
A New Generation of CLASS BLUEPRINT
Accepted at VISSOFT 2022

Nour Jihene Agouf1, Stéphane Ducasse2, Anne Etien2, Michele Lanza3

1: Arolla and Univ. Lille, CNRS, Inria, Centrale Lille
2: Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL — 3: Software Institute, USI Lugano, Switzerland

Abstract—In object-oriented programming, classes are the pri-
mary abstraction mechanism used by and exposed to developers.
Understanding classes is key for the development and evolution
of object-oriented applications. The fundamental problem faced
by developers is that while classes are intrinsically structured
entities, in IDEs they are represented as a blob of text. The
idea behind the original CLASS BLUEPRINT visualization was to
represent the internal structure of classes in terms of fields, their
accesses, and the method call flow. Additional information was
depicted using colors. The thus created visualization proved to be
an effective means to support program comprehension. However,
a number of omissions rendered it only partially useful.

We propose CLASS BLUEPRINT V2 (in short BLUEPRINTV2),
which in addition to the information depicted by CLASS
BLUEPRINT also supports dead code identification, methods
under tests, and calling relationships between class and instance
level methods. In addition, BLUEPRINTV2 enhances the under-
standing of fields by showing how fields of super/subclasses are
accessed. We present the enhanced visualization and report on a
first validation with 26 developers and 18 projects.

Index Terms—Visualization, program comprehension, code
quality.

I. INTRODUCTION

Understanding application logic is a time-consuming task
during maintenance and software evolution. Researchers report
that over half of the maintenance time is spent on reading and
understanding source code [1], [2],where developers pore over
source code, looking for clues that help them to construct
a coherent mental model of a system [3], so as to make
appropriate changes while ensuring its quality [4]–[6].

This is a difficult undertaking for any programming lan-
guage, however maintaining and monitoring the quality of
an object-oriented system is more complex than for pro-
cedural programs [7], [8], due to several reasons, such as
inheritance and polymorphism [9]–[12]: Inheritance and poly-
morphism increase the flexibility of programs by allowing
dynamic binding of messages. Inheritance allows the extension
of an existing behavior through an inheritance hierarchy;
polymorphism the performance of a task in multiple forms,
with different objects responding to messages with the same
name but different implementations. What can and should be
considered a strength of object-oriented languages de facto
hinders program comprehension [11], [12]. Dynamic binding
of messages leads to more complex traceability of the call flow
of a program since the type of the object receiving the message
is determined at runtime. To follow the call flow of a program,
developers proposed several approaches, including integrated
development environments (IDE) and debuggers [13].

However, the usage of such tools is often too fine-grained,
and thus time-consuming. Software visualization can provide
a graphical view of a piece of software rather than a sequence
of source code text. To this end, researchers proposed several
visualization approaches, both in 2D [14] and 3D [15], [16].
Lanza and Ducasse [17] proposed the CLASS BLUEPRINT
visualization to help developers get a “taste” of the class.
CLASS BLUEPRINT presents the internal structure of classes
in terms of fields, their accesses, and the method call-flow.
Additional information was represented using colors. The
authors classified classes based on their internal structure [18].
Regardless of its effectiveness, it did not display some up-to-
date properties of object-oriented programming.

We present BLUEPRINTV2, an extension of the CLASS
BLUEPRINT visualization based on updated requirements for
program understanding. This approach discerns it from other
(visualization) techniques that focus on views of sequential
text, by offering a technical portrayal of the class per se.
BLUEPRINTV2 supports the identification of dead code (single
and branch), methods under tests, and call flow between
instance and class (static) methods. It also enhances fields
understanding by showing how fields of super/sub-classes are
accessed, as well as lazy initialization in a compact form.
In addition to hook understanding from a superclass point of
view. After detailing the principles behind BLUEPRINTV2, we
discuss its in-vivo validation with developers.

II. LIMITS OF CLASS BLUEPRINT

The CLASS BLUEPRINT visualization was created to help
developers understand class structures [17], [18]. It decom-
poses classes into layers representing the invocation sequence
going through external, internal, and accessor methods. This
decomposition into layers organizes the method call-graph,
and allows one to see which attributes are accessed by which
methods, directly or through their accessors (see Figure 1).

CLASS BLUEPRINT has a number of limitations:

1) Tests: does not show whether a method is covered by
a test: When CLASS BLUEPRINT was initially devel-
oped, continuous integration, version control, and tests
were not common development practices. Hence, CLASS
BLUEPRINT did not take into consideration test classes
or test methods. Today, tests are the gate towards a better
and faster understanding of the software and ensure
software robustness. Easily distinguishing tested and
untested methods is an important view of a class.



Fig. 1. A class blueprint from [18] with 5 layers: initialization, interface,
internal implementation, accessor and attribute.

2) Dead Code: It does not heed dead code, i.e., if a
method is used or not: CLASS BLUEPRINT represents
all methods of a class; even if these methods are dead.
However, dead code hinders the understanding of classes
[19], [20]. Yamashita et al., report that dead code
detection is desired by software professionals [21]. It
avoids project practitioners to waste time on reading,
understanding, and maintaining irrelevant code [22]. The
previous version of the CLASS BLUEPRINT did not
identify nor separate dead code from the used code.
As such it misses an opportunity to provide information
about effective class functionality.

3) Instance vs Static: The interplay between instance and
class side (static) is not well supported. This is because
all methods are classified into four layers only, conceal-
ing the details about such property in the class structure.

4) Cyclomatic Complexity: A method cyclomatic com-
plexity is not revealed: Beside lines of code, CLASS
BLUEPRINT gave limited information about the code
quality such as method complexity [23], [24]. The
cyclomatic complexity measures the number of linearly
independent paths of a method [25]. It is of interest to
practitioners responsible for the maintenance activities
since methods with high cyclomatic complexity tend
to be more difficult to understand and thus to test and
maintain.

5) Layer: The accessors layer takes an unnecessary amount
of space for a poor return of information. This layer
covers the direct accesses of methods to attributes since
the connection from a method layer to an attribute layer
passes by the accessors layer.

6) Hooks: The reader has no clue if a given method is
a hook in the system (being already defined in the
subclasses), and in general CLASS BLUEPRINT largely
disregarded the inheritance context. CLASS BLUEPRINT
did provide an inheritance perspective to highlight the
inheritance relationships of a given class with its an-
cestors and descendants: The class blueprints of the
different classes of the hierarchy are gathered inside
a single visualization. They are linked through inheri-
tance, but also access, when methods of the subclasses
use attributes defined in a superclass or invocation in
case a method of a subclass, invokes one inherited

method for example. In practice, this representation
with several CLASS BLUEPRINT visualizations leads to
complex visual elements and makes the understanding
more challenging.
Moreover, on the one hand, CLASS BLUEPRINT suc-
ceeded in conveying the information about method re-
definition, using colors to distinguish between extending
and overriding methods. On the other hand, the CLASS
BLUEPRINT failed to stress out the methods redefined in
the subclasses (overridden methods). Such information
is important as it indicates the redefined methods and
shares the global interior structure of the class and its
relation with its subclasses. Spotting overridden methods
allows the user to detect interface classes defining a
generic behavior. This makes it easy for developers to
understand the hierarchy from the studied class without
having to read the source code of each and every
subclass.

Our goal was to make up for all the above limitations,
proposing a revisited and modern class blueprint visualization.

III. CLASS BLUEPRINT V2

As its ancestor, BLUEPRINTV21 focuses on individual class
structure visual representation. It supports the understanding
of each class separately. The focus is put on methods call-
graph and how methods access to the studied class attributes
in addition to the superclass attributes. Methods and attributes
are represented as nodes whose color maps some semantic in-
formation. In addition, the node size conveys some properties:
The height of a method node reflects the number of lines of
code, and the width the number of outgoing invocations. As
for the attributes, the node height corresponds to the number
of direct accesses from methods within the class, the width
concerns the number of external accesses from methods of
the same hierarchy of classes. To ease the understanding,
methods are positioned in different columns depending on
their interactions with methods of other classes, or their nature
(such as initializer, internal, getter, etc). BLUEPRINTV2 adds the
following features (see Figures 3 & 4):

• Static (or class side) entities are now displayed. They
are placed in a dedicated area on top of the visualization
and separated from the instance side methods. The calls
between the class and instance sides are represented.
Class attributes are also represented in a distinct area in
the top right corner.

• Dead branches are identified and separated in a specific
layer at the bottom of the visualization (the cemetery).
Dead attributes as well as their accessors are also sepa-
rated at the bottom right corner.

• Getters and setters are merged into annotations around
attributes to gain space. In addition, lazy initializers are
handled as a kind of accessor.

1The link to the GitHub repository of the visualization can be found here:
https://github.com/NourDjihan/ClassBlueprint. All the instructions on how to
use the visualization are explained in the Readme.



• Superclass state usage: access to superclass attributes is
represented in a separated area on top of the one of
instance side attributes layer. Accesses to superclass state
from local methods are represented.

These points are described in the following subsections.

A. Layers

As its ancestor, BLUEPRINTV2 classifies methods in differ-
ent layers represented in columns.

a) Vertical Layers: First, on the left, the initialization
layer gathers the methods responsible for object creation and
initialization (e.g. initialize methods in Pharo and constructors
in Java). Then comes the external layer containing methods
that compose the external interface of the class. Such methods
are either invoked by methods of the initialization layer or
declared public or protected in languages supporting modifiers,
or invoked by methods outside the class. In third comes the
internal implementation layer representing the core of the
class, i.e., methods that are not supposed to be exposed to the
outside of the class. It contains for example private methods
or methods invoked by other methods of the same class. We
removed the accessors layer: the setter and getter methods are
on top and below their attribute, respectively (see Figure 2).
It compacts the visualization without losing information: the
developer can, at a glance, see if the attribute has a getter or
a setter, is directly accessed, or is used through its accessors
(if present).

Attribute
Node

Setter

Getter

Method Node 

Outgoing invocation

LoC

(a) (b)

Test covered
Border Thickness: 

definition frequency

Border Color: 
Cyclomatic complexity

Node Color: 
Method / Attribute 

property Hierarchy accesses

Method 
annotation

Class accesses

Fig. 2. Sketch of nodes: (a) For methods, size, border thickness and color
convey information. (b) For attributes, size and color.

b) Horizontal Layers: In addition, in BLUEPRINTV2 the
visualization has been split into 3 horizontal layers.

The top layer corresponds to the class side (static in Java). It
gathers on the left the methods connected within a call-graph
and on the right the class side attributes. In Java, the class
side is specified with the static keyword. In Pharo, these are
the entities of the metaclass.

The bottom layer corresponds to dead code. Once again,
methods and attributes are separated (methods on the left,
attributes on the right). It is possible to see a call-graph in
the dead code layer. Indeed, a method is considered dead if
it is not called in the project or if it is called only by dead
methods. Consequently, dead branches can also be identified.
This definition of dead code may lead to false positives, in
particular in the case where API methods are called by external
projects, not under analysis.

The middle layer corresponds to instance side methods and
not dead code. It follows the vertical layer decomposition.

Initialization Layer

Dead Method Layer

External Layer Internal Implementation 
Layer

Attribute & 
Accessor
Layer

Dead 
Attributes

Class Side 
Attributes

Superclass
Attributes

Class Side Method Layer

Fig. 3. Layout of CLASS BLUEPRINT V2: class level is on the top, instance
level in the middle and dead entity on the bottom. The middle layer presents
information via layers.

Initialization Layer

Dead Method Layer

Internal Implementation Layer Attribute & Accessor Layer

Class Side Method Layer

Dead Attributes

External Layer

Superclass Attributes

Class Side Attributes

Fig. 4. A colorless BLUEPRINTV2 with the graphical representations of
methods, attributes, and accessors using height and width metrics. The arcs
represent calls between methods and accesses to attributes.

B. A class inside a hierarchy

BLUEPRINTV2 puts the studied class in the perspective of
its hierarchy. For this purpose, first, the inherited attributes are
separated from the ones defined in the studied class and put
in a different layer than the local attributes layer. In addition,
attributes accessed by at least one method in the subclasses of
the studied class are colored in dark green whereas the other
ones are colored in dark blue. This allows developers to see
how the class is using a superclass state and if their state is
directly used in subclasses.

Second and as in the initial CLASS BLUEPRINT visualiza-
tion, extending methods (performing a super invocation) are
colored in orange and overriding methods (method redefinition
without super invocation) are colored in brown. In addition,
in BLUEPRINTV2 we introduced a color to spot overridden
methods (e.g., methods redefined in subclasses) are colored
in pale orange. This information gives an idea of how the
methods of the class are extended. In addition, to indicate
if an abstract method is redefined in the subclasses, they are



marked with a pale orange square (In Pharo, classes may have
abstract methods not redefined in the subclasses, moreover
even concrete ones).

C. Additional Indications

In addition to the extensions presented above,
BLUEPRINTV2 introduces other new features:

• Cyclomatic complexity. To complement the Lines of Code
and fan-out of the method, we indicate the method with
high cyclomatic complexity by coloring their border in
red. Indeed when a method has a cyclomatic complexity
higher than a given threshold fixed to five in Pharo, its
border color is red.
The thresholds have been defined following JIT compiler
practices [26]–[28]. They can be changed if needed as
discussed in Section V-D.

• Tested methods. To easily identify if a method is called
from a test method, in BLUEPRINTV2, tested method
nodes have their superior third in green. Note that we
only use static information: it does not indicate whether
the associated test passes or not.

• Dead entities. An attribute is dead if it has no incoming
accesses, meaning that no external/internal method or
accessor is accessing it. A method is considered as dead
if the method is not invoked by other methods. Note that
an abstract method is dead only if the method itself is not
called and none of its reimplementations in the subsystem
are invoked. In addition, initialization and test methods
are not considered dead methods to limit false positives.

Properties Description
Constant Gray
* Dead code (attributes or methods) Black
* Invoked from a test Green annotation
Extending Orange
Overriding Brown
* Overridden Pale orange
Abstract Cyan
* Abstract and Reimplemented Inside pale orange square
Delegating Yellow
Internal Implementation Purple
* Test Method Pink
Setter or Getter Magenta
* Lazy Initializer Olive
Accessed locally Blue
* Accessed by subclass Green

TABLE I
METHODS AND ATTRIBUTE PROPERTIES. * MARK NEW COMPARED TO

CLASS BLUEPRINT

D. Interactions

BLUEPRINTV2 is automatically computed and displayed for
a class. It is an interactive visualization which is included in
a tool to enable interactions.

a) Access to the code: A classic mouse hover displays
the method name as depicted in Figure 5-(B). This example il-
lustrates the event of a mouse hovering a method node colored
in white in the externals layer named treatString. Additionally,

a Shift pressed with a mouse hover displays the method corre-
sponding code. Figure 5 illustrates three examples annotated
with (A), (C), and (E) displaying the source code of methods
contained in each class. The StartStopMarkupBlock-(A) visu-
alization shows the source code of an overridden class side
method named isAbstract. The PhraseLibrary-(C) class presents
the source code of the phraseFor: delegating method colored
in yellow. Finally, the AuthorFocusedDocBuilder-(E) class with
the source code of an abstract initialization method colored in
cyan named extension.

b) Call-graph: To better follow the call-graph, a left-
click on a method displays in red its outgoing invocations
as shown in Figure 5-(D). The InlineParser class visualization
shows the outgoing calls from the linkOrFigureProcess: method
(with red border) to three methods in the same internal
implementation layer, and its access to most attributes of
the instance side (eleven attributes). These remain red until
clicking again on the selected method. Thus clicking on
another method adds new invocations in red and so on. It
enables the user to better see and understand the call graph of
the studied method in the scope of the class.

Similarly, it is possible to highlight the incoming invocations
of a method with a right-click as shown for the location-
MonthYear method in Figure 5-(D) (second purple method of
the first branch on the left of the class side methods). The
incoming invocations of a method and the calling methods are
highlighted in green. Adding new methods in the call graphs
and deactivating is also possible.

IV. BLUEPRINTV2 IN PRACTICE

This section presents some examples of the BLUEPRINTV2.
Each example calls attention to the internal structure of the
class visualizations depicted in Figure 5. The visualizations
are grouped in one figure to gain space and to easily compare
different class structures since the visualizations are put close
to each other. Each visualization is annotated with a letter to
ease reference hereafter.

A. A simple class

The visualization of the StartStopMarkupBlock class (from
Microdown project) shows that it has few methods. An initial-
ization method is colored in orange showing that it extends
its super implementation. It has a thick border because it
is a megamorphic2 method called initialize. Three overridden
methods are colored in pale orange on the class side, external
and internal implementation layers. Two overriding methods
are colored in brown each defining a new behavior in the
externals layer. Moreover, two abstract methods colored in
cyan with a pale orange square indicate the presence of
reimplementations in the subclasses. The class contains a dead
method colored in black at the bottom of the visualization.
Only three methods are under test (as identified by the green
node annotation).

2A megamorphic method is a method frequently named in the system i.e.,
several methods have the same name.



(A): StartStopMarkupBlock (Microdown)

(F): SnippetFactory (Microdown)

(C): PhraseLibrary (Citezen)

(D): InlineParser (Microdown)

(B): FileFormatGenerator (Citezen)

(E): AuthorFocusedDocBuilder (Citezen)

Fig. 5. Some examples of BLUEPRINTV2 on Citezen (a bib library) and Microdown (a markup language).

The class also contains three attributes each with both
accessors however, these attributes are all accessed directly
from the class methods without using their accessors, and
colored in green meaning that they are accessed directly in
the subclasses. Furthermore, the second attribute has a setter
on top, colored in black indicating that the setter is not used
in the class nor by methods of other classes, thus is dead. The
other accessors are colored in magenta meaning that they are
used by methods of other classes.

B. A class defining and redefining hooks

The FileFormatGenerator class (from the Citezen project)
specializes in several superclass methods: it includes four
methods extending an inherited behavior colored in orange and
nine methods in brown overriding their superclass methods.
Moreover, the class provides 13 new methods colored in pale
orange overridden in the subclasses. With such data, we see
that the class integrates well with its superclass and defines
some important methods for its subclasses. Only two methods
are tested (as indicated by the green annotation). The class

accesses directly two attributes of its superclasses. One of its
attributes (colored in green) is heavily used by its subclasses.

C. A static class: Playing a kind of factory/builder

The PhraseLibrary class from the Citezen project has an
unconventional design. Most of its methods are defined on the
class side. It acts as a kind of object factory composing kind
of sentences. The PhraseLibrary has two instance side methods
in the externals layer colored in yellow delegating to the class
side methods for creational purposes. An example of a lazy
initializer is depicted in the PhraseLibrary class visualization:
the first attribute of the class side (on top), colored in olive
under the attribute. The lazy initializer has no incoming calls
inside the class however, its olive color indicates its use in
other classes.

D. A large internal class with dead code

Classes such as the MicInlineParser class are referred to
as Single Entry [18], indicating that the class has one or
few entry points from its externals layer and a wide internal



implementation layer, in this case, composed of 22 methods
and many invocations between these methods. Such classes
are designed to deliver a one-complex functionality.

Yet, what draws attention to this class are the dead meth-
ods at the bottom layer of the visualization. Indeed, three
methods inside this class are not invoked and not used in the
project. Since dead code, when executed, is memory and time-
consuming, this leads to believe that the class needs refactoring
to improve its readability internally and reduce its complexity
in the wholeness of the program.

E. Accessing superclass state

The AuthorFocusedDocBuilder class does not have class side
nor dead nodes. Thereby, the call-graph of the methods inside
the class appears clearly going from the left initializers, pass-
ing by the externals, the internals, and finally the attributes.
This class contains many colored nodes, for instance in the
initialization layer, a method colored in orange extends its
superclass method and has direct access to both attributes of
the class.

The externals layer contains a complex big method buildBody
colored in brown with a red border, which directly accesses
most attributes of the class except for the superclass attribute
fieldOrder, and the instance side of attribute bodySpecification
accessed through its getter. Such a case of direct access and
through the accessor in the same class shows inconsistency in
the design of the class. Nonetheless, the superclass attributes
are all accessed by methods of the subsystem, hence their
green color. The width of the first four superclass attributes
gradually changes forming a cascade shape, this indicates
which attribute is more accessed by methods of the subsystem.

F. A factory class with tested methods

Finally, the SnippetFactory class has an externals layer with
120 methods. This class is a holder of a ready to be used
document elements that are essentially used by tests.

The externals layer contains constant methods in gray
returning each predefined value and methods colored in white,
meaning that they do not belong to the classifications defined
in Table I. Such methods contain a small portion of source
code, hence their small size where each is performing an
operation and returning its result.

Moreover, almost all methods of the externals layer are
annotated with green on top indicating that each is called by
at least one test method. This class also has dead methods
(bottom layer). Such dead methods are methods returning
document elements that are not used by the tests. They are
effectively dead methods.

V. EVALUATION

This section explains the process of the evaluation of
the BLUEPRINTV2. We proceeded with both qualitative and
quantitative evaluations. Such evaluations try to answer the
following research questions:

• How does the visualization support the understanding of
the class structure?

• How does the visualization help in assessing the quality
of the class?

• How satisfied are the different profiles of participants with
the proposed visualization?

A. Protocol

We invited developers from the Pharo community to partici-
pate in our research: We sent an email welcoming participants
that would be interested in evaluating a new visualization.
Twenty six developers joined our evaluation. Then, to ex-
plain and guide the participants through the experiment, we
scheduled both group and individual meetings according to
the participants’ availabilities. If several participants were
available at the same time we proceeded with a group meeting.
On the opposite, we scheduled individual meetings. During
those meetings, we first explained the visualization and its
motivations, then described to the participants the process of
the experiment:

1) Select a project they wish to analyze
2) Use the visualization on the selected project
3) Record their screen during the experiment
4) Write a report summarizing their findings
5) Fill the post-experiment survey

The meetings took from 10 minutes when individually, to 25
minutes in groups. This difference is principally due to the
adaptation of the tool to the chosen project and the possible
interactions between participants while in groups. Nonetheless,
the content was the same for each participant.

a) Projects: The selected projects vary in number of
packages, classes and methods. Table II summarizes this vari-
ety in projects. The same project could have been analyzed by

#Project #Pkges #Classes #Median
Methods

Domain

Avatar 2 18 6 Proxy
Sindarin 3 18 14 Debugging
MoTion 2 35 5 PM
Clap 5 47 8 Parsing
Slang 2 73 29 VM
Polyphemus 3 79 9 VM
AST-Core 3 101 21 DSL
Reflectivity 5 114 13 DSL
OpalCompiler 3 156 15 Compiling
Druid 1 170 12 VM
Seeker 2 236 9 Debugging
MooseIDE 16 250 8 Analysis
Polymath 60 309 11 Computing
Refactoring 12 378 6 Refactorings
AIPharo 85 424 6 AI
Roassal 39 445 12 Visualization
Iceberg 11 488 10 VCS
fylgja 73 941 15 Migration

TABLE II
THE NUMBER OF PACKAGES AND CLASSES IN EACH PROJECT, AND OF

MEDIAN METHODS IN EACH CLASS, IN ADDITION TO PROJECT DOMAINS.
IN THE TABLE, THE ORDER IS DESCENDING ACCORDING TO THE NUMBER

OF CLASSES IN EACH PROJECT. THE ABBREVIATIONS REFER TO VM
(VIRTUAL MACHINE), VCS (VERSION CONTROL), PM (PATTERN

MACHINE), DSL (DOMAIN-SPECIFIC LANGUAGE).



more than one participant. For example, Iceberg was analyzed
by two participants, MooseIDE by three, and OpalCompiler
by two.

b) Participants: The participants of the experiment come
from diverse backgrounds and have different statuses: interns,
PhD students, developers and researchers. Consequently, their
years of experience in programming also vary. Six participants
have between [1-5] years of experience. Nine participants
between [6-10] years of experience. Two participants have 14
and 15 years of experience each, and nine participants have
over 20 years of experience.

In regards to the projects, the participants either used these
projects before, developed them or are responsible for their
maintenance. The expertise degree of the participants on
the selected projects is let to their own appreciation. The
survey showed that only 10% of the participants consider
themselves newbies to the selected project, while 35% had
some basic knowledge about the source code. Another 10%
of the participants with advanced knowledge of the project and
finally 45% of the participants are project experts.

B. Data Collection

Once we received the data (screen records, reports and
survey filled by all participants), we watched the screen
records looking for participants’ behavior. Particularly, a focus
has been put on (i) the participant’s first impression in regards
to the visualization, (ii) the most used features of the tool and
(iii) if other tools have been used besides the BLUEPRINTV2
and what they are. We then, read the reports to have a better
insight into their actual impressions and findings. Finally,
we collected both data from the reports and the survey as
explained in the next section.

C. Data Analysis

As mentioned prior, the evaluation of the BLUEPRINTV2
consists in two parts: qualitative and quantitative. The qualita-
tive evaluation is based on the screen records and the reports
sent by the participants. The quantitative evaluation is built
upon the post-experiment survey.

a) Qualitative evaluation: When observing the screen
records of the participants, it was brought to our attention
that participants instinctively followed two complementary
approaches: Flight over and Plunge in.

Flight over: The flight over consists of quickly navigating
the visualizations of the classes one by one. It allows the
user to visually detect the important classes and the less
important ones based on the amount of information held by the
visualizations (nodes and colors). It also allowed some users
to detect:

• Empty classes: without methods nor attributes;
• Big classes: with lots of methods;
• Complex classes: with methods with high cyclomatic

complexity i.e., method nodes with red border;
• Class-side methods: with a considerable amount of

method nodes placed in the class side layer;

• Hook classes: with noticeable hook nodes colored in pale
orange;

• Dying classes: with several dead methods, or attributes,
positioned at the bottom of the visualization;

• Tested classes: with tested methods i.e., the green anno-
tation in method nodes. More specifically, here, it is the
proportion of tested methods that have been appreciated
by the participants.

Plunge in: The plunge in consists of focusing on some
classes for further investigations. This provides the user with
a more in-depth analysis of the class internal structure, and
the possibility to use more helpful interactions with the visu-
alization such as the shift + mouse hover to quickly view the
source code of the methods.

• Code duplication: some duplicated code was detected by
several participants when method nodes have the same
size and color, inside the same class or in other neighbor
classes.

• Complex classes: most participants reported finding com-
plex methods inside classes due to the size of the nodes
or the red border color. They intend to divide them into
small blocks of source code.

• Dead method analysis: some participants were surprised
to find many dead methods. Such an outcome motivated
them to inspect the senders of the “dead methods” using
other tools than the visualization, (e.g., system browser
and cross-referencer).

• Dead code detection: the detection of dead code was also
surprisingly possible due to the length of the method
nodes. One of the participants investigated long meth-
ods relatively used in his studied system and found a
few which contained internal dead code which was not
removed.

• Commented methods: some participants identified pecu-
liarly long methods but not necessarily complex. Then,
when navigating the source code of the method nodes
(through a mouse hover), participants found that the
length of the method node in fact reflects the long com-
ment inside the method definition. One of the participants
suggested adding an annotation at the bottom of the
method node (since the top might be full with the test
annotation), to demonstrate the presence of a comment.
b) Quantitative evaluation: Participants were asked to

answer a post-experiment survey to give feedback about the
visualization using a five Likert scale. We asked the partici-
pants if:

• The visualization helps in understanding the code/state
of a class is reused: Most participants (46%) answered
that they agree on this point, while others (15%) strongly
agreed. However, over 23% said that they disagree, and
15% were undecided.
Some participants in their reports mentioned that they
appreciated the feature of adding the superclass attributes
in the visualizations. This helped them understand which
attributes of the superclass are used in the class under



analysis, and which methods are accessing them. Such a
feature also reduces the time spent on understanding the
relation with the superclass.

• The visualization helped in understanding the reused code
from the superclasses: Over half of the participants (53%)
were undecided, where 19% disagreed, 23% agreed, and
3% strongly agreed. Because some projects did not use
inheritance, hence the visualization was not answering to
this question which justifies the amount of indecision in
this case.

• Did the visualization help in understanding class/instance
side communication: Over 53% answered that they agree,
and 19% strongly agreed. Other participants of 19%
answered that they were undecided about this point, and
a few percentage of 7% answered that they disagree.
We believe that the classification of the class side methods
on top and the instance side methods in the middle
reduces the cumbersome of links between method nodes
in the middle layers. Moreover, the participant who
analyzed the Microdown project mentioned: “The Mic-
AbstractDelimiter class shows the nice interplay between
class and instance side methods”.

• Is the design of the class well summarized in the visu-
alization: Over 7% and 38% of the participants strongly
agreed, and agreed, respectively. Among the participants
over 30% were undecided and 23% disagreed.
This is also understandable because the visualization
summarizes the structural relationships and not the design
of the class itself. In some cases, indeed the design is well
shown for instance visitor classes, factory classes, and
builder classes, etc. But not all design is reflected by the
class blueprint. Nonetheless, one participant mentioned:
“I was able to follow for each method clearly what are the
methods of the same class that are injected inside of it”,
referring to the outgoing invocations between methods.

• Does the visualization hep in detecting dead code? Over
26% and 46% of the participants answered that they
strongly agree and agree, respectively. However, 11%
answered that they strongly disagree, 3,8% just disagree,
and another 11% were undecided.
All participants reported finding dead code in their
projects. The participants who analyzed the same projects
on the one hand found the same dead methods and on
the other hand different dead methods. This is one of
the reasons which motivated us to agree on analyzing
the same project by two or three participants. Including
one participant who eventually refactored his code and
justified in his report: “The visualization also helped me
quickly identify dead code and eliminate it. As this is a
new project (early stage of development) I didn’t remove
all dead methods or classes, but in other kinds of projects
I would do it”. Another participant expressed: “Dead
methods correspond mostly to unused code that I forgot
to remove”.

• The visualization helps in detecting complex methods:
Almost all participants appreciated this feature, including

46% who strongly agreed and 38% who agreed to this
assertion. The other participants were 11% undecided, 3%
did not agree. The participant responsible for maintaining
the Roassal project mentioned and we cite: “With the
height representing the lines of code and with the red
border. It was easy to find the complex methods in this
class. This is an anomaly because they are long examples
that maybe should be split into classes”. He found long
complex methods that represent examples of how to use
Roassal.
When reading the reports not all participants found com-
plex methods in their projects, which might explain such a
decision. However, several others mentioned the presence
of complex methods in their projects, including some who
consider investigating the complexity of such methods for
correction purposes.

• The visualization helps in identifying tested/untested
methods: Over half of the participants also appreciated
this feature, including 34% who agreed and 34% who
equitability strongly agree. The other 19% were unde-
cided and only 7% disagreed and very few of 3% strongly
disagreed.
Some participants in their reports mentioned that the
visualization helped them identify the weak spots (not
tested methods) in their source code, which they intend to
reinforce. The Microdown participant found this feature
useful and we quote: “In the MicHTMLDoc class we could
exclusively see the tested and untested methods”.

• The visualization is scalable for large classes: Among
the participants, 3% strongly agreed, and 42% agreed that
the visualization was scalable for their classes. The other
30% were undecided, 15% disagreed, and 7% strongly
disagreed.
This question is also relative to the project (in case
the project contains big classes), hence the diversity of
answers. As with any visualization including nodes and
connections between those nodes, the bigger the class
is the harder it becomes to display all the pieces of
information at once with a clear classification of the
layers and connections between the nodes. Nonetheless,
other participants found that the classification of the
methods on the right and attributes on the left in big
classes helped them to (i) better see the attributes and
(ii) more clearly identify the access to these attributes,
and (iii) better distinguish the class side methods.

• The visualization is easy to use: Three-quarters of the
participants (76%) agreed that the visualization was easy
to navigate and 15% strongly agreed. For the disagreed
participants of 7%, the difficulties mostly come from the
first interaction with the visualization and how to start
using it.

• They would like to use the visualization in the future: Half
of the participants (50%) wish to re-use the visualization
in their future work and over 15% strongly agreed. Other
answers include indecision with 26%, disagreeing, and
strongly disagreeing with the same percentage (3.8%).



When looking for clues in the reports to understand
the reasons behind indecision and disagreement, it was
mostly because of big large classes. One of the partici-
pants who analyzed Iceberg reported that some classes
contained more than 120 methods with hundreds of
connections between method nodes.
Nonetheless, the most appreciated feature (mentioned in
all the reports) is the dead code detection. Others also
found very useful the interactions with the visualization
(mouse hover to see the name of the method, shift +
mouse hover to see the source code of the method, the
double click to open the method in the system browser,
the right-click to highlight the outgoing invocations and
left-click to highlight the incoming invocations). While
others found the colors very useful to have an understand-
ing of the methods inside its system and their relation
with the super/sub implementations.

D. Discussion

Very few participants reported finding dead attributes in
their projects. Furthermore, some participants reported finding
some false positives in dead methods. Such false positives
are often due to methods that belong to an API and that are
not called in the system under analysis. Other cases were in
extension3 methods from a package that itself is not part of
the analysis.

Finally, the absence of the green test annotation in method
nodes allowed users to consider reinforcing tests in these
parts of the source code. Especially since tests measure the
confidence that certain features are adequately implemented.
Some participants reported missing tests meaning that their
projects were not as expectedly well covered by tests and
others added tests to cover such methods.

E. Threats to Validity

a) Internal Validity: To what extent we can draw a causal
link between the treatment in the experiment and the response?
Regarding the projects, they were selected by the participants
according to their previous experiences. The participants either
used or developed these projects before. They considered their
level of knowledge of the projects as debutants, intermediaries,
advanced, and experts.

The level of expertise in software programming has been
collected for each participant. Concretely, the expertise varies
from two to thirty years. Our experiment was not dedicated
to a specific audience but to diverse profiles. We want to
report that we performed a first attempt to evaluate the use
of the visualization to reverse engineer unknown software
with internship students (3rd year). Such an attempt was
unsuccessful since most of the students did not have enough
concerns about quality and good object-oriented design.

The project sizes vary from 18 to 941 classes. As explained
in Section V-C, most participants flight over the whole or lot

3In Pharo, a class can be extended by methods that are packaged in another
package than the one of the class.

of classes and only plunged in the classes they found worthy
of the analysis (important classes, big classes, etc).

Obviously, the answers depend on the project the partici-
pants choose and their expertise on the project or in software
programming. However, the diversity of the projects and the
diversity of experiences of the participants limit the threat of
internal validity.

b) External Validity: Are our results generalizable for
practice modernization? Even though the evaluation was only
based on Pharo projects, the visualization also supports Java
projects analysis. However, for this paper, we limited our
choice to only Pharo projects since we have easy access to
experts. We plan in future works to apply the visualization
on Java projects when we have the possibility to interact with
Java maintainers to better adapt the visualization or add new
features according to their feedback if needed. Nonetheless,
the approach itself can be applied to any object-oriented
program. For other programming languages such as C++ and
Python, the Pharo community does not have a parser yet.

c) Construct Validity: Are we asking the right questions?
The answers to the questions, presented in the quantitative
evaluation (Section V), may depend on the projects analyzed
by the participants and their expertise. Some projects do not
necessarily provide elements to answer all the questions. For
instance, some projects do not commonly use inheritance,
consequently, methods overriding, extending their super im-
plementations, and methods overridden in the subclasses may
be absent. Additionally, some classes do not have lots of
class side methods. Thus, it may be difficult to observe the
communication instance/class sides. However, we believe that
the number of participants as well as the diversity of the
projects and participants reduce the threats.

d) Reliability: To what extent can the results be re-
produced when the research is repeated under the same
conditions? The qualitative evaluation relies on the feedback
of users according to their projects. The anonymity does
not enable the reproduction of the research under the same
conditions. Furthermore, we also suggest that the results of
these evaluations vary with the projects and the experiences
of the users even if we did our best to reduce this point by
increasing the number and the diversity of users and projects.

Nevertheless, for reproducibility purposes, the tool and all
the artefacts used in the evaluations are available online. With
the tool, we provide full instructions on how to start using the
visualization in the Readme. The legend of the visualization
can also help the user through her navigation.

VI. RELATED WORK

The visualization proposed in this paper is a patrimony work
of the first CLASS BLUEPRINT presented by Lanza et al.,
in 2001. In CLASS BLUEPRINT [18], the authors classified
class methods into layers, where each method/attribute node
is characterized by a color and a size. They, however, missed
some important aspects in assessing software and detecting its
vulnerabilities.



Visualizations facilitate program comprehension because
they provide a graphical view of the software rather than
an alphabetical sequence of source code text. To this end,
researchers propose several visualizations, such as Hunter [29]
which focuses on understanding the dependencies between
software artefacts. In their article, Dias et al., use colors to
distinguish between file branches as well as the size of the
node which corresponds to the number of lines of source code
in each file. Such visual weight helps get an understanding
of the software components and their relations more easily.
Tamer’s et al., [30] propose a visualization to assess software
quality and the dependencies of composed-based JavaScript
React applications. Such visualizations also use the node-link
diagram to demonstrate the connection between software com-
ponents. Boccuzzo et al., present CocoViz [31], a visualization
inspired by daily life graphical elements (houses, spears, or
tables) to convey information about the program components
and the program vulnerabilities. However, these approaches
focus on web-application components and not object-oriented
programs.

Including visualizations that focus on object-oriented soft-
ware quality and comprehension, the SeeSoft [32] tool visual-
ization maps lines of code into thin rows, uses colors to display
information about the timeframe where the code has changed.
Scheibel et al., [33] propose a treemap visualization depicting
software data using areas, colors and nesting. Additionally,
Lanza’s et al., present CodeCrawler [14] that supports the un-
derstanding of program structure via polymeric views. Wettel’s
et al., present CodeCity [15] that displays software classes as
buildings and packages as the ground foundation on which
they are built [34]. Another city metaphor is the SArF map [16]
clustering technique, which groups together classes with the
same features on the same grounds, separated by a street
representing the relevance between these features. Sazzadul
et al., propose EvoSpaces [35] which is a similar approach to
the city metaphor but dedicated to C/C++ projects. It displays
the architecture and metrics of software in 3D to help quickly
understand the software under analysis and the relationship
between files. They also offer a night view which displays the
execution trace of the software. CityVR [36] is an interactive
3D visualization tool that implements the city metaphor tech-
nique using virtual reality. Another original metaphor for soft-
ware visualizations is Software Feather [37] which maps class
and interface metrics as feathers, one of its main purposes is
for users to apprehend to recognize which feather corresponds
to which class in the system. Another metaphor derived from
nature is Software Forest where Atzberger et al., [38] display
software as a forest by mapping properties of entities such
as the size and trend data. Furthermore, Ignacio et al., [39]
extend visualIDs as a glyph technique to cope with structural
software elements. The authors use them to identify classes
with the same dependencies and classes with a similar set of
methods. Moreover, Churcher et al., used 3D to visualize class
cohesion [40]. Wuerthinger et al., worked on a visualization
that focuses on the dependency graph of Java projects [41].
Daniel et al., [42] also worked on visualizing Java projects

but focusing on the incremental exploration of a project.
Dennie et al., [43] present another approach called SolidSX, in
contrast to the previous approaches, SolidSX offers a modular
analysis of the structure, dependencies, and metrics. Erdemir
et al., [44] offer E-Quality, a graph-based visualization that
extracts quality metrics and class relations from Java source
code and thus does not extract quality metrics of the class
body. Such solutions focus on the overall conceptual analysis
of the program, on which they succeed, hence overlooking
the deeper up-to-date analysis of class interior decor and
the relationship between its components. Finally, Anslow et
al., propose the SourceVis visualization platform which is
designed for multiple users supporting multiple visualization
types and displaying such visualizations on large multi-touch
tables [45]. SourceVis proposes a reimplementation CLASS
BLUEPRINT based on its original layers. Since BLUEPRINTV2
is an extension of CLASS BLUEPRINT, it could be introduced
also in SourceVis.

VII. CONCLUSION

Understanding classes is important since they are the key
abstractions in object-oriented programming. Object-oriented
programming late binding makes understanding more difficult
than procedural one. In particular, there is no specific reading
order that IDE could use to present information to developers.

CLASS BLUEPRINT [18] proposed a compact view of class
call-graph based on layers. In this article, we identified the
limits of CLASS BLUEPRINT and proposed a new version.
BLUEPRINTV2 supports dead code identification, methods un-
der tests, call-flow between instance and class (static) methods.
It enhances fields understanding by showing how fields of
super/sub-classes are accessed, as well as lazy initialization
in a compact form. It also supports hook understanding from
a superclass point of view.

We presented a first validation with developers. The evalu-
ation is two fold qualitative and quantitative. The qualitative
part enabled to highlight two complementary approaches to
use the proposed visualization. The Flight over consists of
quickly navigating the visualizations of the classes one by one,
with a generalized purpose in mind for the user. This approach
leads to the detection of some issues in existing classes or
highlight the need for deeper analysis when needed. The
Plunge in corresponds to this deeper analysis, like complex
class or dead code detection. From a quantitative point of
view, the feedbacks are mostly positive from the uses of the
visualization.

For future works, we plan first to introduce new features
such as annotating commented methods similar to the tested
methods annotation feature. In addition to highlighting if the
method test passes or fails. Secondly, we will evaluate our
visualization on projects written in Java and other object-
oriented languages.



ACKNOWLEDGMENT.

We thank Arolla4 for the funding of Nour J. Agouf’s
research, and all the participants for their availability and
willingness to perform our experiment.

REFERENCES

[1] I. Sommerville, Software Engineering, 6th ed. Addison Wesley, 2000.
[2] A. M. Davis, 201 Principles of Software Development. McGraw-Hill,

1995.
[3] M.-A. D. Storey, K. Wong, and H. A. Müller, “How do program

understanding tools affect how programmers understand programs?” in
Proceedings of the 4th Working Conference on Reverse Engineering.
IEEE Computer Society, 1997, pp. 12–21.

[4] T. A. Corbi, “Program understanding: Challenge for the 1990’s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[5] T. Gilb and D. Graham, Software Inspection. Addison Wesley, 1993.
[6] V. Basili, “Evolving and packaging reading technologies,” Journal

Systems and Software, vol. 38, no. 1, pp. 3–12, 1997.
[7] U. Dekel, “Applications of concept lattices to code inspection and

review,” Department of Computer Science, Technion, Tech. Rep., 2002.
[8] M. Lanza and S. Ducasse, “Understanding software evolution using a

combination of software visualization and software metrics,” in Pro-
ceedings of Langages et Modèles à Objets (LMO’02). Paris: Lavoisier,
2002, pp. 135–149.

[9] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[10] E. Casais and A. Taivalsaari, “Object-oriented software evolution and
re-engineering (special issue),” Theory and Practice of Object Systems
(TAPOS), vol. 3, no. 4, pp. 233–301, 1997.

[11] N. Wilde and R. Huitt, “Maintenance support for object-oriented pro-
grams,” IEEE Transactions on Software Engineering, vol. 18, no. 12,
pp. 1038–1044, Dec. 1992.

[12] A. Dunsmore, M. Roper, and M. Wood, “Object-oriented inspection
in the face of delocalisation,” in Proceedings of ICSE ’00 (22nd
International Conference on Software Engineering). ACM Press, 2000,
pp. 467–476.

[13] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 4, pp. 1–37, 2014.

[14] M. Lanza and S. Ducasse, “Polymetric views—a lightweight visual
approach to reverse engineering,” Transactions on Software Engineering
(TSE), vol. 29, no. 9, pp. 782–795, Sep. 2003.

[15] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-scale soft-
ware,” in Companion of the 30th international conference on Software
engineering, 2008, pp. 921–922.

[16] K. Kobayashi, M. Kamimura, K. Yano, K. Kato, and A. Matsuo,
“Sarf map: Visualizing software architecture from feature and layer
viewpoints,” in 2013 21st International Conference on Program Com-
prehension (ICPC). IEEE, 2013, pp. 43–52.

[17] S. Ducasse and M. Lanza, “The Class Blueprint: Visually supporting the
understanding of classes,” Transactions on Software Engineering (TSE),
vol. 31, no. 1, pp. 75–90, Jan. 2005.

[18] M. Lanza and S. Ducasse, “A Categorization of Classes based on
the Visualization of their Internal Structure: the Class Blueprint,” in
Proceedings of 16th International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’01). ACM
Press, 2001, pp. 300–311.

[19] M. Mantyla, J. Vanhanen, and C. Lassenius, “A taxonomy and an initial
empirical study of bad smells in code,” in International Conference on
Software Maintenance, 2003. ICSM 2003. Proceedings. IEEE, 2003,
pp. 381–384.

[20] A. M. Fard and A. Mesbah, “Jsnose: Detecting javascript code smells,”
in 2013 IEEE 13th international working conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 2013, pp. 116–125.

[21] A. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in 2013 20th working conference on reverse
engineering (WCRE). IEEE, 2013, pp. 242–251.

4https://www.arolla.fr

[22] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and K.-H.
Prommer, “How much does unused code matter for maintenance?” in
2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 1102–1111.

[23] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1995.

[24] M. Shepperd, “A critique of cyclomatic complexity as a software metric,”
Software Engineering Journal, vol. 3, no. 2, pp. 30–36, 1988.

[25] A. Watson and T. McCabe, “Structured testing: A testing methodology
using the cyclomatic complexity metric,” National Institute of Standards
and Technology, Washington, D.C., Tech. Rep., 1996.

[26] E. Miranda, “The cog smalltalk virtual machine,” in Proceedings of
VMIL 2011, 2011.

[27] ——, “Brouhaha — A portable Smalltalk interpreter,” in Proceedings
OOPSLA ’87, vol. 22, Dec. 1987, pp. 354–365.

[28] L. P. Deutsch and A. M. Schiffman, “Efficient implementation of the
Smalltalk-80 system,” in Proceedings POPL ’84, Salt Lake City, Utah,
Jan. 1984.

[29] M. Dias, D. Orellana, S. Vidal, L. Merino, and A. Bergel, “Evaluating
a visual approach for understanding javascript source code,” in 2020
IEEE/ACM 28th International Conference on Program Comprehension
(ICPC), 2020.

[30] H. Tamer, D. van den Bongard, and F. Beck, “Visually analyzing the
structure and code quality of component-based web applications,” in
2021 Working Conference on Software Visualization (VISSOFT). IEEE,
2021, pp. 160–164.

[31] S. Boccuzzo and H. Gall, “CocoViz: Towards cognitive software vi-
sualizations,” VISSOFT 2007. 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, vol. 0, pp. 72–
79, 2007.

[32] S. G. Eick, J. L. Steffen, and S. Eric E., Jr., “SeeSoft—a tool for
visualizing line oriented software statistics,” IEEE Transactions on
Software Engineering, vol. 18, no. 11, pp. 957–968, Nov. 1992, depth.

[33] W. Scheibel, M. Trapp, D. Limberger, and J. Döllner, “A taxonomy of
treemap visualization techniques.” in VISIGRAPP (3: IVAPP), 2020, pp.
273–280.

[34] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Proceedings of VISSOFT 2007 (4th IEEE International Workshop on
Visualizing Software For Understanding and Analysis), 2007, pp. 92–99.
[Online]. Available: http://dx.doi.org/10.1109/VISSOF.2007.4290706

[35] S. Alam and P. Dugerdil, “Evospaces visualization tool: Exploring
software architecture in 3d,” in 14th Working Conference on Reverse
Engineering (WCRE 2007). IEEE, 2007, pp. 269–270.

[36] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “Cityvr: Gameful
software visualization,” in 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2017, pp. 633–
637.

[37] F. Beck, “Software feathers figurative visualization of software metrics,”
in 2014 International Conference on Information Visualization Theory
and Applications (IVAPP). IEEE, 2014, pp. 5–16.

[38] D. Atzberger, T. Cech, M. de La Haye, M. Söchting, W. Scheibel,
D. Limberger, and J. Döllner, “Software forest: A visualization of se-
mantic similarities in source code using a tree metaphor.” in VISIGRAPP
(3: IVAPP), 2021, pp. 112–122.

[39] I. Fernandez, A. Bergel, J. P. S. Alcocer, A. Infante, and T. Gîrba,
“Glyph-based software component identification,” in Proceedings of the
24th IEEE International Conference on Program Comprehension (ICPC
’16), 2016.

[40] N. Churcher, W. Irwin, and R. Kriz, “Visualising class cohesion with
virtual worlds,” in APVis ’03: Proceedings of the Asia-Pacific sympo-
sium on Information visualisation. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2003, pp. 89–97.

[41] T. Würthinger, C. Wimmer, and H. Mössenböck, “Visualization of
program dependence graphs,” in International Conference on Compiler
Construction. Springer, 2008, pp. 193–196.

[42] D. T. Daniel, E. Wuchner, K. Sokolov, M. Stal, and P. Liggesmeyer,
“Polyptychon: A hierarchically-constrained classified dependencies vi-
sualization,” in 2014 Second IEEE Working Conference on Software
Visualization. IEEE, 2014, pp. 83–86.

[43] D. Reniers, L. Voinea, and A. Telea, “Visual exploration of program
structure, dependencies and metrics with solidsx,” in 2011 6th Interna-
tional workshop on visualizing software for understanding and analysis
(VISSOFT). IEEE, 2011, pp. 1–4.

http://dx.doi.org/10.1109/VISSOF.2007.4290706


[44] U. Erdemir, U. Tekin, and F. Buzluca, “E-quality: A graph based object
oriented software quality visualization tool,” in 2011 6th International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT). IEEE, 2011, pp. 1–8.

[45] C. Anslow, S. Marshall, J. Noble, and R. Biddle, “Sourcevis: Collabo-
rative software visualization for co-located environments,” in 2013 First
IEEE Working Conference on Software Visualization (VISSOFT). IEEE,
2013, pp. 1–10.


	Introduction
	Limits of Class Blueprint
	Class Blueprint v2
	Layers
	A class inside a hierarchy
	Additional Indications
	Interactions

	BlueprintV2 in Practice
	A simple class
	A class defining and redefining hooks
	A static class: Playing a kind of factory/builder
	A large internal class with dead code
	Accessing superclass state
	A factory class with tested methods

	Evaluation
	Protocol
	Data Collection
	Data Analysis
	Discussion
	Threats to Validity

	Related Work
	Conclusion
	References

