
Journal of Object Technology | RESEARCH ARTICLE

Understanding Class Name Regularity:
A Simple Heuristic and Supportive Visualization

Nour Jihene Agouf‡∗, Stéphane Ducasse∗, Anne Etien†, Abdelghani Alidra , and Arnaud Thiefaine‡

†Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
∗Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

‡Arolla, France

ABSTRACT Studies have shown that more than 50% of software maintenance time is spent reading code to understand it. This
puts a strong emphasis on the understandability of source code. Class names constitute one of the first pieces of information
developers have access to. Proposal: To assist developers in understanding the logic and regularity of class names, we
present a new and simple visualization, called ClassName Distribution. It brings together package and inheritance as structural
perspectives on class names. ClassName Distribution allows one to spot naming irregularities in large hierarchies scattered
over multiple packages. Validation: We show (1) how this visualization helps capture recurrent patterns relative to concept
reference in class names and (2) that this visualization supports the evolution of software systems by monitoring and guiding
class renamings over multiple versions. To evaluate our approach we did a consequent assessment with real practitioners and
open-source software structured in two different setups: in the first one, we asked domain experts to use the visualization: three
groups of engineers applied our tool to the the software they develop or maintain. They proposed and performed respectively
91, 68, and 24 class renamings. In the second setup, as authors of the visualization and the tool (visualization experts), we
applied our tool to a new UI framework for Pharo. We sent 34 pull requests for renaming classes and 32 were accepted. Finally,
we applied our visualizations to 50 Java projects and identified visual patterns in most of them. Consequently, it shows that
the proposed visualization is effective for spotting class name inconsistencies, and this by both developers of the system and
external persons.
The visualization presented in this article has been designed with colors, therefore the paper should be printed using an
adequate medium or be read digitally.

KEYWORDS class name, visualization, program comprehension

1. Introduction

Quickly grasping the overall purpose of a source code abstrac-
tion such as a class is a key concern for plain forward devel-
opment but also very important during maintenance tasks (De-
meyer et al. 2002; Antoniol et al. 2007; Newman et al. 2017;

JOT reference format:
Nour Jihene Agouf, Stéphane Ducasse, Anne Etien, Abdelghani Alidra, and
Arnaud Thiefaine. Understanding Class Name Regularity: :A Simple
Heuristic and Supportive Visualization. Journal of Object Technology. Vol.
21, No. 1, 2022. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2022.21.1.a2

Butler et al. 2009; Osman et al. 2012). The name of a class is
one of the first pieces of information developers have access to.

Many researchers have analyzed program identifiers (Liblit
et al. 2006; Abebe et al. 2009; Falleri et al. 2010; Alsuhaibani et
al. 2021) and some have focused on the analysis of class names
(Singer & Kirkham 2008; Butler et al. 2011b). For instance,
Osman et al. show through a survey that involved 32 developers,
that programmers estimate that good class names are among
the most important elements in class diagrams and good class
names improve comprehension (Osman et al. 2012).

In contrast, when a class is badly named, a developer may
have to check carefully its definition and analyze how it is

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.1.a2

related to its superclass. This often happens when using sub-
classing instead of subtyping (LaLonde & Pugh 1991). For
example, quickly understanding whether an abstraction is a
model or a view in an MVC triad is key to avoiding mistakes
or misinterpretations. Butler (Butler et al. 2009) shows that bad
identifiers affect code quality and are correlated to bugs.

Assessing whether a class is correctly named is a challenge
because class names may have been chosen for various rea-
sons such as refining a general concept, inclusion in a different
project, or adhering to a different naming convention. Ide-
ally, a class name should convey the concept and the role that
the class implements. In practice, however, classes get named
inconsistently because of language or cultural issues, lack of
conventions, violations of conventions, lack of tools to spot
irregularities, concept refinement, and overly long names (see
Section 2).

Helping understanding names in software is not new. Lawrie
et al. (Lawrie et al. 2007, 2006) carried out an empirical study
to assess the quality of source code identifiers. Their study
involved 100 programmers and indicated that full words, as
well as recognizable abbreviations, lead to better comprehen-
sion. More recently Liu et al. (Liu et al. 2019) proposed to
use machine learning to spot and refactor inconsistent method
names. Butler et al. (Butler et al. 2011b) worked on identifying
class name conventions and as such is close to our work. Yano
et al. (Yano & Matsuo 2015) presented a hierarchical solution
to label clusters in visualizations, using lemmatization of words
to describe each cluster. Their approach does not support the
understanding of class name inconsistencies.

Some simple tools already exist (e.g., Sonar1 or PMD2) that
check conventions such as: camel case convention, utility class
names not ending with “Util”, etc. but they are limited to
checking generic regular expressions, considering only a given
class and not its context (inheritance tree, package).

It may be possible to implement new rules such as the ones
defined in Section 2.6 to check class name inconsistencies. How-
ever, adopting the right level of local/global perspective and thus
determining which force between inheritance or package domi-
nates may be difficult in practice.

Consequently, we tackle this problem by offering developers
a new visualization, named ClassName Distribution, that helps
them identify suspicious patterns and class name irregularities.
A visualization can offer both a local view inside a package,
while providing a global view, all along the hierarchies inside
the whole project. Moreover, a visualization helps one to detect
inconsistencies but without posing a definitive judgment as a
rule violation. The proposed visualization helps to answer the
following questions:

– What are the irregularities in terms of class naming over a
hierarchy?

– What are the irregularities in terms of class naming inside
a package?

– How can the study of class naming help to identify a new
concept emerging?

1 rules.sonarsource.com
2 pmd.github.io

– Why do two classes in separate hierarchies have similar
names?

The article’s contributions are (1) the identification of chal-
lenges to support the understanding of class names, (2) the
definition of a simple visualization to capture regularities of
class names, (3) the identification of visual patterns, and (4)
a large validation on real cases with software developers of
multiple projects.

The outline of the article is as follows: Section 2 analyzes
the challenges of understanding class name regularity. Section 3
presents the ClassName Distribution visualization as well as
(Section 3.4) patterns to better identify class name irregulari-
ties. Sections 4 and 5 present our case studies, i.e., real-world
projects in Pharo and Java with several hundreds of classes.
Section 6 presents how the visualization helps developers to un-
derstand and steer the renaming of Calypso, a large system that
has evolved over several releases. Section 7 presents a double
evaluation: Domain Expert / visualization Learners and Non-
Domain Expert / visualization Experts, while Section 8 reports
the occurrences of visual patterns in several Java open-source
projects. Section 9 discusses the possible design variations and
lists the threats to validity. Section 10 stresses the comparison
with selected related work. In addition, in the appendix we
added two sections: Section A describes the tool supporting the
approach (this is the tool user interface that the developers used
during the evaluation), while Section B describes the algorithms
used to precisely produce the visualization.

2. Complexity of Class Name Understanding
The class name is the first piece of information concerning the
classes to which the developers have access. A class name
identifier is a sequence of “words” that are easily identifiable
thanks to the use of naming conventions, such as the camel
case or snake case style (Butler et al. 2011b). For instance,
considering the class name FloatingPointException, the word
sequence is Floating + Point + Exception (Liblit et al. 2006;
Singer & Kirkham 2008; Butler et al. 2011b). A class name
should be as precise as possible to explain the class behavior
while remaining concise, in the sense that it is briefly described,
and consistent, in the sense that it is coherent with the system’s
naming convention (Deissenboeck & Pizka 2006). Precision
and conciseness can be in conflict so developers must make
choices to determine the correct class names. In the following,
we discuss what is a correct name, and in particular what can
influence how classes are named. Finally, we specify consistent
naming or irregularities in class naming.

2.1. Illustrative Examples
Imagine the following situation: When reading a code editor
project, a maintainer reads a class named NavigationBrowser.
He knows that the system was developed using Model-View-
Presenter. Now, by just reading the class name he cannot decide
whether NavigationBrowser is a model, a view, or a presenter.
He is forced to read the class definition to see that Navigation-
Browser inherits from SpModelPresenter and to understand
that this class belongs to the Presenter part of the triad. A

2 Nour Jihene Agouf et al.

rules.sonarsource.com
pmd.github.io

consistent naming following the hierarchy convention such as
NavigationBrowserPresenter conveys more precise informa-
tion and does not force the maintainer to navigate through the
class definition.

Another interesting example drawn from a Pharo project
is the package Tool-DependencyAnalyser-UI. This package
defines the class named DANode, with 21 subclasses using
the suffix Node. This class inherits from TreeNodePresenter.
But in its package, all the subclasses of DANode are consis-
tently named to convey that they are nodes. In other packages,
the names of subclasses of TreeNodePresenter terminate with
the suffix Presenter. It appears that only in the package Tool-
DependencyAnalyser-UI, did developers introduce a new con-
cept and it was more important for them to convey the idea that
a class represents a Node than a Presenter.

Now in this example, the situation is a bit more complex
because this exact same package defines the DAPackageTree-
Presenter. Therefore, the maintainer may wonder if this
class should be renamed to Node or not. However, the class
DAPackageTreePresenter does not inherit from TreeNode-
Presenter, but belongs to the ComposablePresenter hierarchy.

Stepping back from this example, we see that (1) class names
may miscommunicate their roles, (2) developers may introduce
new naming conventions and that such conventions may be
local to some packages only, and (3) maintainers need to be
able to get an overview of the names used by the classes within
a project but with a package view and taking hierarchies into
account.

2.2. About Correct Class Names
In object-oriented languages, classes should have one respon-
sibility (Wirfs-Brock & McKean 2003). A class name should
concisely explain this responsibility. Consequently, a correct
name is a name that enables the developer to understand at a
glance the purpose of the class or the concept behind it.

In practice, there is not always one responsibility in the class.
In addition, synonyms can be chosen. Consequently, there is not
a single correct name per class, and finding one can be complex
since several factors may influence the naming as we present
hereafter.

2.3. Forces Influencing Class Naming
Class names are mainly influenced by three competing forces:
packages within the project, naming conventions, and inheri-
tance hierarchies.

Package. Packages, as other grouping entities, such as mod-
ules or tags, provide another abstraction level as they are not
at the same conceptual level as classes. Packages often reflect
several organizations: they are units of code deployment or units
of code ownership. They can also encode team structure, ar-
chitecture, and stratification (Martin 2000; Abdeen et al. 2009;
Lanza & Marinescu 2006). Such roles often impose different
naming conventions or new vocabulary on class names. For
example, it is not rare to see that inside one package classes
inheriting from a superclass get a new suffix but only within the
package. This is because the developer wanted to convey a new
and different role for the classes.

In addition, in some object-oriented languages, such as Java,
packages are namespaces: the name of a class is unique inside
a package and two classes inside the same project may have the
same name.

Inheritance. Mostly, inheritance corresponds to a concept
refining. Subclasses refine a concept defined in the superclass.
Consequently, it seems natural that inheritance influences class
naming. In their study about the names of Java classes, Butler
et al. (Butler et al. 2011b) found that 70-80% of classes that
extend a superclass different from Object include one or more
words repeated from the superclass name. This is important
since a developer can know at a glance to which main concept a
class is related.

However, inheritance may have several semantics. When
a class extends another class using subtyping the initial class
name is often extended (LaLonde & Pugh 1991). On the con-
trary, if inheritance is used for mere code reuse the initial name
is often fully dropped in the subclass. For example, in historical
Smalltalk systems, OrderedCollection is a subclass of Arrayed-
Collection, which itself is a subclass of Collection (subtyping),
while Link (element of of LinkedList) is the subclass of Process
(subclassing) (Goldberg 1984).

Naming Convention. A good practice, both in industry and
academia, is to use English to name classes. This is to ease
the understanding of the code, by international or outsourced
teams, or to enhance the spread of open-source projects. Since
in English adjectives are put before the noun they qualify (e.g.,
BigClass or SmallModel), this leads to the hypothesis that a
particular role is given to the last noun, meaning the suffix of
a class name (last word). In FloatingPointException the class
suffix is Exception: this noun suffix stresses that the class is
an exception. This hypothesis is supported by the analysis
conducted by Butler et al. showing the importance of the suffix
in the identifier names of Java classes (Butler et al. 2011b). Note
that in other tongue languages as in French or in Spanish, it is
not the case; adjectives are mostly put after the name. In this
paper, we focus on the code written in English and consequently
adopting such a naming convention.

2.4. Limitations of the Various Forces in Presence
Inheritance. Often the class name structure evolves along an
inheritance tree when important new concepts are introduced. In
addition, because of the name length limit (Binkley et al. 2009),
such new concepts may lead to the dropping of old names, use of
abbreviations, or focus only on new aspects. The problem is that
when a developer drops the superclass name from a subclass, he
cuts the link to the superclass. Doing so he makes a class name
more difficult to understand. To understand the class, another
developer is forced to look for its superclass.

Naming Conventions. For various reasons, some conventions
put the important noun as the prefix and not the suffix. this
is for example the case in Pharo, for classes describing the
architecture of every project which are named BaselineOfXXX.
They are easily identified by their prefix. In Pharo, it is one of
the few well-known exceptions concerning suffix dominance.

Understanding Class Name Regularity 3

However, we observed that such cases may often occur in Java
(see Section 8).

Other Limitations. Other limitations also enter into the class
naming.

– Name length: Class names are limited by the “reasonable”
length of identifiers. This “reasonable” length varies ac-
cording to programmers, but it introduces a limit on class
names.

– Local/Global perspective. Naming regularities may sig-
nificantly change when considered from a local or a global
perspective. Looking at names within a single package is
different from doing so across a full project.

2.5. Our Definition of Class Name Consistency
In this article, the following points define what we consider to
be class name consistency:

– Class name only. We exclusively focus on class names
and not class comments, method identifiers (Anquetil &
Lethbridge 1998) or method body vocabulary (Antoniol et
al. 2007).

– Following superclass pattern. Class names are consistent
when the classes of the same hierarchy follow the same
naming pattern. By pattern here we consider that class
names follow either the same prefix or suffix across their
hierarchies, e.g.,Test* or suffix *Test for all the subclasses
of the class AbstractTest. Another example is the subclass
DropListView of the class View, which follows a consistent
naming.
When a class suddenly drops a suffix from its superclass,
we consider this to be a class name inconsistency (Butler
et al. 2011b). For example when DropList, a subclass of
the class View, is not named DropListView, there is an
inconsistent naming.

– Possible local redefinition. In addition to the simple pat-
tern mentioned above, we take also into account the pos-
sible influences of packaging and inheritance as well as
other conditions in some cases personalized by project
maintainers.
For example inside a package, if all the subclasses of the
class Shape are now prefixed using the word Arrow, it is
not an inconsistency because we consider that developers
have the right to introduce new vocabulary. Note that this
local redefinition will be detected by our visualization but
we will consider it as a false positive.

As elaborated above and in the next sections, the inconsisten-
cies that our approach detects are only based on the words and
their sequences of class names taking into account the inheri-
tance hierarchies and package structure. We exclusively focus
on class names (not method identifier (Anquetil & Lethbridge
1998), not method body vocabulary (Antoniol et al. 2007)). It
means that we do not consider typos: a programmer can name
all their classes *Comand, but if he does it systematically we
consider that the naming is consistent. However, any deviation
from the superclass pattern will be reported as inconsistencies.

We also propose a tool that helps the user quickly detect incon-
sistencies without having to look deep into their project.

2.6. Class Name Assessment
Given all the competing forces influencing class naming, it is
doubtful that one could come up with one absolute naming
convention even for a single project. However, there is a need
to assist developers or maintainers in detecting irregularities in
class names and naming convention violations.

When auditing code, reviewers are often forced to manually
browse the class definition and figuratively climb the inheri-
tance tree to understand the classes they are facing. Checking
class names manually is difficult even for a mid-size project
composed of several hundreds of classes, structured in multi-
ple class hierarchies of different depths, and distributed over
many packages. Just looking at the class name list, even on a
per-package basis, might not reveal valuable clues about the
conventions used and whether they are consistently followed.

We propose the following rules to help developers review
class names inside their project:

– The main concept in a class name is expressed by either
the prefix or the suffix. In the remainder of the paper, we
will use the term spfix to refer to either the prefix or the
suffix.

– Inside a hierarchy, the spfix should be consistent, meaning
that it should be unique.

– Since concepts may emerge inside a hierarchy, the pre-
ceding rules may be violated. Consequently, to ensure
consistency inside a single package, each hierarchy should
correspond to one concept and have a single spfix.

2.7. A Schematic Project
Before introducing concepts useful to the detection of class
name inconsistency, let’s consider the hypothetical project de-
picted in Figure 1. It is composed of two packages P1 and P2
and consists of 6 inheritance hierarchies: A, B, C, D, E, and F.
Inheritance hierarchies begin right under the Object class other-
wise we would always have exactly one inheritance hierarchy.

Inheritance hierarchy root classes are marked with a thick
border. Each inheritance hierarchy is marked with a different
color (A=yellow, B=green, C=red, D=blue, E=pink, F=purple)
to differentiate them.

In this figure, class names follow several conventions: The
first letter identifies the inheritance hierarchy (A, B, . . .). Note
that such a convention exists in real projects, but there is no
guarantee that it would be as strictly followed as in our example.
The last letter (X, Y, Z, P) represents a suffix. For example, the
classes AZ and F2Z have the same suffix as well as D1Y and
C4Y. An optional number differentiates sibling classes using
the same prefix and suffix.

2.8. Class Name Inconsistency Detection
To help developers to detect inconsistencies in class naming, we
introduce some concepts and explain them using the schematic
project of Figure 1.

4 Nour Jihene Agouf et al.

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y

AZ EP

C3Y

BF

E3PE1P E2P

C4Y

F1Y

Figure 1 A schematic mini project composed of the A, B, C,
D, E, and F hierarchies (thick borders denote hierarchy roots).

Mono-class hierarchies. These are hierarchies consisting of
only a root class (no subclasses). In our hypothetical example,
this is the case for inheritance hierarchies A and B.

Mono-spfix hierarchies. These are hierarchies consisting of
several classes that all have the same spfix. Inheritance hierar-
chies D (suffix Y) and E (suffix P) are examples of mono-spfix
hierarchies. A mono-spfix hierarchy can share its spfix with
some other inheritance hierarchies (some C classes have the
suffix Y).

Multi-spfix hierarchies. Such hierarchies consist of classes
with different words used as spfixes. Multi-spfix hierarchies are
important in the sense that they do not follow a clear naming
schema and thus may hide a new naming convention or be
misnamed. Such hierarchies are exemplified by C (which uses
the suffixes X and Y) and F (with the suffixes Z and Y).

The following section tackles the problem of class name
irregularities by presenting a new visualization, named Class-
Name Distribution. It helps identify suspicious patterns and
class name irregularities. It gives both a local view inside a
package, while providing a global view, all along the hierar-
chies at the level of the project.

3. The ClassName Distribution

The ClassName Distribution3 is a package-centered visualiza-
tion based on the distribution of the vocabulary used in a project
taking an inheritance perspective. This vocabulary consists of
the suffixes or prefixes of class names – last and first words
respectively, from the original name (using any conventions,
camel case, snake case, or others). Indeed if in Pharo, de-
velopers use a suffix convention, some projects, in particular
in Java, use a prefix convention for some of their hierarchies
(e.g.,TestReader instead of ReaderTest). The visualization is
also interactive and navigable.

3.1. Visualization Constraints
Designing a new visualization should take into account several
constraints:
3 https://github.com/NourDjihan/ClassNameAnalyser

– One important constraint of this work is the reproducibility
of the visualization. We want maintainers to be able to
implement this visualization with their graphical toolkit in
a couple of days. Therefore, the layout of the visualization
and graphical elements should be as simple as possible.
This follows the design principles of Lanza’s visualizations
such as system complexity and evolution matrix (Lanza
2001; Lanza & Ducasse 2003; Lanza 2003).

– The visualization should not overwhelm users with too
much information (colors, shapes, positions). Its principles
should be easy to understand while being able to scale
up to large hierarchies or large projects. Our goal is that
developers can take 15 minutes to comprehend it and start
using it.

– The visualization should take into account screen limits:
it should fit on a normal screen and avoid forcing users to
navigate or scroll when possible. In addition, the numbers
of colors on an average screen quality are limited. There
are problems with new colors emerging due to the proxim-
ity of different colors. The visualizations should take such
parameters into account.

– Furthermore, visualizations may want to exploit the Gestalt
principles (such as connectedness, similarity (Peterson &
Berryhill 2013), and proximity) and pre-attentive process-
ing (Healey et al. 1993).
Researchers in psychology and vision discovered many
visual properties that are pre-attentively processed,
without actively thinking about them. They are detected
immediately by the visual system: viewers do not need to
focus their attention on a specific region in an image to
determine whether elements with the given property are
present or not. An example of a pre-attentive task is detect-
ing a filled circle in a group of empty circles. Commonly
used pre-attentive features include length, width, size,
shape, filed, curvature, intensity, hue, orientation, motion,
and depth of field (Healey et al. 1993; Treisman 1985).
However, combining them can destroy their pre-attentive
power (in a context of filled squares and empty circles, a
filled circle is usually not detected pre-attentively).

We are now ready to describe first the layout of a Class-
Name Distribution (Section 3.2) then its color assignment (see
Section 3.3).

3.2. ClassName Distribution Layout
The ClassName Distribution represents the distribution of the
class name spfixes throughout the hierarchies of a project struc-
tured using packages. To this end, it uses three central visual
elements: class boxes within spfix boxes within package boxes.
Figure 2 represents the ClassName Distribution for our hypo-
thetical project shown in Figure 1 and Figure 3 represents a real
project (Calypso v.6.0, described later).

Class boxes. Class boxes, the smallest boxes, represent the
classes of the packages under consideration. They can be seen
as atomic “dots”. Thicker borders identify inheritance hierarchy
root classes. Except in special cases (see Section 3.3), there is

Understanding Class Name Regularity 5

https://github.com/NourDjihan/ClassNameAnalyser

one color by inheritance hierarchy. Here, the colors match the
ones in Figure 1 (C=red, F=purple).

Spfix boxes. Spfix boxes, the intermediary boxes, represent
class prefixes or suffixes in a given project. They group class
boxes (for the considered package) whose name begins or ends
with this spfix. The spfix boxes are colored according to the
dominant inheritance hierarchy (in the number of classes) that
they contain across the project. This ensures that a given spfix
has the same color in all packages of the project. For example,
see the “Query” spfix (blue) in the first and fourth packages of
Figure 3.

On the visualization, spfix boxes are labeled with the prefix
(P), suffix (S), or (P+S) if the same word is used inside the same
package as the prefix and suffix. If over the whole visualization,
only suffixes or prefixes are used, the letters between paren-
theses are omitted to not overload the visualization. The user
can choose to use only suffix (which is the default mode), only
prefix, or both, which is recommended for Java projects. In that
latter case, an algorithm determines for each class if the prefix
or the suffix should be taken into account (see Section B).

Inheritance hierarchies (thus their colors) are ordered across
the project from larger (more classes) to smaller (fewer classes).
Spfix boxes, which are also colored, follow the same order
that is dictated by their respective colors. This ensures that in
different packages, the same spfix always appears in the same
order. These consistent ordering and coloring schemes allow
one to easily find an spfix in any package. For example, see the
“Scope” spfix (magenta) in various packages of Figure 3.

Package boxes. Package boxes, the outermost boxes, repre-
sent packages and are labeled with the package name. Since
package names may be long and for space reasons, we have
chosen to possibly abbreviate them. Package boxes contain
the spfix boxes of all their classes. A ClassName Distribution
can display several packages to offer a general overview of the
project (e.g., Figure 3), or focus on a particular package. Pack-
age boxes are displayed in decreasing order of size (in number
of classes).

3.3. Colors of the ClassName Distribution

The visualization assigns a color to each class: By default, the
color of a class is that of its hierarchy, but there are exceptions.
Focusing on the regularity of class name spfixes throughout
inheritance trees, we distinguish three situations:

Mono-class hierarchies. Such hierarchies are composed of
a single class. They are of limited interest: they do contain
class name irregularities. They are “colored” white to reduce
the number of used colors while still giving the information that
the class is the only one in its hierarchy. A mono-class box may
be placed in a dedicated spfix box if its spfix is shared by no
other class in the same package. This is the case for class BF
in Figure 1. A mono-class box may also share its spfix with
other classes (from different inheritance hierarchies) and thus
be placed in the same spfix box as these. For instance, class AZ
shares the Z suffix with F2Z, F3Z, and F4Z.

Suffix: Y

LEGEND:
Root
class C1Y

Class named *Y from
C hierarchy. suffix is : Y

Package: P1

suffix boxclass box

DY D1Y C1Y

C2Y D2Y

Suffix: X

C1X

C2X C3X

CX

Suffix: F

BF AZ

Suffix: Z

F3Z F4Z

F2Z

C3Y C4Y

Suffix: P

E2P

E3PE1P

EP

package box

F1Y

suffix box

Figure 2 ClassName Distribution for package P1 of Figure 1:
1 package box, 5 suffix boxes, and 21 class boxes.

Mono-spfix hierarchies. Mono-spfix hierarchies perfectly ad-
here to the same naming schema. Since they have no irregulari-
ties, they are not noteworthy and are “colored” in gray to avoid
attracting attention, and reduce the number of colors required
for all hierarchies. See hierarchies D and E in Figure 1.

Multi-spfix hierarchies. By construction, their classes are
grouped in separate spfix boxes. Such hierarchies are assigned
a “real” color (not white, nor gray) and all their classes have the
same color. In Figure 2, hierarchy C is colored in red and its
classes are grouped in two distinct spfix boxes X and Y.

Such inheritance hierarchies are mainly discovered when
several spfix boxes of the same color appear in a package. For
example the several blue spfix boxes in the first package of
Figure 3.

(a) multi-spfix hierarchies are easily identifiable against mono-
class and mono-spfix hierarchies (colored in white and gray
respectively).

(b) The color of the class boxes identifies the multi-spfix hier-
archy to which the corresponding class belongs.

For technical reasons such as screen quality and the inherent
limitations of human eyes, only 24 colors are used and assigned
to the 24 biggest multi-spfix hierarchies of the project. All the
other multi-spfix hierarchies are in black.

3.4. Pattern Definitions
The ClassName Distribution gives an overview of the system
hierarchies, their types (e.g., mono-spfix hierarchy, multi-spfix
hierarchy, . . .), and the distribution of their spfixes across pack-
ages.

Based on this visualization, the user can identify inconsisten-
cies and decide whether classes are poorly named or the naming
was deliberate. To help users in their tasks, we have detected
some recurrent visual patterns that can be also characterized by

6 Nour Jihene Agouf et al.

the definition of simple conditions. Such visual patterns may ex-
hibit not only coherent naming situations but also unstructured
or inconsistent naming.

– Homogeneous spfix pattern. Following our definition of
class name consistency, a homogeneous pattern reflects
a consistently named hierarchy. All the classes of the
hierarchy share the same spfix, and this spfix is dominated
by consistent hierarchies. It corresponds to a mono-spfix
hierarchy which dominates its own spfix. Concretely, it is
a set of gray classes inside a gray spfix box. As explained
before ClassName Distribution marks as gray mono-spfix
hierarchies, i.e., the hierarchies where all classes have the
same spfix. The spfix box is also gray, which means its
dominant hierarchy is a mono-spfix one. It shows that a
project is following a naming convention (See Figure 3).

– Blob spfix pattern. This expresses that inside a hierar-
chy, many classes of the same package use the same spfix.
Concretely, it corresponds to a large spfix box where (al-
most) all classes are of the same color. A few classes of a
different color may be allowed. The hierarchy is not ho-
mogeneous (otherwise it would be in gray), which means
that somewhere in the hierarchy a couple of classes do
not respect the largely adopted convention. It can be on
purpose, or not. Ideally, there should be only one Blob of
a given color per package.

These patterns are good in the sense that they indicate hi-
erarchies are following a naming convention. However, the
violation of a naming convention can be spotted by observing
the visual patterns explained below:

– Scattered vocabulary pattern. In the same package, this
pattern is represented by several spfix boxes of the same
color containing several classes colored as the spfix boxes.
An illustrative example is presented in Figure 3. It points
to a multi-spfix hierarchy dominating several spfixes. This
visual pattern highlights that classes of the same hierarchy
do not share the same spfix inside the same package. From
that perspective, it identifies an irregular naming conven-
tion. This pattern might include a Blob which means that
a naming convention was followed but not consistently
enough.

– Intruder pattern. This is represented by one or a couple
of class boxes of a different color than the other classes
within the same spfix box. It highlights a class violating
a naming convention or being placed within the wrong
hierarchy (possibly due to single inheritance). Indeed, the
naming convention imposes either that all the classes of
the hierarchy have the same spfix and thus are colored in
gray or that new concepts inside a package have emerged,
which is revealed by a Blob spfix pattern. An intruder is a
class that adopts an spfix and thus a concept dominated by
another hierarchy in the same package. Intruders may also
point to a bad design choice for example using inheritance
instead of delegation.

– Snowflake pattern. This is represented by several white
classes within an spfix box. This visual pattern highlights

a set of mono-class hierarchies sharing the same spfix.
As an intruder, it may highlight a design issue. More
specifically, when the spfix box is white and contains only
mono-classes, it means that several classes share the same
spfix and thus the same concept in the same package while
being fully independent of an inheritance point of view;
there may be a missed opportunity to group them in a new
inheritance hierarchy.

– Confetti pattern. This visual pattern highlights classes
of the same package but several different hierarchies that
share the same spfix. As such, they may represent the
same concept. This can be the result of two orthogonal
decompositions of the domain forced into a single inher-
itance hierarchy. Graphically, the confetti pattern is easy
to spot because it consists of several classes of different
hierarchies (colors) within one spfix box.

These visual patterns do not always indicate a naming prob-
lem but they often refer to possibly suspicious cases.

4. An Example of a Pharo Project: Calypso
We present the first example of the ClassName Distribution
visualization on a real project: Calypso v6. Calypso is an open-
source project developed in Pharo. It implements a set of tools
to browse source code. Since Pharo 7, it is the default IDE code
browser suite. The latest version of Calypso (v9) consists of
758 classes organized in 59 packages and 6,076 methods. It was
initially developed by a single engineer for two years, which
motivates our choice of analyzing this project. Calypso is now
maintained as an open-source project by a community as we
will see in Section 6.

We take the V6 version because the visualization has been
used by Calypso maintainers to rename classes over multiple
versions as presented in the subsequent section. In addition, it
shows that a program being developed by a single developer
does not prohibit inconsistent naming.

In Pharo, there exists an implicit convention that the intent of
a class is the suffix of its name. Consequently, in the following
analysis, only suffixes are taken into account.

4.1. Calypso Hierarchies Analysis
This section analyzes Calypso hierarchies. Figure 3 exhibits the
following points that we detail after:

– Some hierarchies are large (i.e., lot of classes of the same
color) and in contrast, few classes are mono-classes (i.e.,
classes in white).

– Several hierarchies are consistently named (i.e., gray
classes).

– Many classes are spread over several packages, such as the
blue, magenta, green, yellow, or red hierarchies.

– Many suffixes are spread over several packages such as
Query, Command, or Tests showing a kind of naming
convention consistency. In contrast, inside the same pack-
age, some suffixes are shared between hierarchies as in the
first package of the first row where the Variables suffix is
shared between the blue and light green hierarchies. This
illustrates naming inconsistencies.

Understanding Class Name Regularity 7

Blob

Confetti

Scattered vocabularyIntruders

Homogeneous
Snowflake

Blob

Command

MorphQuery

Typos

Typo

Scope

Group

Figure 3 Visual patterns & hierarchies in ClassName Distribution of the Calypso project (v6) main packages.

Large hierarchies. A color identifies a hierarchy with incon-
sistent naming (remember that consistent hierarchies are in
gray). Figure 3 shows several of them. The tool supports in-
teractions such as the highlighting of specific hierarchies and
that such interactions help one to spot names (see Section A).
In addition, the high quality of the screen resolution supports
the crisp reading of names.

– The red hierarchy contains the SUnit4 test case subclasses.
It has three different suffixes, namely Test, Tests, and
Case. The Case suffix is due to the superclass being
named TestCase in SUnit. Developers usually do not use
this suffix but rather Test. The suffix Tests is less used and
not promoted by the tutorials on SUnit or its conventions.
In particular, the plural should not normally be used.

– The blue hierarchy is an important one, distributed over
13 packages (i.e., outer boxes). It has many suffixes such
as Query, Classes, Variables, Methods . . . (1st package).
This hierarchy defines the query object.

– The yellow hierarchy is a Command hierarchy, which
4 SUnit is the test framework in Pharo

defines classes in many packages and 17 suffix boxes. It
is not homogeneous because of a typo: four classes have
a Comand suffix (3rdrow first package and 4th row 10th
package, from right; packages are annotated on the figure).

– The magenta hierarchy (Scope classes) is almost a mono-
suffix hierarchy but for two classes in the Example suffix
of CNMTests package (2nd line, 2nd package).

– The purple hierarchy (Morph classes5) is spread over 20
suffix boxes. Such classes are grouped within a limited
number of packages (9). The purple hierarchy inherits from
classes of this external package to define new graphical
elements (widgets).

– The pink hierarchy (Group classes) presented in
the CBrowser, CSTFBrowser, CSTQBrowser and
CSPRBrowser packages is almost a mono-suffix hierar-
chy. The spfix box and the hierarchy do not have the same
color (respectively gray and pink) because the Group suffix
is shared by at least two hierarchies and dominated by a
homogeneous one. Concerning the pink hierarchy, it is col-

5 Morphic is a core package of the system that defines all the UI element logic.

8 Nour Jihene Agouf et al.

ored because the root class CmdMenuItem does not have
the same suffix (Group). It is the only inconsistency of the
hierarchy, but the root class belongs to another project.

Consistently named classes. Figure 3 shows multiple gray
suffix boxes such as Provider, Group, and Decorator. Such gray
suffix boxes tell that these hierarchies are consistently named.
There are small hierarchies consisting of a couple of classes
(such as Filter) but also large ones that spread over multiple
packages e.g., Provider, Decorator.

4.2. Calypso Visual Pattern Analysis

We illustrate the visual patterns with Calypso. Figure 3 is anno-
tated with visual patterns to ease the reading.

Homogeneous spfix pattern. Concretely, this pattern occurs
for example in the first package for suffixes Group, Variable,
Level, Hierarchy, Function, Plugin, and Filter.

Blob spfix pattern. For example, such a case is spotted in the
yellow Command suffix boxes distributed as Blobs in several
packages. It is colored which means that the hierarchy is not
consistent. The classes that are not in a Blob are often the ones
with naming inconsistencies. Indeed, there is a misspelling:
some classes have the suffix Comand with a single m. The
visualization is interactive; a left click on the class highlights
the hierarchy classes as shown in Figure 9 and puts the suspi-
cious cases in a thicker white border. This is a way to detect
misspellings.

Moreover, when there is more than one Blob of a single
hierarchy per package this indicates a possible violation of a
naming convention, which is the case for Tests and Case (e.g.,
big red suffix boxes in the CSQTests and CNMTests packages).
Classes of the Case suffix box should be renamed to have the
Test suffix to follow the Pharo naming convention.

Intruder pattern. We see an example of this pattern in the
first package, with light green classes inside blue suffixes. An
intruder is a class that shares a suffix with classes from another
hierarchy, which may indicate a bad design, the class being
ill-named, or in the wrong hierarchy (possibly due to simple
inheritance). It is also the case of the purple class inside an
orange Blob in the CSTFBrowser package (first package of the
second row).

Scattered vocabulary pattern. An example is the blue hierar-
chy in the first package, including the Query Blob which means
a naming convention was followed but then split into several
spfixes. Another example is the Morph hierarchy (purple) in
the second package of the first row (CBrowser), which intro-
duces new suffixes such as Tool and Switch. A closer look at
classes of the Tool suffix box reveals a clear violation of the
Morph scheme where the class ClyTextMorphTool needlessly
introduces a new suffix by putting Morph in the middle of the
name. The second violation of the Morph naming is the absence
of the suffix Morph illustrated by the presence of View, Label,
Button, and Dialog suffix boxes.

Snowflake pattern. An example is the spfix box named
Change in the first package. The three classes ClyPackage-
Change, ClyClassChange and ClyMethodChange were
found to have similar getters and setters (affectedPackage,
affectedClass, affectedMethod respectively), and a handles-
Announcement method. It may indicate that there was a missed
opportunity to group these classes in a new inheritance hierar-
chy.

Confetti pattern. The colorful Example suffix (2nd row, 2nd
package, last suffix) is one occurrence of this pattern. It shows
many hierarchies of different types (multi-spfix and mono-
classes), using the same spfix. This means that in the same
package, the suffix is associated with many hierarchies.

5. An Example of a Java Project: Lucene
We now report on the analysis of the Lucene project. Lucene is
an open-source library, in Java, for text indexation and search.
We studied the 4,508 classes distributed over 287 packages of
June 2021 version, without considering interface classes (184
interfaces). This project illustrates that our visualization scales
for big projects and that it can be used for Java projects to
identify class naming convention violations.

The ClassName Distribution shown in Figure 4 considers the
distribution of both suffixes and prefixes. It corresponds only to
an extract of the visualization. Indeed, although it is possible to
zoom in with the tool, it is not on paper, so we display only a part
of the project. A new screenshot of the whole project is available
online6. Moreover, as there are 61 multi-spfix hierarchies in
this version of Lucene, we colored only the 24 largest (totaling
2,458 classes, 54.52% of the project) due to distinguishable
color number limitation and color aliasing.

The other 37 multi-suffix hierarchies are represented in black
(175 classes, 3.88% of the project). Finally, there are 149 mono-
spfix hierarchies colored in gray (908 classes, 20.14% of the
project) and 967 mono-classes 21.45% of the project.

Homogeneous hierarchies. Several hierarchies are homoge-
neous which indicates that they follow a naming convention.
Such patterns are exemplified by gray spfix boxes such as Policy
(1st package), Collector, and Rewrite (2nd package). Classes
of these spfix boxes follow the spfix naming convention and
the location of the spfix, as they only use the suffix, however,
other hierarchies such as Task (2nd row 4th package, marked
with P+S) respect the use of only one spfix throughout the in-
heritance tree, but do not fix its position. Some classes have the
concept as a prefix, others as a suffix.

Blobs. The biggest Blobs in the Lucene project belong to
the red hierarchy (whose root is the LuceneTestCase class).
This hierarchy holds 1,504 classes, including 1,430 classes
with Test as prefix (marked with the letter P above the spfix
box). Hence, classes of the LuceneTestCase hierarchy indeed
follow a particular naming pattern which is predominantly using
the Test prefix. However, several classes of the hierarchy use

6 https://github.com/NourDjihan/ClassNamesDistribution-PaperData/
blob/master/Lucene2021/Lucene2021.png

Understanding Class Name Regularity 9

https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \blob/master/Lucene2021/Lucene2021.png
https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \blob/master/Lucene2021/Lucene2021.png

Homogeneous

Blobs
Nearly homogeneous

IndexReader hierarchy

Query hierarchy

WithNestedTests hierarchy

Snowflake

Snowflake

DocIdSetIterator

Figure 4 The ClassName Distribution of the Lucene project version of June 2021(Extract).

both Base and Case as prefix and suffix, respectively. Others
use Case only as suffix and Base only as suffix. Additional
spfixes have very low occurrences such as Function, Abstract
and Unicode.

Nearly homogeneous. Several hierarchies are close to be-
ing homogeneous, where the exception resides in one or a few
classes using a second spfix.

Some of these hierarchies use only one suffix for almost all
classes of the hierarchy but violate the spfix convention and
introduce Wrapper as a second suffix. This may indicate a
kind of decorator pattern within the hierarchy that the developer
wants to make explicit.

For example, the IndexReader hierarchy (light pink in the
1st package) uses Reader as suffix except for three classes such
as SlowMultiReaderWrapper which puts it in the middle and
Wrapper as suffix.

A similar case is the Query hierarchy colored in blue, dis-
tributed over many packages (1st row 2nd package, 2nd row
3rd package,. . .). Most classes of this hierarchy use Query
as a suffix which indicates a naming pattern. The Query sp-
fix is marked as it is being used as both a prefix and a suffix
(P+S) but this is due to the mono-classes using Query as the
prefix. Inside the Query hierarchy, only three classes are con-
sidered as introducing irregularities: MultiTermQueryConstant-
ScoreWrapper, BlockScoreQueryWrapper and SpanMulti-
TermQueryWrapper. The two first classes belong to the second
package. They are not in the same spfix box once again since
the spfix detection is automatically performed by the tool.

In the util package, the Test spfix box contains in addition

to the classes of the LuceneTestCase hierarchy in red, some
mono-classes (represented in white) but also several classes
in brown. The root class of the brown hierarchy WithNested-
Tests appears in the With spfix box. It is the only class with
With as prefix and Tests (plural) as suffix. The tool arbitrarily
chooses the prefix. However, all the subclasses of this root class
have Test (singular) as a prefix making this hierarchy nearly
homogeneous.

Snowflake. Several Snowflake spfixes such as Segment, In-
dex, Documents (1st row, 1st package), Util, Utils and Ref (3rd
package) may indicate classes having the same behavior. This
behavior is described by the name of spfix box. An interesting
case is that of Snowflake classes belonging to a colored spfix
box, which is the case for the Query spfix (2nd row 3rd pack-
age) including a query class. Moreover, the Iterator suffix box
(3rd row 4th package) is dominated by the dark brown hier-
archy (DocIdSetIterator) and contains mono-classes such as
CustomSeparatorBreakIterator, WholeBreakIterator, Length-
GoalBreakIterator, and SplittingBreakIterator. A look at these
class names raises the question of whether there was a missed
opportunity to group these classes in a new hierarchy or if they
should belong to the dark brown hierarchy dominating the Itera-
tor suffix.

About DocIdSetIterator. The dark brown DocIdSetIterator
hierarchy presents an interesting case of the system architecture.
This hierarchy is distributed over multiple packages. Its
vocabulary consists of using the Enum and the Values suffixes
(1st packages of the first row), the Iterator suffix (2nd and 3rd
packages), Spans suffix (6th package 2nd row). . . . A closer

10 Nour Jihene Agouf et al.

Homogeneous

Query hierarchy

Morph hierarchy

Blob

Figure 5 The ClassName Distribution of the Calypso project (v8) main packages.

look at this hierarchy shows that classes using Spans as a
suffix inherit from the Spans class which is a direct subclass
of the root DocIdSetIterator. In contrast, classes using the
Enum suffix also inherit from PostingsEnum which is also a
direct subclass of DocIdSetIterator Similarly, classes using the
Values suffix inherit from DocValuesIterator, which is also a
direct subclass of DocIdSetIterator. This leads us to think that
the hierarchy is composed of several sub-hierarchies and needs
to be decomposed.

More could be said about this part of the project but a com-
plete analysis of this part or the project is out of the scope of the
paper.

6. Supporting Evolution
When the Calypso project was passed over to the community,
maintainers found inconsistent class names that had been re-
vealed using a preliminary version of our tool on Calypso v6
(July 2017) (Figure 3). To ensure consistency, many inconsis-
tencies were corrected, leading to a new version of Calypso v8
(January 2020) presented in Section 6.1. This renaming work
was huge because the maintainers did not know Calypso and
had to understand the code in the presence of inconsistent class
names. Moreover, this work was only tooled with a primitive

version of our tool. Consequently, some irregularities remained.
Finally, in Section 6.2, we show the latest version of Calypso v9
as of June 2021 after a final renaming effort. This last renaming
phase was performed by the maintainers using the visualization
proposed in this article as part of its evaluation as discussed in
Section 7. This section shows that our approach supports also
the understanding of class name evolution.

6.1. Calypso v8
When the community took over Calypso, some classes were
renamed to improve the understandability of the project. The
resulting project is shown in Figure 5. The new ClassName
Distribution shows:

– More Homogeneous suffixes pattern (gray suffixes), for
example the yellow Command suffix is now gray. This is
positive and points to an improved naming quality.

– Less Scattered Vocabulary, in particular the blue hierarchy
(1st package). Globally, this hierarchy now has only three
classes outside the Query suffix, meaning that the hierar-
chy became more consistent, however three classes are left
to be studied. Similarly, the purple hierarchy (3rd package)
saw the number of different suffixes largely reduced to
focus on the Morph suffix. This hierarchy now has only
six classes without the Morph suffix. For example, the

Understanding Class Name Regularity 11

Homogeneous

Nearly homogenous
Morph hierarchy

TestAsserter hierarchy violations

Figure 6 The ClassName Distribution of the Calypso project (v9) main packages.

Morph hierarchy in package CBrowser went from eleven
to two suffixes. A new suffix Window emerges which did
not exist in v6, due to the definition of a new window class.
Similarly in the v6, the ClyQuery hierarchy exhibited sev-
eral suffixes (32 classes in the Calypso-SystemQueries
package with 14 suffixes). In v8, the 32 classes of the
hierarchy share the same suffix Query.

– The Blobs of the red hierarchy TestAsserter went from
using the Tests suffix, which is a violation of the testing
naming convention, to using the Test suffix. However,
some testing classes still violate this convention by using
the Case suffix.

– Fewer Intruders, for example the light green intruders in
the blue suffix Variables (1st package) kept their suffix,
therefore the suffix Variables is now light green as blue
classes were moved to the Query suffix.

6.2. Calypso v9
As explained above, while Calypso v8 underwent major class
renaming, applying the ClassName Distribution visualization
revealed some remaining class name irregularities. Figure 6
depicts the current version of Calypso v9 (2021) as a result of

an evaluation with the maintainers (see Section 7). Indeed, a
glimpse at the visualization of v9 shows more gray classes and
suffixes than in v8 which reveals the will of its maintainers to
continue ensuring the consistency of their system. We notice:

– More Homogeneous hierarchies, in the first package both
of Query and Scope classes: blue and magenta respec-
tively in the previous visualization became fully consistent
by using one suffix throughout each inheritance tree. More-
over, the orange hierarchy CmdToolContext also became
Homogeneous by using only one suffix Context.

– Less Scattered vocabulary: the Morph hierarchy colored
in purple went from having six classes using different suf-
fixes other than Morph to three classes using the Window
and Tool suffixes. The light green ClyQueryResult hi-
erarchy grouped most of its classes under one suffix dis-
tributed over its packages, which is in fact the suffix Re-
sult used by the root class itself, this hierarchy becom-
ing nearly homogeneous – one class away from being
fully homogeneous, where the exception resides in the
ClyExtensionLastSortedClasses class using the Classes
suffix instead. It is an oversight, and this class will be

12 Nour Jihene Agouf et al.

renamed in v10alpha.
– Most of the Case Blobs of the red TestAsserter hierar-

chy are no longer present. However, four classes using
this suffix are clearly still violating the test naming con-
vention. This is one point the maintainers are considering
correcting.

– Fewer Intruders: the two green Intruders in Provider suffix
have disappeared, and are currently renamed to use the
Annotation suffix instead of Provider. The purple Intruder
in the Browser suffix has also disappeared because of two
factors: the Morph hierarchy no longer uses this suffix and
the orange hierarchy which dominated the Browser suffix
is now homogeneous and uses the Context suffix instead.

– The Confetti case had vanished since both of ClyQuery and
Scope hierarchies became Homogeneous and the Result
hierarchy no longer makes use of the Example suffix.

The experiment in numbers. In total 91 classes were renamed
between v8 and v9, over 10% of the system classes and as such,
it is a large renaming effort. We cannot assess exactly the impact
of the tool use but the maintainers reported that it helped them
to be more systematic and get a better overview of the naming
problems.

The visualization did not show any performance problems to
render large projects. For example, a visualization is displayed
in under 2 seconds for the Calypso project (around 700 classes).

7. Qualitative Evaluation

To evaluate our visualization, we used two different setups:

– Domain Expert / Visualization Learners. The idea of
this first setup is to evaluate how experts of the code/do-
main who are also learners of the visualization use the tool
to identify inconsistencies in the class naming hierarchy.
We presented the tool to Calypso as well as Roassal and
Stargate experts.

– Non-Domain Expert / Visualization Experts. In this
setup, we evaluate if non-experts of the code/domain but
experts of the visualization can identify inconsistencies
in class naming hierarchies that are then validated by ex-
perts. Non-experts also used the tool on Spec and Morphic
projects.

Due to the size of the community and the proximity to ex-
perts, we chose only projects written in Pharo. In this section,
we explain both protocols and present the feedback from partic-
ipants.

7.1. Protocol for Domain Expert / Visualization Learners

Protocol. For this setup, we first prepared a 10-minute Pow-
erpoint presentation of the tool which includes (i) a summary
of the approach principles (described in Section 3) and (ii) in-
structions on how to use the tool (described in Section A). The
presentation serves as a support guide for the tool.

For each project, we asked its practitioners (1 to 3 per

project)7 to do the experiment separately, to take notes of the
changes each one would make, to record their screen, and to
freely express their thoughts aloud during the whole experiment
knowing that we will analyze their videos and that they will stay
private. After receiving the screen records of each project, we
collected the changes proposed by each participant. Collected
data are thus twofold: first, a video showing the practitioner
using our tool, and second a list of changes to correct inconsis-
tencies. Depending on the cases, the changes may have been
sent separately by email or we identified them in analyzing the
video. Due to the nature of the collected data as well as the
purpose of the evaluation, (i.e., showing the ability of domain
experts/visualization learners that our visualization can help
them detect class name inconsistencies), it was not necessary to
clean it. Then we set up one meeting per project gathering all
the experts participating in the experiment, never more than two
weeks after the experiment. To discuss the findings and to ask
them if they can agree on the changes to make. Meeting all the
experts of the project enabled us to discuss changes identified
by only one expert and see if collectively they accept them or
not. As explained later in the experiment, this meeting was also
the opportunity for us to understand why they refused some
changes. According to the final list of renamings, we made pull
requests in each project’s GitHub repository and checked if the
changes were integrated into the projects.

The time spent by participants using the tool independently
varied from 20 minutes to 30 minutes.

Choice of the projects. We chose four projects from the Pharo
community with the following criteria: (i) access to the devel-
oper or maintainers, (ii) diversity of the projects in terms of
domain and size, and (iii) different development teams. This led
to the choice of Calypso v8, Roassal-3, Stargate, and Willow.
These projects consist of 150 to over 700 classes packaged in
two to 57 packages. They are all in production and are re-
spectively developed in France, Chile, and Argentina. Since
Stargate and Willow are being developed by the same team and
the validation was performed by the same expert, we describe
the experiments of these two projects together.

7.1.1. Calypso v8 Experience Feedback. As discussed
in Sections 4 and 6, Calypso underwent major changes in class
names from v6 to v8. The experts were interested to see if there
remain inconsistencies in the naming conventions. We asked
three of them to use the tool and do the experiment on Calypso
v8. In its v8 version, Calypso contains 57 packages and 716
classes.

Proposed renaming. Some test classes (red hierarchy) were
still using the Case suffix, so they decided to rename them
to remove Case but missed some as shown in Figure 6. The
ClyQueryResult (light green) had several other suffixes which
were changed to Result in the v9, as well as some classes
of the ClassAnnotation hierarchy which eventually used the
Annotation suffix (green).

7 Each practitioner was selected according to his expertise in the project and
his availability during the experiment. Each of them has at least 10 years of
experience in Pharo and more than 5 years of experience in the project.

Understanding Class Name Regularity 13

RSInteraction Hierarchy

Scattered vocabulary

RSEvent Hierarchy

Layout hierarchy

Figure 7 The ClassName Distribution of the Roassal-3 project.

They also intended to use the visualization to drive another
pass such as strengthening further the purple hierarchy (now
mostly Morph suffix but still with a Window and Tool suffixes).
Thus, the goal is not to have all classes in gray but to ensure
the correctness and consistency of class hierarchies. Remember
that the gray color is an indicator of class names following
the vocabulary pattern of their hierarchies, so such a case is
considered consistent. In contrast, the use of another color
means by definition that there is at least one inconsistency.
However, this violation can be considered a false positive by the
expert. For example to express the presence of several concepts
in the same hierarchy (See Section 2.6).

Lessons drawn. There was no consensus on the identification
of the classes to rename even if the majority of classes to rename
were identified by at least two experts. However, (1) during the
meeting, the experts agreed to rename almost all the identified
classes, and (2) they systematically proposed the same name in
case of renaming. Indeed, participants had the same logic when
proposing new class names, following the suffix vocabulary
used in the class hierarchy.

It was also interesting to see during the experiment that some
experts identified not only inconsistencies in class naming but
also errors in design. For example, currently the Tag and Prop-

erty hierarchies are mixed. One expert proposed to rename all
properties to tags whereas another considered that it should not
be an inheritance, but a composition between Tag and Property.
Such errors in design are more difficult to repair. We did not
anticipate them, but we are pleased if the tool can also help in
that.

7.1.2. Roassal-3 Experience Feedback. Roassal is an
open-source visualization engine developed in Pharo. It forms
part of the Moose project to script interactive visualizations.
Roassal focuses on physically shaping digital data for further
analysis (Araya et al. 2013). The Roassal project consists of
326 classes organized in 24 packages. Figure 7 presents its
visualization.

In this experiment, the three practitioners changed the root
class from Object to RSObject. Indeed, almost all classes of
the Roassal project inherit from RSObject, which plays the
role of the root class for the whole project. Hierarchies in this
project are built from RSObject and not directly from Object.
Consequently, naming conventions are adopted from there.

Proposed renamings. There were a total of 39 renamings.
Looking at the screen records from this experience, participants
were all intuitively interested in classes of the RSInteraction
hierarchy (in yellow in Figure 7) which had scattered vocab-

14 Nour Jihene Agouf et al.

ulary and was proposed to be renamed eventually to use only
one suffix Interaction. This hierarchy consists of 45 subclasses,
including five that already had the Interaction suffix, 27 classes
that were renamed to use this suffix, and 13 classes that re-
mained the same – without the Interaction suffix (see below for
an explanation).

Another hierarchy that had very scattered vocabulary was
the RSEvent one (in red in Figure 7): neither mouse nor key
events use the Event suffix contrary to the other classes of the
same hierarchy. These classes have not been renamed but only
moved to a new Roassal3-Events package.

In the Layout hierarchy (in blue in Figure 7), three classes
make the hierarchy inconsistent: RSAbstractCompactTree (in
the first package of the first row), RSSunburstExtentStrategy
and RSSunburstConstantWidthStrategy (fifth package of the
3rd row) have been renamed to adopt Layout, the suffix of the
root class of the hierarchy. Here, it is not an addition of the
suffix or a change in the order of the words composing the name
of the classes that have been performed, but a change to use the
suffix of the root class. Conceptually, the classes were strategies
and become layouts, illustrating a real issue in their naming.

Furthermore, the hierarchy root class RSAbstractChart-
Element (in purple) was not only badly named and should
use the suffix Plot instead, but needed to be decomposed since
it contained a sub-hierarchy using the suffix Tick. Tick and Plot
are two different concepts and need to be in two separate hier-
archies. RSAbstractChartElement has been indeed renamed
to RSAbstractChartPlot and its decomposition has been dis-
cussed and taken under consideration for future versions of the
software.

From an architectural point of view, they have also moved
the mono-classes in the first RLayout package to a new package
called Roassal3-Layout-Utils, because these classes are not
used alone but were created to serve other layout classes. In
addition, the RSAbstractTick class should not inherit from RS-
AbstractChartElement.

Lessons drawn. The experiment was also the occasion to see
that obsolete classes of another version of Roassal were still
present in the code. The tool helps the developers to identify
these errors based on class name inconsistencies but these errors
can only be identified by experts of the projects. Indeed, our
visualization is not focusing on the identification of obsolete
classes and without prior knowledge, it is uncertain that a non-
expert would identify them.

The brown hierarchy in the third package of the first row
follows the scattered pattern. All the classes inherit from the
RSObjectWithProperty class that plays a bit the role of a root
class, (i.e., classes of different concepts inherit from RSObject-
WithProperty). However, for the moment, our tool enables the
user to declare only one root class (besides from Object). It is
part of our future work to enable the user to declare several of
them. Nevertheless, in that case, some experts were not sure
whether the brown classes should inherit from RSObjectWith-
Property or if these properties should be added through stateful
traits (Tesone et al. 2020).

As mentioned before, some renamings of the RSInteraction

or the RSEvent hierarchies were not finally adopted by project
maintainers. The reasons were different according to the cases.
First, there is a lot of documentation for some of these classes.
Consequently, renaming these classes would have a conse-
quence on the documentation, which is not directly taken into
account by the refactoring tool, and would have required more
work to keep the documentation up to date. Second, the experts
of the project wanted to keep the class names simple and short.
We could not confirm if it is really simpler for a non-expert of
the library when the suffix representing the concept embedded
in the class is omitted. The experts were more familiar with
the old names; they were reluctant to adopt some changes. Fi-
nally, they did not want to take the risk of changing these class
names when many other projects depend on them, even if Pharo
supports class deprecation.

An important point reported by the experts was that our tool
allowed them to discuss their software, assessing some of their
design decisions. This triggered points such as the use of old
classes that they were not aware of anymore. They liked the
idea to get an overview of the class names from a packaging
point of view.

7.1.3. Stargate and Willow. Stargate is a library supporting
the creation of HTTP-based RESTful APIs. It is composed of 18
packages and 151 classes. Willow provides a simple interface
to develop web applications, no matter the chosen front-end
framework. It consists of 234 classes and two packages. These
two projects are developed by Buenos Aires Smalltalk under
the MIT license. One expert accepted to use our tool on these
two projects.

Proposed renamings in Stargate. There was a total of 12
renamings for Stargate and 12 for Willow. Globally, classes in
Stargate were initially pretty well-named as shown in Figure 8.
Indeed, there are seven multi-spfix hierarchies. Among them,
there is the Test hierarchy (in red), which is fully consistent but
as for the other Pharo projects appears as a multi-spfix hierarchy
since the root class suffix is Asserter.

The Sharing hierarchy (in orange) has only one class that
inherits from a class with another suffix. However, this root
class exists outside the project. Consequently, no renaming has
been proposed here.

The Provider hierarchy (in purple) has as root class Metric-
Provider, which has been renamed to MetricsProvider, and four
subclasses had Metrics as suffix. These four classes have been
renamed to add Provider as suffix. For example MemoryMetrics
became MemoryMetricsProvider. In parallel, the associated
test classes have been renamed: MemoryMetricsTest became
MemoryMetricsProviderTest. Consequently, the Provider hier-
archy is consistent, after these renamings.

The two classes of the first package with the suffix
Behavior (ResourceLocatorBehavior and RESTfulRequest-
HandlerBehavior) have been renamed respectively to Abstract-
ResourceLocator and AbstractRESTfulRequestHandler. Con-
sequently, the two hierarchies Locator and Handler became
consistent.

Finally, CriticalHealth (in blue) has been renamed to Critical.
This renaming does not make the hierarchy consistent in terms

Understanding Class Name Regularity 15

Provider hierarchySharing hierarchy

Locator hierarchy

Handler hierarchy

CriticalHealth hierarchy

Metric hierarchy

Figure 8 The ClassName Distribution of the Stargate project.

of the used suffix. However, it is deliberate from the expert of
the domain to keep the names as such since the first word is the
most relevant.

When investigating why the yellow Metric hierarchy has not
been touched, the maintainer explained that classes Gauge and
Counter had exact proper names in the modeling context. How-
ever, the other classes that use the Metric suffix (LabeledMetric
and TimestampedMetric) either add metadata over the others
or act as a composition of other metrics (CompositeMetric), so
in that sense are generic and hence justify the Metric suffix.

Proposed renamings in Willow. In the Willow project, the
GRObject class serves as a root class for several sub-hierarchies.
It ensures consistent initialization behavior on all platforms and
provides error methods that signal an instance of WAPlatform-
Error. It has been added as a root class for the project.

Three hierarchies used the Behavior suffix but only a few
classes of these hierarchies share this suffix making the hierar-
chies inconsistent.

One of them inherits from GRObject and has three sub-
classes. The maintainer of Willow chose to delete in the
name of three of them the Behavior suffix. For instance,
SingleSelectionWebViewBehavior became SingleSelection-
WebView. However, for the WebInteractionInterpreter-
Behavior class, he deleted the Behavior suffix and added the Ab-
stract prefix to identify this class as an abstract class. In addition,
the test class associated to SingleSelectionWebViewBehavior
has also been renamed to SingleSelectionWebViewTest.

WebTableColumnRendererBehavior is the root class of an-
other hierarchy containing a unique subclass WebTableColumn-
Renderer. Once again the suffix Behavior was deleted from the
root class and the prefix Abstract has been added. The hierarchy
of this class is now fully consistent.

The third hierarchy is the one of the EventInterpreter-
DispatcherBehavior root class. None of its subclasses use
this suffix. Consequently, the expert decided to remove the
Behavior suffix of this root class. Nevertheless, when renaming
this root class, the maintainer also had to rename its subclass
EventInterpreterDispatcher to avoid a name clash between two
classes of the same package. The maintainer renamed the sub-
class into SingleEventInterpreterDispatcher, adding the Single
prefix.

Finally, another hierarchy that had inconsistent naming was
the TriggeringPolicy hierarchy. This five-class hierarchy had
two classes with the Policy suffix, while the rest used the Trigger
suffix. The maintainer followed the Policy naming convention
therefore the three remaining classes were renamed to use the
Policy suffix instead of Trigger. Consequently, this contributed
to the full consistency of the hierarchy.

Lessons drawn. In contrast to the two previous projects, this
experiment highlighted only inconsistencies in class naming
and no errors in the design.

If in Pharo, the suffix defines the concept, it appears that in
some cases, the names inside a hierarchy have to stay incon-
sistent in the sense that their spfixes are not unique within the

16 Nour Jihene Agouf et al.

hierarchy. In those cases, the different values of the last word of
the name are more important than keeping consistencies inside
the hierarchy. This is the case for the purple hierarchy in the
Stargate project.

Whereas for the other projects the inconsistencies were
mostly resolved by adding a new spfix (suffix in those cases),
in Stargate and Willow the inconsistencies have been mostly
solved by deleting the suffix.

Some renamings may lead to other renamings. Indeed, if
there is a kind of naming consistency inside the hierarchies,
there is another one between a class and its associate test class.
Consequently, when renaming the class, the test class is also
renamed even if it already has the suffix Test and is consistent
inside its own hierarchy.

7.2. Protocol for experiment with Non-Domain Expert /
Visualization Experts

Protocol. The purpose of this experiment is to check if users
of our tool can easily identify inconsistencies in class names
without having any knowledge about the system architecture or
the system naming convention. For this setup, no explanation
of the tool is useful because the users are tool experts (authors
of the paper). Each expert used the tool separately on each
project. Then a discussion followed to lead to a consensus. A
pull request was made by a single tool expert for each retained
renaming proposal. The developers or maintainers of the project
then accepted or did not the renaming as any other pull request.

Choice of the project. We chose two Pharo projects in produc-
tion with the following criteria: (i) none of the two tool experts
should have worked on the project before; (ii) the projects
needed to be diverse in terms of size, domain, and development
team. This led to the choice of Spec, a UI Builder framework8

and Morphic, a graphics and widget library that are part of
Pharo9 projects.

Two of the authors applied the visualization to both of these
projects, then simply made pull requests on their GitHub reposi-
tories. Most of the pull requests were accepted by the domain
experts who found these changes relevant.

7.2.1. Spec Project. Spec is a framework in Pharo for de-
scribing user interfaces. It allows the construction of a wide
variety of UIs from small windows with a few buttons up to
complex tools such as an advanced debugger (Fabry & Ducasse
2017). The Spec2.0 project consists of 795 classes.

We applied the ClassName Distribution to the Spec v2 beta
project and proposed an overall of 34 class renamings. All
but two were accepted: one class was SpTestApplicationWith-
Locale which inherits from SpApplication. This class imple-
ments a method locale returning the current locale of the un-
derlying platform running Pharo. Spec developers considered
the proposed name (i.e.,SpWithLocaleTestApplication) inad-
equate and after further discussions preferred to keep the old
name because it stresses the use of the locale variable which
they consider more important. The second refused pull request

8 hosted at http://github.com/pharo-spec/spec
9 http://github.com/pharo-project/pharo

was about the naming of the class Announcement. The An-
nouncement hierarchy renaming was not accepted because
Announcement followed a different naming pattern convention
based on the past tense of the last word e.g.,FocusChanged and
not FocusChangedAnnouncement.

Our analysis was made on the Spec 2.0 beta version of the
project. The main developer was more inclined to clean his code
and offer its users better and more consistent names. No real
documentation such as books and tutorials was already widely
written and distributed. This probably eased the adoption of our
suggested changes.

7.2.2. Morphic Project. Morphic is the name given to the
Pharo graphical interface. Morphic was initially developed by
Maloney and Smith for the Self programming language, starting
around 1993. Maloney later wrote a new version of Morphic
for Squeak. Even if the basic ideas behind the Self version are
still alive and well in Pharo Morphic, the project has evolved
over the years.

In its current version, the project consists of 405 classes
spread over 20 packages. Concerning the hierarchies, there are
relatively few. Some small hierarchies are homogeneous. There
are three big hierarchies that are not homogeneous. The Morph
hierarchy is spread over several packages and suffixes. Ten
classes were proposed to be renamed to remove inconsistencies
and eight unnecessary suffixes.

Inside this hierarchy, the class WindowMorph was shortened
to Window, thus not following the superclass suffix. Our pro-
posal to rename it to WindowMorph was refused because the
expert considered that because it belongs to the Morph hierarchy
it is obviously a morph and that he wanted to keep the class
name short. Consequently, four classes, subclasses of Window,
were not renamed.

The Announcement hierarchy adopts a scattered vocabulary
pattern exactly as in the Spec project. A further 29 classes
are concerned but are not proposed to be renamed for the same
reason the classes were not renamed in Spec; the naming pattern
is different. There are some classes with the Wrapper suffix.
The mix between Model and Wrapper inside the hierarchy is
not clear for a non-expert of the domain. However, as already
seen in other projects the notion of wrapper introduces a kind
of decorator and seems to be an accepted naming inconsistency.

Finally, the class CalendarDayMorph is a mono-class, with
the Morph suffix. It is certainly a design mistake that it does
not inherit from the Morph class since it shares some instance
variables with it. It was easy for a non-expert of the domain
to discover such an issue since it is manifested by a white box
inside a colored spfix box.

In total, 15 renamings have been proposed and accepted.

7.3. Effective Class Renaming

Table 1 sums up these two experiments by gathering for all
projects the number of classes that have been renamed using the
ClassName Distribution tool.

Understanding Class Name Regularity 17

http://github.com/pharo-spec/spec
http://github.com/pharo-project/pharo

Table 1 Number of classes and renamed classes per project.

Project #classes #renamings
Calypso v8 716 91
Roassal 326 68
Spec 795 34
Morphic 403 15
Stargate 151 12
Willow 234 12

8. Quantitative Evaluation
We applied the ClassName Distribution visualization to a set
of 50 Java projects. We discuss in this section how we chose
these projects. We then discuss the occurrences of the visual
patterns with regard to the global Java naming patterns. Next,
we discuss correlations between the metrics of the visualization.

8.1. Choice of the projects
For the quantitative evaluation of the tool, we wanted to use the
tool on representative Java projects. For this purpose, we have
set up the GitHub advanced search to select projects with more
than (i) 1000 stars, (ii) 50 forks and 5,000 KB. The number of
stars and forks ensure us that the project is used or accepted
by the community. The size in KB gives us an indication of
the size of the project. Some of the projects are currently still
being maintained. The number of Java classes per project is in
a range of 179 - 13,653, with a median of 1,711.5 classes and
206.5 packages. Table 2 summarizes the data extracted from
the selected Java projects.

8.2. Protocol
After selecting the projects, we clone each project from its
GitHub repository. We then create their ClassName Distri-
butions and export all metrics such as the number of classes,
spfixes, types of hierarchies, hierarchy patterns as well as sp-
fix pattern occurrences into a CSV file. Since the sizes of the
projects are very different, some metrics are scaled to a percent-
age in the following way:

– Number of mono-spfix hierarchies (homogeneous), multi-
spfix hierarchies, hierarchies with a scattered vocabulary
and nearly homogeneous hierarchies are scaled to the
global number of hierarchies,

– Blobs, Confetti, Intruders, Snowflakes and the suspicious
spfixes are scaled to the global number of spfixes in the
project

– Multi-spfix classes, mono-spfix classes and mono-classes
are scaled to the number of classes in the whole project

Finally, we generate a heatmap using Pearson’s correlation
between the metrics to gain a better insight on the relation
between the visualization and software metrics.

8.3. Java Projects Visual Patterns Analysis
Table 2 gathers some metrics concerning the projects. In ad-
dition to the names of the projects, we provide information

about their size (with the number of packages and the number
of classes), the hierarchies (with the average number of chil-
dren per class, the average depth in the inheritance tree and the
number of hierarchies) and the patterns (with the percentage of
mono-classes MC, the percentage of homogeneous hierarchies
H, the percentage of nearly homogeneous hierarchies NH, and
the percentage of the scattered vocabulary hierarchies SV).

Hierarchies. The analysis of the selected Java projects with
regard to hierarchies shows:

– Size of the hierarchies: The average number of children
goes from one to 121. In addition, the average number
of inheritance levels ranges from one to six. These two
columns show that the inheritance and thus the hierarchy
notion is used differently according to the projects.

– Mono-classes: Only five projects have less than 50% of
mono-classes. In contrast, five of the selected projects have
more than 90% of mono-classes. These two observations
show that many classes are mono-classes and thus that the
number of classes inside hierarchies is often smaller. Our
tool is relevant only for those classes.

– Homogeneous: Half of the projects in our dataset have
more than 80% of hierarchies using the same spfix, in-
cluding six projects with more than 95% of homogeneous
hierarchies. This means that indeed Java projects follow
inheritance naming conventions, by dropping the descrip-
tion of the hierarchy behavior in the names of subclasses
(either in the suffix or prefix position).

– Multi-spfix hierarchies: With regard to the two most re-
current patterns representing multi-spfix hierarchies, half
of the projects have fewer than 8% of hierarchies intro-
ducing a new spfix (nearly homogeneous), which is close
to the median of the scattered vocabulary with a value of
9.5%. Their presence indicates small violations of naming
conventions that can easily be corrected.

Visual patterns. For the sake of space, Table 2 provides only
general data about the projects without entering into the details
of the visual patterns. However, complete data are available10

and the analysis of the selected Java projects with regard to the
visual patterns shows:

– Use of visual patterns: Even if all the visual patterns do
not appear in each project, globally they appear for the
Java projects as we already show it for the Lucene project
in Section 5.

– Intruders, Blobs and Confetti: The percentages of In-
truders, Blobs and Confetti are very small (between 0%
and 1%).

– Snowflakes: The median value of snowflake spfixes from
the dataset is more than 20%, with a maximum value of
40%. This is reasonable compared to the median percent-
age of mono-classes which is more than 70%. This means
that only 30% of classes are defined in hierarchies. The
fact that more than half of the classes do not belong to any

10 https://github.com/NourDjihan/ClassNamesDistribution-PaperData/
blob/master/JavaProjects/JavaProjects.csv

18 Nour Jihene Agouf et al.

https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \ blob/master/JavaProjects/JavaProjects.csv
https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \ blob/master/JavaProjects/JavaProjects.csv

Table 2 Quantitative analysis of Java projects. MC refers to Mono-classes, H to Homogeneous hierarchies, NH to Nearly Homo-
geneous and SV to Scattered Vocabulary. (Projects are ordered by their number of classes)

name #packages #classes avgChildren avgDepth #hierarchies %MC %H %NH %SV
elasticsearch 1,416 13,653 67 5 467 59.8 64.4 17.3 18.2
flink 1,193 9,154 59 6 404 71.7 81.6 8.9 9.4
hadoop 799 8,183 19 3 715 66.1 88.8 4.8 6.2
openSearch 594 6,627 41 4 266 60.5 64.6 16.9 18.4
sonarqube 645 6,075 37 2 129 82.0 82.1 8.5 9.3
geoserver 655 5,791 26 3 321 64.9 83.4 7.1 9.3
springframework 613 4,794 11 2 223 82.9 92.8 2.2 4.9
druid 321 4,784 121 3 43 44.7 53.4 13.9 32.5
keycloak 776 4,744 38 4 230 61.7 83.4 6.9 9.5
springboot 864 4,325 9 2 91 90.5 96.7 2.1 1
orientdb 439 3,966 40 3 144 57.9 75.6 7.6 16.6
skywalking 1,038 3,267 17 2 112 77.1 84.8 6.2 8.9
jobjc 414 3,014 19 2 111 77.7 81.9 8.1 9.9
cassandra 154 2,533 14 3 129 74.2 78.2 5.4 16.2
pmd 241 2,472 48 3 81 47.2 61.7 13.5 24.6
spotbugs 200 2,347 3 2 70 91.2 70 15.7 14.28
gobblin 403 2,328 4 3 172 76.5 87.2 6.3 6.3
plantuml 228 2,315 32 3 82 49.3 58.5 10.9 30.4
Activiti 354 2,308 23 3 92 66.5 90.2 5.4 4.3
pulsar 343 2,289 23 3 105 71.9 84.7 5.7 9.5
storm 368 1,908 14 2 93 79.8 80.6 9.6 9.6
optaplanner 732 1,883 24 3 65 61.5 95.3 0 4.6
dubbo 467 1,863 8 3 95 74.3 86.3 6.3 7.3
jpexsdecompiler 213 1,811 44 3 86 40.5 65.1 18.6 16.2
mapstruct 534 1,746 5 2 77 86.6 79.2 7.7 12.9
languagetool 189 1,677 30 3 53 58.3 88.6 3.7 7.5
jenkins 123 1,437 10 3 71 75.8 73.2 9.8 16.9
javaparser 126 1294 26 5 34 65.4 67.6 20.5 11.7
jstorm 263 1,289 13 2 70 73.3 72.8 11.4 15.7
nacos 279 1,178 9 2 56 74.7 87.5 0 12.5
exoPlayer 93 967 4 2 26 89.8 96.1 3.8 0
jadx 119 932 53 3 24 37.2 79.1 4.1 16.6
bytebuddy 53 896 11 2 24 79.4 95.8 0 4.1
yacysearchserver 105 858 7 2 41 81.8 65.8 19.5 14.63
lettucecore 85 755 17 2 37 65.6 78.3 10.8 10.8
maven 145 727 6 2 47 73.5 89.3 4.2 6.3
micrometer 93 566 12 2 11 78.9 72.7 9.1 18.1
osmdroid 93 477 19 2 17 57.4 76.4 17.6 5.8
arthas 93 474 12 2 18 70.8 77.7 16.6 5.5
dataX 164 460 10 2 25 70.4 96.0 0 4
Servicecomb 116 446 4 2 18 83.63 44.44 50 5.55
guice 42 419 2 2 8 91.8 87.5 12.5 0
javassist 42 415 7 2 14 79.5 42.8 28.5 28.5
conductor 121 401 5 2 18 75.5 72.2 5.5 22.2
halo 82 400 8 2 24 71.0 83.3 4.1 12.5
wechat 27 234 6 2 4 83.7 75.0 0 25
baritone 71 213 7 2 14 53.5 78.5 21.4 0
jsonschemapojo 29 192 1 1 4 94.7 100 0 0
processing 43 190 2 2 18 74.7 88.8 11.1 0
cryptomator 31 179 1 1 2 97.2 100 0 0
median 206.5 1,711.5 12.5 2 67.5 73.9 81.1 7.7 9.5

Understanding Class Name Regularity 19

hierarchy raises questions about the usage of inheritance
and polymorphism in Java but this is outside the scope of
this article (Tempero et al. 2008).

– Scattered vocabulary: In the projects of the dataset, the
percentage of the hierarchies with a scattered vocabulary
ranges from a total absence to more than 30%, with a 9.5%
median. It may not only indicate inconsistencies in class
names but also presumably architectural inconsistencies,
that can be spotted when the used spfixes do not make
sense when put together in the same inheritance tree.

Details. Two projects (cryptomator and jsonschemapojo) have
an average number of children and an average depth of inher-
itance tree equal to one. These two projects have respectively
two and four hierarchies with a total number of classes of 179
and 192. Inheritance and polymorphism are perhaps underused
and our tool obviously does not detect naming inconsistencies
since it is based on respecting conventions within hierarchies.

One project (Javassist) has less than half of its hierarchies
being homogeneous. It also has the biggest percentage of nearly
homogeneous hierarchies. A deeper analysis would be useful
for this project since the number of classes is reasonable (i.e.,
415) and on average the hierarchies are not large.

8.4. Correlations between metrics

The heatmap of the correlations11 between the metrics showed
some intuitive results. The simplest correlation can be found
between packages, classes, and spfixes. Indeed, the correlation
is positive, so the more packages a system has, the more classes
it contains and the more spfixes are used. These spfixes are
indicators of the system vocabulary and thus of the services that
the system provides.

A positive correlation (0.84) exists between classes of multi-
spfix hierarchies and Blobs. The more classes there are in
multi-spfix hierarchies, the more Blobs the project contains.
Knowing that Blobs are a group of seven or more classes of the
same hierarchy using the same spfix, this is considered a good
indicator that classes of multi-spfix hierarchies usually use the
same spfix or extend the use of the main spfix, and continue
following the naming convention.

A positive correlation exists between suspicious spfixes and
average children. The suspicious spfixes refer to spfixes which
are neither used by (i) the root class nor (ii) most classes of the
hierarchy. The more children a hierarchy has, the higher the
probability of introducing new vocabulary, and hence inconsis-
tencies.

Another positive correlation between multi-spfix hierarchies
and both nearly homogeneous and scattered vocabulary sup-
ports the previous correlation. Since spfixes of nearly homoge-
neous and scattered vocabulary are treated as suspicious spfixes.
A new vocabulary has probably emerged when new classes
were added. In some cases this is not a problem however, it
may also indicate violations of the naming convention or false
inheritance.

11 Available online https://github.com/NourDjihan/ClassNamesDistribution-
PaperData/blob/master/JavaProjects/JavaProjectsHeatmap.png

The last correlation is a negative correlation between mono-
classes and the average of children per project. Indeed, when a
project contains more mono-classes, the inheritance is not used
often which decreases the number of children per hierarchy.

We expected a positive correlation between the number of
mono-classes and the number of spfixes. The absence of this
correlation strengthens our hypothesis of missed opportunities
to group mono-classes in hierarchies.

9. Discussion

Here we discuss some aspects of the proposed visualization.

9.1. About colors and sizes

During the design of ClassName Distribution, we experimented
with several features:

– To convey the depth of a class in its inheritance hierarchy
we used its size (the smaller, the deeper). This added more
information but proved too cumbersome to interpret.

– At first, every hierarchy had a color, even the homogeneous
ones. The result was a flurry of colors, very distracting and
drawing attention to the homogeneous hierarchies while
the focus should be on consistency violations.

– There is a limited number of distinguishable colors on a
screen. We chose a limit of 24 colors.

9.2. About Prefix and Suffix

Our analysis of several Pharo points to a general adherence to a
suffix convention–see also the work of Butler et al. (Butler et
al. 2011b). Concerning the Java projects, we observed that box
prefixes and suffixes can be used inside the same project. Our
tool automatically selects the prefix or the suffix according to
the algorithm detailed in Section B.2.

The automatic identification of the spfix enables the user to
gain time considering that she does not have to manually specify
it. However, sometimes the numbers of occurrences of prefixes
and suffixes are the same inside the hierarchy and the number
of siblings is also the same. In addition, sometimes the same
word can be used both as a suffix or as a prefix possibly inside
the same package, such as Test. The tool arbitrarily chooses the
prefix or the suffix, but the user can set it manually.

9.3. About Blurry Domains

Some domains seem to naturally lead to non-homogeneous
hierarchies. The Morph concept is one of these. A Morph is
its own model. While the MVC pattern clearly separates the
responsibilities, Morphs tend to blur the distinction. Therefore,
the class Browser in Calypso, which could be understood as a
model of a code browser, can be implemented as a subclass of
Morph. This makes the code more difficult to understand since
the reader should always keep this in mind. Developers could
change the class suffix (i.e., Browser in BrowserMorph). Our
visualization highlights such issues and lets developers consider
their naming conventions.

20 Nour Jihene Agouf et al.

https://github.com/NourDjihan/ClassNamesDistribution-PaperData/blob/master/JavaProjects/JavaProjectsHeatmap.png
https://github.com/NourDjihan/ClassNamesDistribution-PaperData/blob/master/JavaProjects/JavaProjectsHeatmap.png

9.4. About Changing the Root Class
In some projects, designers decided to introduce a root class
for a part or the whole project. Such cases occur when the
hierarchies are large or deep, describing several concepts but
with a common ancestor. Our tool considers that option. Speci-
fying a new root class reduces the noise in the visualization and
removes from the analysis very abstract classes like Object or
RSObject.

However, the tool allows users to specify only one additional
root class. The users need to choose the one that introduces the
most noise to remove it. In future work, we plan to introduce
the possibility for the user to add several root classes.

9.5. Renaming and Inconsistencies
Our tool enables the users to identify inconsistencies in class
naming inside hierarchies. The experiments performed with
experts of the domain or of the tool have shown that this is
helpful. However, even a consistent hierarchy can be renamed.
The hierarchy is consistent but the chosen spfix is not adapted
or expressive enough. This is for example the case of classes
that, in Calypso until v8, end with P1, P2... as suffixes (classes
in the two last rows of packages) in Figures 3 and 5. In version
v9, Figure 6, these classes have been renamed with Mock, a
more evocative suffix. The name of the spfix on top of the
corresponding box in the visualization can help to identify such
cases.

9.6. Threats to Validity
There are several validity threats to the design of our experi-
ments.

Internal Validity: Is there something inherent to how we col-
lect and analyze the data that could skew our findings? Regard-
ing the tool, we used it both on Pharo and Java projects. Both
ecosystems have different cultures regarding inheritance use and
naming conventions. Pharo projects tend to have classes more
structured in hierarchies. Our experience with Java projects
showed a lot more mono-classes. Our tool supports different
naming cultures by enabling the user to choose a visualization
taking into account prefix, suffix, or both spfixes. The pres-
ence of interface implementation (Java), trait usage (Pharo), or
multiple inheritances (C++) should also be assessed.

Regarding the experiments with users (Domain Expert / Tool
Learners and Non-Domain Expert / Tool Experts), in fine, they
both required access to experts because, in the end, the proposed
renaming should be accepted. Due to the size of the community
and our access to Pharo experts, we performed these experi-
ments only on Pharo projects. They have illustrated how our
tool can help even experts of the domain to identify inconsisten-
cies in the class naming. With the quantitative experiment done
on Java projects, we show that the visual patterns also occur in
projects of this language.

External Validity: Are our results generalizable for practice
modernization? Concerning other object-oriented languages
than Pharo and Java such as Python or C++, we did not apply
our tool because we do not have yet a parser to have the abstract
model of the project. The approach itself can be applied to

software written in any object-oriented programming language
as long as there is a naming convention supporting the identifica-
tion of words composing the class names: the uppercase letters
in our case or a separator between words in a snake format.

Regarding the number of experiments, we are aware of the
fact that we experimented on only a few projects. However, even
if it is easier to access experts in the Pharo community, they have
to be available. The presented projects are real-world, reason-
ably sized projects with a couple of hundreds of classes, many
contributors, a long history, and very different domains. We
tried to compensate for this threat by evaluating different setups
with two qualitative and one quantitative analysis. Concerning
the quantitative experiments, we clearly explained how the Java
projects were chosen and provided results for 50 projects. Yet
as all experiments on software systems, more cases should be
considered and analyzed.

Reliability: To what extent can the results be reproduced when
the research is repeated under the same conditions? We pro-
vided users the link to the tool GitHub repository for further
usage, as we also explained each and every configuration of the
tool. Furthermore, we described the algorithms used to imple-
ment our approach in Section 11. For reproducibility purposes,
we ordered packages, spfixes, and classes alphabetically, by
size, and by color for the spfix boxes. The interaction of the
tool may have an impact on its users. We tried to minimize
such aspects by limiting the interactions to the essential and we
described it in the Appendix.

10. Related Work
This paper addresses the problem of class name consistency
over hierarchies and packages. It proposes a visualization called
ClassName Distribution to gain an understanding of the class
name consistency within their hierarchy and scoped by packages.
While there is a large body of work on identifiers, our work
focuses on providing compact visual maps about the consistency
of class names but structured around packages. We report works
around visualizations, identifiers, and concept location, even if
the last ones are not directly connected to our work.

10.1. Visualizations
There is an extensive body of work related to the program
visualization (Stasko et al. 1998; Ware 2000; Spence 2001; von
Landesberger et al. 2011; Caserta & Zendra 2011; Merino et
al. 2019). Kienle and Müller (Kienle & Müller 2010) present
requirements for reverse engineering tools and their evaluation.

Class Visualization. Lanza’s Polymetric views enrich simple
program visualizations such as inheritance trees with metrics
(Lanza & Ducasse 2003). In Polymetric views, the shape of
the classes can represent class metrics such as the number of
instance variables, methods, and lines of code. Class Blueprint
visualizes the implementation of a class in terms of method
calls and field accesses – in addition methods are annotated
with colors giving semantical information about the methods
(Ducasse & Lanza 2005). Churcher et al. used 3D to visualize
class cohesion (Churcher et al. 2003). Fernandez extended

Understanding Class Name Regularity 21

VisualIDs as a glyph technique to cope with structural software
elements. The authors use them to identify classes with the
same dependencies and classes with a similar set of methods
(Fernandez et al. 2016). Glyph could be used to convey class
identifiers but our proposal is more compact.

Package visualization. Several articles provide or visualize
information on software files, classes and/or packages. Many
of these approaches address software co-change, looking at
coupling from a temporal perspective (Beyer 2005; Eick et al.
2002; Froehlich & Dourish 2004; Storey et al. 2005; Voinea et
al. 2005; Xie et al. 2006), whereas in this paper we focus on
finding class name inconsistencies. Abdeen et al. (Abdeen et
al. 2014) focus on understanding the fan in-out dependencies of
packages to help split them.

Distribution Map (Ducasse et al. 2006) is a project level vi-
sualization showing how a given property (such as authors or
commits) spreads into a system. The ClassName Distribution
shares the scalability of the approach and the idea not to display
relationships. Ducasse et al. present Butterfly (Ducasse et al.
2005), a radar-based visualization that can be used to present the
values of several package metrics (e.g., the number of classes,
the number of incoming and outcoming dependencies for a pack-
age), but only gives a high-level abstract view of the package
structure.

Evolution. Chuah and Eick (Chuah & Eick 1998) use rich
glyphs to characterize software artefacts and their evolution
(number of bugs, number of deleted lines. . .). D’Ambros et al.
(D’Ambros & Lanza 2006) propose an evolution radar to depict
the package coupling based on their evolution. The radar view is
effective at identifying outliers but does not detail the structure.
Pinzger et al. use Kiviat diagrams to present the evolution of
package metrics (Pinzger et al. 2005).

Identifier clustering and visualization. Kuhn et al. (Kuhn
et al. 2007) use information retrieval to exploit linguistic in-
formation found in source code, such as identifier names and
comments. They introduce Semantic Clustering, a technique
based on Latent Semantic Indexing and clustering to group
source artefacts that use similar vocabulary. They interpret such
clusters as linguistic topics that reveal the intention of the code.
They compare the topics to each other, identify links between
them and provide automatically retrieved labels. They propose
a correlation matrix-based visualization to show how the lin-
guistic topics are distributed over the system. While the basis
of their work takes as input identifier names and comments,
the clustering and the correlation matrix introduce a distance
between the visualization and the physical location in the code.
This makes the results difficult to comprehend. In addition, they
do not help one to understand the consistency of class names
within a hierarchy.

Yano et al. (Yano & Matsuo 2015) adapted TF-IDF (a
frequency-based information retrieval filtering technique that
extracts characterizing words for a document in a group of docu-
ments) and extended SArF (Kobayashi et al. 2013), a CodeCity
like 3D (Wettel & Lanza 2007) visualization, and proposed bet-
ter map labelling. Their visualization is related to lemmas of

class/method names. But this visualization does not help one to
understand the inconsistencies in class names.

Other. Marcus et al. (Marcus et al. 2003) propose a matrix-
based representation of files. Each dot represents a line, and its
color conveys one kind of semantic information (if statement
for example). They propose a 3D version of the matrix-based
structure. The idea behind the matrix-based presentation is to
be able to offer a compact representation of code. Anslow et
al. (Anslow et al. 2008) present a short paper on class name
visualizations: they use a tag cloud to compare class words used
in class names of Java 1.1 and 16 and a tree map of the ordering
of words used in class names of the Java API specification.

Assessing the usefulness of a visualization is a difficult task.
From a methodology perspective, and to evaluate data visualiza-
tion, Elmqvist et al. (Elmqvist & Yi 2015) proposed a pattern
language that describes various challenges faced during visual-
ization validation. They present 12 patterns classified into three
categories: study-level, method-level, and trial-level.

10.2. About class names
Butler et al. did several studies around identifiers. In 2009,
they (Butler et al. 2009) found that flawed identifiers in Java
classes were associated with low-quality source code according
to static analysis. They provide a list of naming style violations
(capitalisation anomalies, consecutive underscores, dictionary
words, excessive words, external underscores, type encoding,
long identifier name, naming convention anomaly, number of
words, numeric identifier name, short identifier name) and cor-
related violations as found in FindBug reports. While their
work correlates bugs to class names, they do not support the
understanding of a naming convention and its violation within a
hierarchy, and in the presence of packages which can impose
local naming conventions or the creation of subconcepts. In
2010, they (Butler et al. 2010) extended their previous work
on class name analysis to method identifiers: they investigated
whether method identifier quality correlates to low quality. They
propose diagnostic tests to identify which particular identifier
naming flaws could be used as a lightweight diagnostic of poten-
tially problematic Java source code for maintenance. In 2011,
they (Butler et al. 2011a) propose an automated way to tokenize
identifier names.

In the same year, the same authors (Butler et al. 2011b) stud-
ied the class naming conventions. As such they are really related
to the visualization presented in this article. They identified con-
ventional patterns found in the use of parts of speech. Secondly,
they identified the origin of words used in class names within
the name of any superclass and implemented interfaces to iden-
tify patterns of class name construction related to inheritance.
They analyzed 120,000 unique class names of 60 projects and
investigated with one project whether classes following uncon-
ventional naming schemes should be subject to renaming. They
used a PoS (part of Speech) tagger and identified the patterns by
which component words from the superclass or implemented
interfaces are repeated in class identifier names.

The visualization presented in this article displays and
stresses the regularity in name suffixes. However, our visu-

22 Nour Jihene Agouf et al.

alization uses the same patterns and focuses on the relationship
between a class and its superclass focusing on the suffix.

Singer and Kirkam (Singer & Kirkham 2008) identified a
link between Java class names and the micro-patterns found
in the implementation using the approximation that Java class
names are of the form JJ*NN+, where JJ represents an adjective
and NN a noun. The link was based on the assumption that the
rightmost noun is an indicator of the class implementation, and
no detailed analysis of the class identifier names was undertaken.
Our work does not offer an analysis per se but helps one to spot
the deviations from the conventions while taking into account
that a hierarchy can spawn multiple packages.

Identifier naming conventions were used by Abebe et al.
(Abebe et al. 2009) to identify smells. The smells are predicated
on deviations from suggested identifier naming conventions that
arise from programming conventions, and, to a lesser extent,
deviation from established conventions arising from identifier
naming practice.

10.3. Method names
The matter of consistent naming was also a subject of interest
for other research on method names.

Nguyen et al. (Nguyen et al. 2020) agree that misleading
names in projects confuse developers. They present a tool called
MNire to suggest and predict method names by extracting the
tokens from the words used in different contexts of the method:
the body of the method (i), method parameter(s) type(s) & return
type (ii) and the enclosing class name (iii).

From each context token, a sentence is formed. The tool then
summarizes these sentences from which it suggests a method
name using a machine learning model called Encoder-Decoder.
To check the consistency of the name they compute the similar-
ity between the newly suggested name and the actual name of
the method.

They use the same method set as Liu et al. (Liu et al. 2019)
and found that their tool is more efficient in detecting inconsis-
tent naming. The reason for such an improvement is the use of
program entity names.

Li et al. (Li et al. 2021) took the previous research to a
further stage where the proverb Show me your friends, I’ll tell
you who you are can be applied to method name consistency
checking and suggestion. Indeed, they do not only study the
method program entities but also their surroundings: the caller
and the callee methods and the sibling methods in the enclosing
class. They present a tool called DEEPNAME, which was
evaluated with a large dataset of over 14M methods, and they
found that for consistency checking it improves the state-of-the-
art approaches by 2.1% in recall, 19.6% in precision and 11.9%
in F-score.

Allamanis et al. (Allamanis et al. 2015) adopted a more
semantical approach to suggest accurate methods and class
names. This approach uses a log-bilinear neural language model
that learns which names are semantically similar by calculating
the statistical co-occurrences of the tokens in the source code.
Semantically similar tokens are assigned to locations which
they refer to as embeddings. Therefore tokens with similar
embeddings tend to be used in a similar context. Furthermore,

they use a sub-token model which introduces neologisms–words
that were not used in the training corpus. Their results show that
their model can suggest accurate method names according to the
source code of the method. However, for class name suggestions
the positive results were obtained by using the sub-token model
that generates neologisms.

Alsuhaibani et al. (Alsuhaibani et al. 2021) gathered stan-
dards from the literature and asked 1100 professional software
developers to determine whether these standards are accepted
and used in practice. They found that half of the organizations
that participants work for do not define a strict method naming
standard.

Isobe et al. (Isobe & Tamada 2018) worked on retrieving
names from obfuscated programs by identifier renaming meth-
ods (IRM). In their paper, they focus on restoring method names
from their operation code list, especially, de-obfuscating verbs
in method names and proposing verbs of similar meanings to
the original verbs. This is clearly not related to our approach.

10.4. Identifiers

Anquetil and Lethbridge (Anquetil & Lethbridge 1998) pro-
posed a naming convention based amongst others on the fact
that two software artefacts with the same name should imple-
ment the same concept.

Kuhn et al. (Kuhn et al. 2005) studied how terms are dis-
tributed in a system using Latent Semantic Indexing (LSI). The
authors cluster software artefacts that use similar terms. Marcus
et al. (Marcus et al. 2004) used LSI to identify and recover
links between documentation and source code. Moreno et al.
(Moreno et al. 2013) investigated the vocabulary relationship
between source code and bugs.

Li et al. (Li and Liu, Hui and Nyamawe, Ally S 2020) an-
alyzed 109 existing research papers on renamings of software
entities. Including 29% of the dataset dedicated to the pre-
processing of identifiers. The other research was categorised
according to the process of renaming: identification of renam-
ing opportunities, renaming execution, and the detection or the
evaluation of renamings. The survey showed that 36% of the
literature focuses on the identification of rename opportunities–
including 79% of the 39% that recommend new names, only
18% focuses on the execution of renamings, and 17% on the
detection and analysis of renamings.

Arnaoudova et al. (Arnaoudova et al. 2014) surveyed renam-
ing identifiers with 71 developers to understand the importance
of renaming operations. The results of the survey highlighted
the assumption that developers consider renaming refactoring
to be a challenging activity which they frequently perform on
the source code. Eshkevari et al. (Eshkevari et al. 2011) ex-
plored how, when, and why identifiers change in code showing
the importance of identifier names in source code consistency.
Lacomis et al. (Lacomis et al. 2018) worked on automatically
renaming identifiers by assigning meaningful identifier names to
variables using statistical machine translation (SMT). Recently,
Nie et al. (Nie et al. 2020) present a multi-input neural network
generation model for Coq Lemma names.

Understanding Class Name Regularity 23

10.5. Concept location
Rajlich and Wilde (Rajlich & Wilde 2002) mention identifier-
based concept recognition as one possible strategy for concept
location. Concept location is the problem of finding already
known concepts in source code. Abede et al. (Abebe et al.
2011) investigated how lexicon bad smells affect Information
Retrieval-based concept location. Falléri et al. (Falleri et al.
2010) proposed an approach that automatically extracts and
organises concepts from software identifiers in a WordNet-like
structure: lexical views. Haiduc and Marcus (Haiduc & Marcus
2008) studied how domain terms are used in comments and
identifiers.

Deissenboeck and Pizka (Deissenboeck & Pizska 2005) pro-
posed a formal model of concepts and names. They presented
a tool with an identifier dictionary to provide maintainers with
a guideline for turning a concept into a name and to better
understand the precise concept. Lawrie et al. (Lawrie et al.
2007) carried out an empirical study to assess the quality of
source code identifiers. They indicated that full words, as well
as recognizable abbreviations, lead to better comprehension.
Poshyvanyk et al. (Poshyvanyk & Marcus 2007) address the
problem of concept location in source code by presenting an
approach which combines formal concept analysis (FCA) and
latent semantic indexing (LSI).

To better understand how developers select concept names
to attribute to identifier names, Feitelson et al. (Feitelson et al.
2020) experimented with 334 participants– both students and
professionals. They found that the probability that participants
would choose the same names was very low: 6.8%. They
followed this experiment by introducing 100 subjects to a three-
step naming model: (i) selecting the concepts of the entity in
question, (ii) choosing the right words to represent the selected
concepts, and (iii) finally constructing the name. The focus
of this experiment was on assigning names, not understanding
names. Results showed that the three-step model encourages
the use of more concepts and longer names. In Feitelson’s
experience, the selected names were strongly influenced by the
words used in the scenario descriptions. Regev et al. (Regev
et al. 2021) extended the previous research: instead of using
languages such as Hebrew and English, they used emojis and
graphs in the scenario descriptions. The motivation was to
reduce the accessibility bias by not introducing any intermediate
words, considering that emojis represent a universal mode of
communication. However, their attempt to reduce even more
the accessibility bias than the research done by Feitelson et al.
(Feitelson et al. 2020), was not successful as emojis only helped
in reducing the accessibility bias to a similar degree.

10.6. Class comments
To understand the purpose of Java comments in assessing source
code maintainability, Pascarella et al. (Pascarella et al. 2019)
investigated 14 Java projects using machine learning to classify
code comments at the line level. They present a taxonomy to
improve techniques that use comments as a way to measure
the maintainability of a software system. In the context of
assessing class comment types and quality, Rani et al. (Rani,
Panichella, Leuenberger, Ghafari, & Nierstrasz 2021) analyzed

class comments of Pharo releases over 11 years (2008 to 2019).
They studied the contents of comments and their writing style
as well as how they change over time. They report 23 types
of information in comments that can be identified by various
patterns found in class comments. These patterns help one
to identify comment information automatically. Nonetheless,
they found that developers maintain both old and new class
comments following different conventions when writing class
comments while still using the writing style of the template. In
addition, Rani et al. (Rani, Panichella, Leuenberger, Di Sorbo,
& Nierstrasz 2021) investigate the different language-specific
class comment types used in different programming languages:
Java, Python, and Smalltalk. These works do not focus on the
class name understanding or identification of inconsistencies.

Such work on class comments is complementary to the vi-
sualization presented in this article in the sense that comments
are expressed in free form and can be desynchronized from the
actual element they refer to. In our visualization, we only take
into account class names.

10.7. Code Review
Code review is a common practice in software engineering.
(Bacchelli & Bird 2013) surveyed 17 industrial developers from
different backgrounds to help find defects in software. The
study reveals that while finding defects remains the main moti-
vation for review, reviews are less about defects than expected
and instead provide additional benefits such as knowledge trans-
fer, increased team awareness, and the creation of alternative
solutions to problems.

(Panichella & Zaugg 2020) empirically investigated code
review approaches and tools that developers judge as useful in
modern code review (MCR). The results show that due to new
technologies, developers perform more tasks of code review,
hence, additional feedback is expected by the reviewers. Such
feedback concerns recommendations that help enhance MCR
techniques and build recommenders to automatically review
source code.

In the same context and as reported in previous sections,
developers using our visualization extracted hidden knowledge
from their project: they found dead code, duplicated code, bad
design, violations and new naming conventions. Moreover,
developers found some personalized patterns of class naming in
their projects.

11. Conclusion
Understanding whether classes are consistently named within a
project is important for developers. We presented one simple
visualization that helps maintainers or developers to understand
the regularities and irregularities of class names in hierarchies
in the context of their packages. We illustrated the visualization
on two projects – one written in Pharo and the other in Java. We
showed that the visualization supports the evolution of projects:
it helped the evolution of a large project over several years.
We conducted a consequent assessment of the visualization
with real developers and open-source software structured in two
different setups: in the first one, we asked domain experts to

24 Nour Jihene Agouf et al.

use the visualization. In the second setup, as authors of the
visualization and the tool we applied our tool to two projects
we didn’t know before. These two experiments led to 24 to 91
renamings per project showing that (i) the visualization can help
experts of a project to identify irregularities in class naming and
(ii) to use the visualization. It is not mandatory to be an expert
in the domain to propose relevant renamings.

Finally, we applied our visualization to 50 Java projects and
identified the presence of the visual patterns in most of them.
This experiment shows that our visualization can be used both
on Pharo and Java while considering the specificities of these
languages.

About the authors

Nour Jihene Agouf is a PhD student funded by Arolla, a com-
pany located in Paris and supervised by Inria Lille researchers.
Her PhD topic is on software mapping and visualization for soft-
ware analysis, and more generally on software reengineering.
Contact her at: a.n.djihan@gmail.com

Dr. Stéphane Ducasse is research director at INRIA Lille lead-
ing the RMoD Team, France. During 10 years, he co-directed
with O. Nierstrasz the Software Composition Group. He is
president of ESUG. He is one of the leaders of Pharo: a new
exciting dynamic language http://www.pharo.org with an in-
dustrial consortium http://consortium.pharo.org. Contact him
at You can contact him at stephane.ducasse@inria.fr or visit
http://stephane.ducasse.free.fr.

Anne Etien is a full Professor at the University of Lille, France.
Her research interests focus on the reengineering of complex
legacy systems, tests and software migration. On these topics,
she has published several articles in journals and peer-reviewed
conferences, and supervised several PhD students. Contact her
at anne.etien@inria.fr

Appendices
We do not consider the ClassName Distribution tool to be the
focus of this article. However so that readers can understand the
evaluations made in this article, we present the tool’s function-
alities. In addition, for reproducibility purposes, we describe
exactly the algorithms used by the visualization.

A. The ClassName Distribution tool

The visualization presented in this article is proposed to the users
via a tool. Besides selecting the projects and the packages, the
tool supports the visualization configuration whether it should
use prefix, suffix or both, the color palette to be used and it
also proposes specific actions to highlight certain aspects of
the visualization. After describing the basic architecture, we
describe the features shown in Figure 9.

A language-independent metamodel. The tool is imple-
mented on top of the Moose analysis platform developed in
the Pharo language (Anquetil et al. 2020). Therefore the tool
is independent of the language used in the analyzed project.
For the moment, it was used for Java and Smalltalk projects.
Figure 9 depicts the ClassName Distribution tool user interface
on a real project, Moose itself.

Importing models. The tool currently provides the possibility
to visualize both Pharo and Java projects. It relies on a model of
the project. The import of the models is performed differently
for Java (1) and Pharo (2-5 in Figure 9) projects. Everything that
follows is the same for projects of both programming languages.

Configuration. The tool builds three ClassName Distributions
at once: with suffix, with prefix, and with both, following the
algorithms explained in Section B.2. The user has the choice to
render the desired visualization according to the selected radio
button (6). By default, the suffix is selected.

By default the project root is Object, therefore root hierar-
chies are direct subclasses of the class Object. However, in
some projects, many classes may inherit from the same subclass
of Object (for instance, Widget for a GUI project). The user can
define a new root class (7). If some classes do not inherit from
the defined root, then their root remains Object. Nevertheless,
the visualization will be based on two root classes – Object and
the defined class. Changing the root class when a hierarchy
contains multiple other sub-hierarchies is very helpful for a
better overview of these sub-hierarchies and the distribution of
their spfix in the project. A click on the “Visualize” button (8)
renders the visualization (9).

Highlighting points of interest. To manipulate the visualiza-
tion, a left-click on a class box highlights the whole hierarchy
of the class, and since a hierarchy is represented by a color, then
this highlights class boxes with the same color, red in Figure 9.
Classes with potential violation spfixes are also highlighted but
with white and thicker borders to attract the user’s attention.
Potential class name violations are: (i) in contrast to the other
classes of the hierarchy, a class does not use the spfix of its root,
or (ii) the spfix of the root is not used in the hierarchy and the
classes have a different spfix than most classes of the hierarchy.
To unhighlight the visualization, the user needs to left-click on
a package box, a suffix box or a class box. Moreover, a right-
click on a class box shows the class definition. A mouse-hover
over a class box shows superclasses and subclasses of the class
represented by the box and its root in bold (10).

Help and utils. Different kinds of help are available to the user
(11-13). Last but not least, the list of visual patterns explained
in Section 3.4 is found at the bottom left of the tool (14) with
their explanation (15). These patterns help in guiding users to
detect inconsistencies. When selecting a pattern, spfix boxes
following that particular pattern are highlighted for the user to
check. Finally, the user can export the visualization data such as
the number of classes, packages, mono-classes, and mono-spfix
hierarchies . . . as a CSV file using the export to “CSV” button
(16).

Understanding Class Name Regularity 25

a.n.djihan@gmail.com
http://www.pharo.org
http://consortium.pharo.org
mailto:stephane.ducasse@inria.fr?subject=Your paper "Understanding Class Name Regularity: \A Simple Heuristic and Supportive Visualization"
http://stephane.ducasse.free.fr
anne.etien@inria.fr

Figure 9 Tool’s interface with TestAsserter suffix classes highlighted: the tool surrounds with a white border irregularly named
classes and darkens the rest of the visualisation.

The tool works for both Pharo and Java projects. When it
comes to the performance of the visualization it purely depends
on the size of the project. It is almost instantaneous for almost
all the studied projects. Evidently, if the project contains more
classes the tool takes more time to process the information
before rendering. This also applies to the identification of the
patterns: the bigger the project is the more time the tool needs
to compute the selected pattern and highlight it visually. For
illustration purposes, the rendering of the Lucene project (4,508)
takes only a few seconds.

B. Visualization Algorithm Description

In this section, we describe the way the visualization is built. In
particular, we describe in pseudo-code the different algorithms.

The approach follows the process below to build the visual-
ization:

a) Cleaning and tokenizing the class names,

b) Identifying the spfix,

c) Identifying the color of the class, and

d) Ordering the packages and spfix.

In the following subsections, we explain each step of the
process. The following section presents the tool as the users use
it.

B.1. Cleaning and Tokenizing the Class Names

This step removes any digit or special character from the class
name. The name is then split into a list of class name words
according to the camel case convention. In a future version, we
want to consider a list of exceptions, specified by the domain
expert that will be taken into account to avoid false positives.
Thus, it would, for example, be possible to make the distinction
between 2D and 3D words and between Model and ListModel.

B.2. Identifying the spfix

In the case where only the suffixes (respectively the prefixes)
are taken into account, this step is reduced to a simple activity,
associating to each class the last (respectively the first) word
composing its name as its spfix.

In the case where the project mixes prefixes and suffixes, we
automated the detection of the spfix for each class to avoid the
user manually specifying it.

First, we compute the number of occurrences of the suffix of
the studied class in the whole hierarchy (line 2) and the same
for the prefix (line 3). Inside a hierarchy, in case the number of
suffix occurrences is equal to the one of prefixes (Line 4), the
class is attributed to the spfix box in which it has more siblings.
By siblings, we mean classes of the same package which belong
to the same hierarchy and use the same spfix. Line 5 returns
the spfix in which the associated box contains more siblings of
class than the other. Line 7 returns the spfix with the highest
occurrences in the hierarchy. If the occurrences are equal then
the choice is arbitrary.

26 Nour Jihene Agouf et al.

Algorithm 1 Choosing the representing SP-fix

1: Function chooseSPFix(hierarchy, class, suffix, prefix)
2: occurOfS← occurrences of suffix in hierarchy
3: occurOfP← occurrences of prefix in hierarchy
4: if occurOfS == occurOfP then
5: return class.maxSiblings(suffix, prefix)
6: else
7: return hierarchy.maxOccurrences(suffix, prefix)
8: endIf
9: endFunction

B.3. Color Assignment
Color assignment is decomposed into two parts: first the identi-
fication of the color per hierarchy and second the identification
of the color per spfix box.

B.3.1. Identifying the Colors per Hierarchy. As explained
in Section 3.3, all classes belonging to the same hierarchy have
the same color. In contrast, except for the trait classes and
classes with no hierarchies that are colored in white, and mono-
spfix hierarchies using only one spfix in gray, each multi-spfix
hierarchy that uses more than one spfix is assigned to a different
color (e.g., red, green, blue, . . .). Hence a color represents a
hierarchy in the visualization.

Technically, each hierarchy is represented as an object whose
attributes are its root class, the collection of the subclasses, the
type of the hierarchy (e.g., mono-class, or multi-spfix) and the
color. Considering that we know for each class its spfix (as
computed by algorithm 1) we attribute to each hierarchy ob-
ject a type (trait, mono-class, mono-spfix, multi-spfix) (Line
3, Algo 3). Then, a color is assigned to the hierarchies (Line
4). For the mono-class and the mono-spfix hierarchies, classes
are respectively colored in white and gray. Finally, we have to
assign color to the multi-spfix hierarchies. We have selected 24
main recognizable colors for the palette of the visualization –
it is possible to add more colors but then it becomes hard for
the human eye to distinguish between hierarchy colors. Con-
sequently, we sort the multi-spfix hierarchies according to the
number of classes they contain. The first 24 largest multi-spfix
hierarchies are assigned a color from the palette. Starting from
the 25th multi-spfix hierarchy, complete hierarchies are colored
in black.

Algorithm 2 Attributing colors to hierarchies function

1: Procedure coloring(hierarchies)
2: for (i = 1 : hierarchies size : i ++) do
3: attributeHierarchyType(hierarchy[i])
4: assignColorTo(hierarchy[i])
5: endFor

endProcedure

As detailed in algorithm 3, the type of the hierarchy depends
on both the size and spfixes of its classes.

In case the collection of subclasses of the hierarchy has only
one element (Line 2, algorithm 3), meaning that there is only

Algorithm 3 Attributing a type to a hierarchy

1: Procedure attributeHierarchyType(hierarchy)
2: if (hierarchy.subclasses has one element) then
3: if hierarchy.subclasses first element is trait then
4: hierarchy.type← traitType
5: else
6: hierarchy.type← monoClassType

endIf
7: else
8: if then(all the hierarchy.subclasses and hierarchy.root

have the same SPfix)
9: hierarchy.type← monoSPFixType

10: else
11: hierarchy.type← multiSPFixType

endIf

endIf
12: endProcedure

one class in the hierarchy, the class itself is the hierarchy root.
We check whether the class is a trait class (Line 3), in which
case we attribute the trait type to the hierarchy type property
(Line 4). If not, then the class is considered a mono-class
therefore the hierarchy type is attributed the mono-class type
value (Line 6). To distinguish between traits and mono-classes
in the visualization, mono-classes have thicker borders.

In case the collection of subclasses has more than one ele-
ment (Line 7), we first check if all the classes in the hierarchy
have the same spfix or not. If all classes of the hierarchy in-
cluding the root class have the same spfix then the hierarchy is
attributed the mono-spfix type (Line 9). In contrast, if one of the
classes including the root class of the hierarchy has a different
spfix then the type of the hierarchy is attributed the multi-spfix
type value (Line 11).

B.3.2. Identification of Colors per SP-fix box The color
of an spfix box depends on the biggest hierarchy using this spfix.
In other words, the color of a specific spfix box follows the color
of the hierarchy that uses it the most in the whole project. The
size of the hierarchy does not matter, however, the number of
classes using the spfix in each hierarchy does. For example, if
we have two hierarchies, H1 with 50 subclasses and H2 with
30 subclasses, the two hierarchies use the same spfix with the
occurrences of 10 and 15 classes respectively. The shared spfix
box follows the color of the H2 hierarchy since it has more
classes using it (15 > 10). In this case, we say H2 dominates the
spfix or the spfix is dominated by the H2 hierarchy.

B.4. Ordering Packages and spfixes
We order packages by the number of classes they contain. Then
for each package, we create its package box and its name. For
practical and display reasons, the name of the package may be
shortened using a contracting algorithm 12 that keeps the starting
letters of the package name in upper case and appends them to
the last word of the package name to easily identify the package.

12 https://github.com/NourDjihan/NameAbbreviator

Understanding Class Name Regularity 27

Inside the package boxes, spfix boxes are always ordered in
the same way. Thus for example, if an spfix is dominated by
a hierarchy colored in red, it is the first to be rendered in the
package– the absence of red at the very beginning of the package
box means the absence of the red hierarchy in the package. This
makes it easy for users to detect hierarchies and memorize the
information of the visualization after a few interactions with the
tool. Consequently, for this purpose, spfix boxes are ordered by
color and by the number of classes in case they share the same
atspfix. Each box corresponding to an spfix or a class is created.

Acknowledgments
The authors want to thank Arolla for the funding of Nour-Jihene
Agouf’s research and gratefully acknowledge the financial sup-
port of the Métropole Européenne de Lille - CPER DATA3.

References
Abdeen, H., Ducasse, S., Pollet, D., Alloui, I., & Falleri, J.-R.

(2014, February). The package blueprint: Visually analyzing
and quantifying packages dependencies. Science of Computer
Programming, 89, 298–319. doi: 10.1016/j.scico.2014.02
.016

Abdeen, H., Ducasse, S., Sahraoui, H. A., & Alloui, I. (2009).
Automatic package coupling and cycle minimization. In
Proceedings of the 16th international working conference on
reverse engineering (wcre’09) (pp. 103–112). Washington,
DC, USA: IEEE Computer Society Press. doi: 10.1109/
WCRE.2009.13

Abebe, S., Haiduc, S., Tonella, P., & Marcus, A. (2009, Oc-
tober). Lexicon bad smells in software. In Working confer-
ence on reverse engineering (WCRE ’09) (pp. 95–99). Little,
France. doi: 10.1109/{WCRE}.2009.26

Abebe, S., Haiduc, S., Tonella, P., & Marcus, A. (2011, Septem-
ber). The effect of lexicon bad smells on concept location in
source code. In International working conference on source
code analysis and manipulation (SCAM’11) (pp. 125–134).
Williamsburg, VA, USA. doi: 10.1109/SCAM.2011.18

Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2015).
Suggesting accurate method and class names. In Proceedings
of the joint meeting on foundations of software engineering
(pp. 38–49).

Alsuhaibani, R. S., Newman, C. D., Decker, M. J., Collard,
M. L., & Maletic, J. I. (2021). On the naming of meth-
ods: A survey of professional developers. In International
conference on software engineering.

Anquetil, N., Etien, A., Houekpetodji, M. H., Verhaeghe, B.,
Ducasse, S., Toullec, C., . . . Derras, M. (2020, December).
Modular moose: A new generation of software reengineer-
ing platform. In International conference on software and
systems reuse (icsr’20). doi: 10.1007/978-3-030-64694-3_8

Anquetil, N., & Lethbridge, T. C. (1998). Assess-
ing the relevance of identifier names in a legacy soft-
ware system. In Proceedings of the 1998 conference
of the centre for advanced studies on collaborative re-
search (pp. 213–222). IBM Press. Retrieved from
http://portal.acm.org/citation.cfm?id=783160.783164

Anslow, C., Noble, J., Marshall, S., & Tempero, E. (2008).
Visualizing the word structure of java class names. In Com-
panion to the 23rd acm sigplan conference on object-oriented
programming systems, languages and applications (pp. 777–
778).

Antoniol, G., Gueheneuc, Y.-G., Merlo, E., & Tonella, P.
(2007, October). Mining the lexicon used by programmers
during sofware evolution. In ICSM 2007: Ieee interna-
tional conference on software maintenance (pp. 14–23). doi:
10.1109/ICSM.2007.4362614

Araya, V. P., Bergel, A., Cassou, D., Ducasse, S., & Laval, J.
(2013, September). Agile visualization with Roassal. In Deep
into pharo (pp. 209–239). Square Bracket Associates.

Arnaoudova, V., Eshkevari, L. M., Di Penta, M., Oliveto, R.,
Antoniol, G., & Guéhéneuc, Y.-G. (2014). Repent: Analyz-
ing the nature of identifier renamings. IEEE Transactions on
Software Engineering, 40(5), 502–532.

Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and
challenges of modern code review. In Proceedings of the
2013 international conference on software engineering (pp.
712–721). Piscataway, NJ, USA: IEEE Press. Retrieved from
http://dl.acm.org/citation.cfm?id=2486788.2486882

Beyer, D. (2005). Co-change visualization. In Proceedings
of the 21st ieee international conference on software main-
tenance, industrial and tool volume (pp. 89–92). Retrieved
from http://citeseer.ist.psu.edu/beyer05cochange.html

Binkley, D., Lawrie, D., Maex, S., & Morrell, C. (2009). Iden-
tifier length and limited programmer memory. Science of
Computer Programming, 74(7), 430–445.

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2009). Relat-
ing identifier naming flaws and code quality: An empirical
study. In European conference on software maintenance and
reengineering (csmr). IEEE Press.

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2010). Ex-
ploring the influence of identifier names on code quality:
An empirical study. In European conference on software
maintenance and reengineering (csmr). IEEE Press.

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2011a).
Improving the tokenisation of identifier names. In Euro-
pean conference on object-oriented programming (ECOOP).
Springer.

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2011b).
Mining java class identifier naming conventions. In In-
ternational conference on software maintenance (ICSM)
(pp. 1641–1643). IEEE Press. Retrieved from
https://ieeexplore.ieee.org/document/6080776

Caserta, P., & Zendra, O. (2011). Visualization of the static
aspects of software: a survey. IEEE Transactions on Visual-
ization and Computer Graphics, 17(7), 913-933.

Chuah, M. C., & Eick, S. G. (1998, July). Information rich
glyphs for software management data. IEEE Computer
Graphics and Applications, 18(4), 24–29.

Churcher, N., Irwin, W., & Kriz, R. (2003). Visualising class
cohesion with virtual worlds. In Apvis ’03: Proceedings
of the asia-pacific symposium on information visualisation
(pp. 89–97). Darlinghurst, Australia, Australia: Australian
Computer Society, Inc.

28 Nour Jihene Agouf et al.

http://portal.acm.org/citation.cfm?id=783160.783164
http://dl.acm.org/citation.cfm?id=2486788.2486882
http://citeseer.ist.psu.edu/beyer05cochange.html
https://ieeexplore.ieee.org/document/6080776

D’Ambros, M., & Lanza, M. (2006). Reverse engineering
with logical coupling. In Proceedings of WCRE 2006 (13th
working conference on reverse engineering) (p. 189 - 198).

Deissenboeck, F., & Pizka, M. (2006). Concise and consistent
naming. Software Quality Journal, 14(3), 261–282.

Deissenboeck, F., & Pizska, M. (2005, May). Concise and
consistent naming. In International workshop on program
comprehension (iwpc 2005) (pp. 97–106).

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2002). Object-
oriented reengineering patterns. Morgan Kaufmann.

Ducasse, S., Gîrba, T., & Kuhn, A. (2006). Distribution map.
In Proceedings of 22nd ieee international conference on soft-
ware maintenance (pp. 203–212). Los Alamitos CA: IEEE
Computer Society. doi: 10.1109/ICSM.2006.22

Ducasse, S., & Lanza, M. (2005, January). The Class Blueprint:
Visually supporting the understanding of classes. Transac-
tions on Software Engineering (TSE), 31(1), 75–90. doi:
10.1109/TSE.2005.14

Ducasse, S., Lanza, M., & Ponisio, L. (2005). Butterflies: A
visual approach to characterize packages. In Proceedings
of the 11th ieee international software metrics symposium
(metrics’05) (pp. 70–77). IEEE Computer Society. doi:
10.1109/METRICS.2005.15

Eick, S., Graves, T., Karr, A., Mockus, A., & Schuster, P. (2002).
Visualizing software changes. IEEE Transactions on Software
Engineering, 28(4), 396–412.

Elmqvist, N., & Yi, J. S. (2015). Patterns for visualization
evaluation. Information Visualization, 14(3), 250–269.

Eshkevari, L. M., Arnaoudova, V., Di Penta, M., Oliveto, R.,
Guéhéneuc, Y.-G., & Antoniol, G. (2011). An exploratory
study of identifier renamings. In Proceedings of the 8th
working conference on mining software repositories (pp. 33–
42).

Fabry, J., & Ducasse, S. (2017). The spec ui framework. Square
Bracket Associates. Retrieved from http://books.pharo.org

Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C., Prince,
V., & Dao, M. (2010, June). Automatic extraction of a
wordnet-like identifier network from software. In Interna-
tional conference on program comprehension (icpc) (p. 4
-13). IEEE. doi: 10.1109/ICPC.2010.12

Feitelson, D., Mizrahi, A., Noy, N., Shabat, A. B., Eliyahu, O.,
& Sheffer, R. (2020). How developers choose names. IEEE
Transactions on Software Engineering.

Fernandez, I., andJ. P. S. Alcocer, A. B., Infante, A., & Gîrba, T.
(2016). Glyph-based software component identification. In
International conference on program comprehension (ICPC)
(p. 1-10).

Froehlich, J., & Dourish, P. (2004). Unifying artifacts and
activities in a visual tool for distributed software development
teams. In Proceedings of the 26th international conference
on software engineering (pp. 387–396). Washington, DC,
USA: IEEE Computer Society.

Goldberg, A. (1984). Smalltalk 80: the interactive programming
environment. Reading, Mass.: Addison Wesley.

Haiduc, S., & Marcus, A. (2008, June). On the use of domain
terms in source code. In International conference on program
comprehension (ICPC’08), (pp. 113–122). Amsterdam, The

Netherlands. doi: 10.1109/{ICPC}.2008.29
Healey, C. G., Booth, K. S., & Enns, J. T. (1993). Harnessing

preattentive processes for multivariate data visualization. In
Gi ’93: Proceedings of graphics interface.

Isobe, Y., & Tamada, H. (2018). Are identifier renaming meth-
ods secure? In 2018 19th ieee/acis international conference
on software engineering, artificial intelligence, networking
and parallel/distributed computing (snpd) (pp. 322–328).

Kienle, H. M., & Müller, H. A. (2010). The tools perspective
on software reverse engineering: Requirements, construction,
and evaluation. In Advanced in computers (Vol. 79, pp. 189–
290). Elsevier.

Kobayashi, K., Kamimura, M., Yano, K., Kato, K., & Matsuo,
A. (2013). Sarf map: Visualizing software architecture from
feature and layer viewpoints. In 2013 21st international
conference on program comprehension (icpc) (pp. 43–52).

Kuhn, A., Ducasse, S., & Gîrba, T. (2005, November). En-
riching reverse engineering with semantic clustering. In Pro-
ceedings of 12th working conference on reverse engineering
(wcre’05) (pp. 113–122). Los Alamitos CA: IEEE Computer
Society Press. doi: 10.1109/WCRE.2005.16

Kuhn, A., Ducasse, S., & Gîrba, T. (2007, March). Semantic
clustering: Identifying topics in source code. Information
and Software Technology, 49(3), 230–243. doi: 10.1016/
j.infsof.2006.10.017

Lacomis, J., Jaffe, A., Schwartz, E. J., Le Goues, C., &
Vasilescu, B. (2018). Statistical machine translation is a nat-
ural fit for automatic identifier renaming in software source
code. In Workshops at the thirty-second aaai conference on
artificial intelligence.

LaLonde, W., & Pugh, J. (1991, January). Sub-
classing ̸= Subtyping ̸= Is-a. Journal of Object-
Oriented Programming, 3(5), 57–62. Retrieved from
http://scgresources.unibe.ch/ scg/Literature/PL/LaLo91a-
JOOP0305.pdf

Lanza, M. (2001). The evolution matrix: Recovering
software evolution using software visualization techniques.
In Proceedings of the international workshop on princi-
ples of software evolution (pp. 37–42). Retrieved from
http://scg.unibe.ch/archive/papers/Lanz01cEvolutionMatrix.pdf
doi: 10.1145/602461.602467

Lanza, M. (2003). Object-oriented reverse engineering —
coarse-grained, fine-grained, and evolutionary software vi-
sualization (Doctoral dissertation, University of Bern). Re-
trieved from http://scg.unibe.ch/archive/phd/lanza-phd.pdf

Lanza, M., & Ducasse, S. (2003, September). Polymetric
views—a lightweight visual approach to reverse engineering.
Transactions on Software Engineering (TSE), 29(9), 782–795.
doi: 10.1109/TSE.2003.1232284

Lanza, M., & Marinescu, R. (2006). Object-oriented
metrics in practice. Springer-Verlag. Retrieved from
http://www.springer.com/alert/urltracking.do?id=5907042

Lawrie, D., Feild, H., & Binkley, D. (2007, August). Quan-
tifying identifier quality: an analysis of trends. Empiri-
cal Software Engineering, 12(4), 359–388. Retrieved from
https://doi.org/10.1007/s10664-006-9032-2 doi: 10.1007/
s10664-006-9032-2

Understanding Class Name Regularity 29

http://books.pharo.org
http://scgresources.unibe.ch/~scg/Literature/PL/LaLo91a-JOOP0305.pdf
http://scgresources.unibe.ch/~scg/Literature/PL/LaLo91a-JOOP0305.pdf
http://scg.unibe.ch/archive/papers/Lanz01cEvolutionMatrix.pdf
http://scg.unibe.ch/archive/phd/lanza-phd.pdf
http://www.springer.com/alert/urltracking.do?id=5907042
https://doi.org/10.1007/s10664-006-9032-2

Lawrie, D., Morrell, C., Feild, H., & Binkley, D. (2006, June).
What’s in a name? a study of identifiers. In 14th ieee inter-
national conference on program comprehension (ICPC’06)
(p. 3-12). doi: 10.1109/{ICPC}.2006.51

Li, Wang, S., & Nguyen, T. N. (2021). A context-based auto-
mated approach for method name consistency checking and
suggestion. In 2021 ieee/acm 43rd international conference
on software engineering (ICSE) (pp. 574–586).

Li and Liu, Hui and Nyamawe, Ally S. (2020). A survey on
renamings of software entities. ACM Computing Surveys
(CSUR), 53(2), 1–38.

Liblit, B., A.Begel, & Sweetser, E. (2006). Cognitive perspec-
tives on the role of naming in computer programs. In Annual
psychology of programming workshop.

Liu, K., Kim, D., andTaeyoung Kim, T. F. B., Kim, K., and-
Suntae Kim, A. K., & Traon, Y. L. (2019). Learning to spot
and refactor inconsistent method names. In Proceedings of
icse’19.

Marcus, A., Feng, L., & Maletic, J. I. (2003). 3D representa-
tions for software visualization. In Proceedings of the acm
symposium on software visualization (p. 27-ff). IEEE.

Marcus, A., Sergeyev, A., Rajlich, V., & Maletic, J. (2004,
November). An information retrieval approach to concept
location in source code. In Proceedings of the 11th working
conference on reverse engineering (WCRE 2004) (pp. 214–
223).

Martin, R. C. (2000). Design principles and design patterns.
(www.objectmentor.com)

Merino, L., Kozlova, E., Nierstrasz, O., & Weiskopf, D. (2019).
VISON: An ontology-based approach for software visualiza-
tion tool discoverability. In VISSOFT’19: Proceedings of the
7th ieee working conference on software visualization. IEEE.
Retrieved from http://scg.unibe.ch/archive/papers/Meri19b-
vison.pdf doi: 10.1109/VISSOFT.2019.00014

Moreno, L., Bandara, W., Haiduc, S., & Marcus, A. (2013,
September). On the Vocabulary Relationship Between Bug
Reports and Source Code. In Ieee international conference
on software maintenance (ICSM’13), early research achieve-
ment track (ERA) (p. 452-455). Eindhoven, The Netherlands.
doi: 10.1109/ICSM.2013.70

Newman, C. D., AlSuhaibani, R. S., Collard, M. L., & Maletic,
J. I. (2017). Lexical categories for source code identifiers. In
Proceedings of saner (pp. 228–239). IEEE.

Nguyen, S., Phan, H., Le, T., & Nguyen, T. N. (2020). Suggest-
ing natural method names to check name consistencies. In
Proceedings of the acm/ieee 42nd international conference
on software engineering (pp. 1372–1384).

Nie, P., Palmskog, K., Li, J. J., & Gligoric, M. (2020). Deep
generation of coq lemma names using elaborated terms. In
International joint conference on automated reasoning (pp.
97–118).

Osman, H., van Zadelhoff, A., Stikkolorum, D. R., & Chaudron,
M. R. (2012). Uml class diagram simplification: what is in
the developer’s mind? In Proceedings of the second edition
of the international workshop on experiences and empirical
studies in software modelling (p. 5).

Panichella, S., & Zaugg, N. (2020). An empirical investigation

of relevant changes and automation needs in modern code
review. Empirical Software Engineering, 25(6), 4833–4872.

Pascarella, L., Bruntink, M., & Bacchelli, A. (2019). Classi-
fying code comments in java software systems. Empirical
Software Engineering, 24(3), 1499–1537.

Peterson, D. J., & Berryhill, M. E. (2013). The gestalt principle
of similarity benefits visual working memory. Psychonomic
bulletin & review, 20(6), 1282–1289.

Pinzger, M., Gall, H., Fischer, M., & Lanza, M. (2005, May).
Visualizing multiple evolution metrics. In Proceedings of
softvis 2005 (2nd acm symposium on software visualization)
(pp. 67–75). St. Louis, Missouri, USA.

Poshyvanyk, D., & Marcus, A. (2007). Combining formal
concept analysis with information retrieval for concept loca-
tion in source code. In ICPC ’07: Proceedings of the 15th
ieee international conference on program comprehension (pp.
37–48). Washington, DC, USA: IEEE Computer Society.
Retrieved from http://dx.doi.org/10.1109/ICPC.2007.13 doi:
10.1109/{ICPC}.2007.13

Rajlich, V., & Wilde, N. (2002). The role of concepts in program
comprehension. In Program comprehension workshop (pp.
271–278).

Rani, P., Panichella, S., Leuenberger, M., Di Sorbo, A., &
Nierstrasz, O. (2021). How to identify class comment types?
a multi-language approach for class comment classification.
Journal of Systems and Software, 181, 111047.

Rani, P., Panichella, S., Leuenberger, M., Ghafari, M., & Nier-
strasz, O. (2021). What do class comments tell us? an
investigation of comment evolution and practices in pharo
smalltalk. Empirical Software Engineering, 26(6), 1–49.

Regev, O., Soloveitchik, M., & Feitelson, D. G. (2021). Using
non-verbal expressions as a tool in naming research. arXiv
preprint arXiv:2103.08701.

Singer, J., & Kirkham, C. (2008). Exploiting the correspondence
between micro patterns and class names. In International
working conference on source code analysis and manipula-
tion. IEEE.

Spence, R. (2001). Information visualization. Adisson-Wesley.
Stasko, J. T., Domingue, J., Brown, M. H., & Price, B. A. (1998).

Software visualization — programming as a multimedia expe-
rience. The MIT Press.

Storey, M.-A. D., Čubranić, D., & German, D. M. (2005).
On the use of visualization to support awareness of human
activities in software development: a survey and a framework.
In Softvis’05: Proceedings of the 2005 acm symposium on
software visualization (pp. 193–202). ACM Press. Retrieved
from http://portal.acm.org/citation.cfm?id=1056018.1056045
doi: 10.1145/1056018.1056045

Tempero, E., Noble, J., & Melton, H. (2008). How do java
programs use inheritance? an empirical study of inheritance
in java software. In Ecoop ’08: Proceedings of the 22nd
european conference on object-oriented programming (pp.
667–691). Berlin, Heidelberg: Springer-Verlag.

Tesone, P., Ducasse, S., Polito, G., Fabresse, L., & Bouraqadi,
N. (2020). A new modular implementation for stateful
traits. Science of Computer Programming, 195, 1–37. doi:
10.1016/j.scico.2020.102470

30 Nour Jihene Agouf et al.

http://scg.unibe.ch/archive/papers/Meri19b-vison.pdf
http://scg.unibe.ch/archive/papers/Meri19b-vison.pdf
http://dx.doi.org/10.1109/{ICPC}.2007.13
http://portal.acm.org/citation.cfm?id=1056018.1056045

Treisman, A. (1985). Preattentive processing in vision. Com-
puter Vision, Graphics, and Image Processing, 31(2), 156–
177. doi: 10.1016/S0734-189X(85)80004-9

Voinea, L., Telea, A., & van Wijk, J. J. (2005). Cvsscan:
visualization of code evolution. In Softvis ’05: Proceedings
of the 2005 acm symposium on software visualization (pp.
47–56). New York, NY, USA: ACM. doi: 10.1145/1056018
.1056025

von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J.,
van Wijk, J. J., Fekete, J.-D., & Fellner, D. W. (2011). Visual
analysis of large graphs: State-of-the-art and future research
challenges. Comput. Graph. Forum, 30(6), 1719-1749.

Ware, C. (2000). Information visualization: perception for de-
sign. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Wettel, R., & Lanza, M. (2007). Visualizing software
systems as cities. In Proceedings of vissoft 2007 (4th
ieee international workshop on visualizing software for un-
derstanding and analysis) (pp. 92–99). Retrieved from
http://dx.doi.org/10.1109/VISSOF.2007.4290706 doi: 10
.1109/VISSOF.2007.4290706

Wirfs-Brock, R., & McKean, A. (2003). Object design — roles,
responsibilities and collaborations. Addison-Wesley.

Xie, X., Poshyvanyk, D., & Marcus, A. (2006). Visualization
of CVS repository information. In WCRE’06: Proceedings
of the 13th working conference on reverse engineering (pp.
231–242). Washington, DC, USA: IEEE Computer Society.
doi: 10.1109/{WCRE}.2006.55

Yano, K., & Matsuo, A. (2015). Labeling feature-oriented
software clusters for software visualization application. In
2015 asia-pacific software engineering conference (apsec)
(pp. 354–361).

Understanding Class Name Regularity 31

http://dx.doi.org/10.1109/VISSOF.2007.4290706

	Introduction
	Complexity of Class Name Understanding
	Illustrative Examples
	About Correct Class Names
	Forces Influencing Class Naming
	Limitations of the Various Forces in Presence
	Our Definition of Class Name Consistency
	Class Name Assessment
	A Schematic Project
	Class Name Inconsistency Detection

	The ClassName Distribution
	Visualization Constraints
	ClassName Distribution Layout
	Colors of the ClassName Distribution
	Pattern Definitions

	An Example of a Pharo Project: Calypso
	Calypso Hierarchies Analysis
	Calypso Visual Pattern Analysis

	An Example of a Java Project: Lucene
	Supporting Evolution
	Calypso v8
	Calypso v9

	Qualitative Evaluation
	Protocol for Domain Expert / Visualization Learners
	Calypso v8 Experience Feedback.
	Roassal-3 Experience Feedback.
	Stargate and Willow.

	Protocol for experiment with Non-Domain Expert / Visualization Experts
	Spec Project.
	Morphic Project.

	Effective Class Renaming

	Quantitative Evaluation
	Choice of the projects
	Protocol
	Java Projects Visual Patterns Analysis
	Correlations between metrics

	Discussion
	About colors and sizes
	About Prefix and Suffix
	About Blurry Domains
	About Changing the Root Class
	Renaming and Inconsistencies
	Threats to Validity

	Related Work
	Visualizations
	About class names
	Method names
	Identifiers
	Concept location
	Class comments
	Code Review

	Conclusion
	Appendices
	The ClassName Distribution tool
	Visualization Algorithm Description
	Cleaning and Tokenizing the Class Names
	Identifying the spfix
	Color Assignment
	Identifying the Colors per Hierarchy.
	Identification of Colors per SP-fix box

	Ordering Packages and spfixes

