-
gram, which allows debugging without changing the source
code.

5 2014/10/27

In our approach the debugging happens in the same en-
vironment where the program runs. Thus, we need to use
Pharo’s reflective mechanisms to avoid source code modi-
fication. This implies that we have to be careful when we
adapt a method for debugging, because we can be affecting
both the debugged program and the system itself.

One interesting characteristic of pointcut breakpoints is
that they are composable. This is a feature that SmartBreak-
points lacks of, but we would like to add in the future.

Object-centric Debugger[8]. Ressia et al. presents a de-
bugger whose abstractions are centered on object instances
properties rather than in the classes, the stack, and other
static concepts. This debugger is built in top of Bifrost [7],
a reflection framework for Pharo based on Reflectivity. One
of its key features is the ability to debug an already running
program. Object-centric debugger’s breakpoints are placed
in function of particular objects, instead of in function of
source code locations. In addition, they can be scoped to a
particular execution.

6. Conclusion and Future Work
In this paper, we acknowledge the need of better support
for breakpoint insertion in Pharo Smalltalk. We identify
the challenges of developing a tool to enable such support:
source code must not be modified and it should be possible
to insert a breakpoint in any method in the system.

We propose SmartBreakpoints, a tool which dynamically
sets breakpoints by performing AST transformations. Our
approach makes use of the language’s reflective capabili-
ties, thus it doesn’t require external tools’ support. Being the
transformations done at AST level, the source code is not
modified: there is no undesired versioning and the break-
points are set transparently to the developer. In the future we
would like to work on the following topics:

Slot integration. There is currently a simple version of slot-
based meta-links, already integrated into Pharo 4.0 im-
age. Slots [11] are first-class representations of instance
variables and their fields, allowing to modify how they
are read and written. In Pharo, instance variables, class
variables and globals are represented with slots. Hence,
having links installed in slots enables support for state
access based breakpoints: we set a link that triggers a
halt every time that the variable is accessed (both read
and write).

Breakpoint sessions. It would be interesting to save a set
of breakpoints installed during a debugging session. This
could enable the ability to uninstall and re-install them on
demand, and to version (to share the breakpoint "settings"
that allow to reproduce a bug).

Line breakpoints. source-code based breakpoints, as a more
common specialisation for the developers. Currently this
is a cumbersome task because this kind of breakpoints

work with the position in the code, and AST breakpoints
don’t. Therefore, we need a mapping between both.

Reifications. This is, providing easier mechanisms to re-
flect on the execution context, and refine breakpoint in-
sertion. For example, reified senders, receiver and argu-
ments could be used to constrain link activation to an spe-
cific object, or to an specific context state.

Acknowledgements
This work was supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Coun-
cil, FEDER through the ’Contrat de Projets Etat Region
(CPER) 2007-2013’, the Cutter ANR project, ANR-10-
BLAN-0219 and the MEALS Marie Curie Actions program
FP7-PEOPLE-2011- IRSES MEALS (no. 295261).

References
[1] Clément Béra and Marcus Denker. Towards a flexible pharo

compiler. In Proceedings of IWST ’13 Workshop, 2013.

[2] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, and
Damien Pollet. Pharo by Example. Square Brackets Asso-
ciates, 2009.

[3] Eric Bodden. Stateful breakpoints: a practical approach to
defining paramterized runtime monitors. In Proceedings of
ESEC/FSE ’11, pages 492–495. ACM SIGSOFT, September
2011.

[4] Rick Chern and Kris De Volder. Debugging with control-
flow breakpoints. In Proceedings of AOSD ’07, pages 96–106,
2007.

[5] Andrei Chis, Oscar Nierstrasz, and Tudor Girba. Towards a
moldable debugger. In Proceedings of Dyla ’13, 2013.

[6] Marcus Denker. Sub-method Structural and Behavioral Re-
flection. PhD thesis, University of Bern, 2008.

[7] Jorge Ressia. Object-Centric Reflection: Unifying Reflection
and Bringing it back to Objects. PhD thesis, University of
Bern, October 2012.

[8] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. Object-
centric debugging. In Proceedings of ICSE ’12, pages 485–
495, June 2012.

[9] Fred Rivard. Smalltalk: a reflective language. In Proceedings
of REFLECTION ’96, pages 21–38, April 1996.

[10] Chris Seaton, Michael L. Van de Vanter, and Michael Haupt.
Debugging at full speed. In Proceedings of Dyla ’14, pages
1–13, June 2014.

[11] Toon Verwaest, Camillo Bruni, Mircea Lungu, and Oscar
Nirstrasz. Flexible object layouts: enabling lightweight lan-
guage extensions by intercepting slot access. In Proceedings
of OOPSLA ’11, October 2011.

[12] Haihan Yin, Cristoph Bockish, and Mehmet Aksit. A pointcut
language for setting advanced breakpoints. In Proceedings of
AOSD ’13, pages 146–156, March 2013.

6 2014/10/27

	Introduction
	Motivation
	Background: Manual Breakpoints in Pharo
	Problems

	SmartBreakpoints
	SmartBreakpoints in Action
	Scoping with Reified Breakpoints
	Avoiding Infinite Recursion

	Implementation
	Our Cornerstone: Reflectivity
	SmartBreakpoints and Reflectivity
	Specialized Breakpoints

	Related Work
	Conclusion and Future Work

