
Towards Automatically Improving Package
Structure While Respecting Original Design

Decisions
Hani Abdeen∗, Houari Sahraoui†, Osama Shata∗, Nicolas Anquetil‡ and Stéphane Ducasse‡

∗ Department of Computer Science Engineering, Qatar University, Qatar
hani.abdeen@qu.edu.qa – sosama@qu.edu.qa

† DIRO, Université de Montréal, Montréal(QC), Canada
sahraoui@iro.umontreal.ca

‡ RMod, Inria Lille-Nord Europe, France
Fname.Lname@inria.fr

Abstract—Recently, there has been an important progress in
applying search-based optimization techniques to the problem of
software re-modularization. Yet, a major part of the existing body
of work addresses the problem of modularizing software systems
from scratch, regardless of the existing packages structure. This
paper presents a novel multi-objective optimization approach
for improving existing packages structure. The optimization ap-
proach aims at increasing the cohesion and reducing the coupling
and cyclic connectivity of packages, by modifying as less as pos-
sible the existing packages organization. Moreover, maintainers
can specify several constraints to guide the optimization process
with regard to extra design factors. To this contribution, we
use the Non-Dominated Sorting Genetic Algorithm (NSGA-II).
We evaluate the optimization approach through an experiment
covering four real-world software systems. The results promise
the effectiveness of our optimization approach for improving
existing packages structure by doing very small modifications.

Index Terms—Software Modularization; Cohesion and Cou-
pling Principles; Multi-Objective Optimization

I. INTRODUCTION

To help maintainers improve software modularization,
there is much interest in automatic re-modularization ap-
proaches. Major contributions on the problem of software re-
modularization, such as [1] and [2], address the problem of
automatic software decomposition (i.e., module clustering),
rather than the problem of improving existing software de-
composition. Their approaches aim at maximizing/minimizing
package cohesion/coupling as much as possible [3], [4], re-
gardless of other design factors that are involved in the soft-
ware existing modularization [5], [6]. Consequently, in such
approaches, it can be difficult to understand the resulting struc-
ture and/or to validate it [6]. In literature, few articles address
the problem of optimizing packages structure within existing
modularizations [7], [8]. Yet, this body of work has formu-
lated the remodularization as a single-objective optimization
problem. However, because the conflict between cohesion and
coupling properties [3], [4], single-objective remodularization
approaches might produce sub-optimal solutions [2].

To address the limitations explained above, we present a
multi-objective optimization approach that improves packages
structure with regard to the well-known design principles,
cohesion and coupling [3], by modifying as less as possible
the existing packages organization. Moreover, the optimization
approach avoids increasing the size of large packages and/or
merging small packages into larger ones. Finally, the opti-
mization approach allows maintainers to guide and control the
optimization process by defining a variety of constraints.

To this contribution, we used and adapted the multi-
objective Non-Dominated Sorting Genetic Algorithm (NSGA-
II) [9]. We chose this algorithm, in particular, because it has
been shown to perform well in similar problems such as the
automated detection and correction of class design defects
[10]. To evaluate our optimization approach we perform a
comparative study with the single-objective optimization ap-
proach defined by Abdeen et al. in [8]. The results promise
the effectiveness of our optimization approach for improving
the quality of packages structure by doing very small modifi-
cations, and without merging small packages into larger ones.

The rest of this paper is organized as follows: Section II
presents the used terminology. Section III overviews main
challenges for optimizing packages structure. Section IV posi-
tions our approach with relevant existing works on software re-
modularization. Section V details our multi-objective approach
of optimizing existing packages structure. Section VI describes
the research questions and sets up the empirical study that aims
to evaluate the effectiveness of our multi-objective approach,
using a variety of object-oriented applications. Section VII
analyzes the results of the empirical study and answers the re-
search questions. Section VIII discusses the contributions and
limitations of our approach with regard to existing works on
software re-modularization, then considers threats to validity,
before concluding in Section IX.

II. BACKGROUND

This section introduces the terminology used in this paper.
We define an OO software Modularization M as a decompo-
sition of the set of software classes C into a set of packages
P , where each package p represents a container of classes. We
define package size, size(p), by the number of its classes.

Inter-class dependencies: we consider three types of
dependencies: method call, inheritance and class reference
(i.e., where the name of a class is explicitly used within other
classes). The pair (ci, cj) denotes a dependency directed from
a class ci to another class cj. We denote the set of all Inter-
Class Dependencies within a given modularization by ICD.

Internal vs. External package dependencies: a depen-
dency is intra-package (internal) if it relates two classes
belonging to the same package. Otherwise, the dependency
is inter-package (external). In Modularization1 in Figure 1,
the dependency (c1,c2) is internal to p1, while (c4,c1) is an
external dependency relating p2 to p1. We denote the set of all
Inter-Package Dependencies within a modularization by IPD.

Figure 1. Modularization presentation: Package Dependency Graph.
Different organizations of the set of classes [c1..c7] into 3 packages [p1, p2, p3].

Figure 2. Explanation for Package Connections vs. Dependencies [4].

Package connectivity: a Connection from a package x to
another one y exists if there is/are some dependency/ies from x
pointing to y. Modularization1 in Figure 1 shows that there are
two connections from p2 pointing to p1 and p3. IPC denotes
the set of all Inter-Package Connections within a given mod-
ularization. To explain the difference between inter-package
connections and dependencies, Figure 2 shows that although
the number of inter-package dependencies among the packages
{x, x1} is larger than that among the packages {y, y1, y2, y3},
the number of inter-package connections among {x, x1} is 3
times smaller than among {y, y1, y2, y3}.

Package cyclic dependencies and connections: Figure 1
shows that in Modularization2 the packages p2 and p3 are
involved in a cycle. Hence, the connections, and dependencies,
between p2 and p3, in Modularization2, are cyclic. We denote
the set of all Inter-Package Cyclic Dependencies/Connections
within a given modularization by IPCD/IPCC.

Evolution Representation: we associate each modular-
ization M to a refactoring list, namely Class Moving List
(CML), representing the modifications that were applied on
the original modularization to obtainM. Only one refactoring
type is considered, which is moving classes among packages.
During the evolution process, it may happen that a class c
moves out of its package and later returns to it. In such a
case, the class-move element of c will be removed from the
CML since c, in the end, did not change package.

III. ISSUES IN IMPROVING PACKAGES STRUCTURE

In this section, we discuss the main issues in automated
optimization of existing packages structure.

A. Conflict between Package Quality Properties
The organization of classes into packages must follow

the principles of cohesion and coupling [4], [3], [2]. Martin
discussed principles of package design, addressing package
cohesion and coupling [3]:

The Common Closure Principle (CCP): the CCP aims at
minimizing the number of packages that would be changed
in any given release cycle. To achieve this goal, classes that
change together should be packaged together. We relate the
probability of classes being changed together to the number
of dependencies among those classes. Hence, optimizing pack-
age common closure property requires reducing inter-package
dependencies.

The Common Reuse Principle (CRP): according to the
CRP, classes that are reused together should be packaged
together. The rational behind CRP is that changing any class
within a considered package p will have the same impact-
propagation if another class is changed within p. As a con-
sequence, this may reduce the number of packages to up-
grade and re-validate, when a package changes. For example,
changing the package x in Figure 2 may impact only one
package (x1), whilst changing the package y may impact three
packages (y1, y2 and y3). Hence, optimizing package common
reuse property requires reducing inter-package connections.

The Acyclic Dependencies Principle (ADP): to achieve
the desired goals of CCP and CRP packages should not be in-
volved into cyclic dependencies [3] –since cyclic dependencies
between packages may involve a recursive impact propagation
of package changes. Therefore, to improve packages structure,
we need first of all to reduce cyclic dependencies, as well as
cyclic connections, between packages.

CCP and CRP are conflicting package properties. Abdeen et
al. [4] showed that reducing inter-package dependencies (i.e.,
improving the CCP) may increase inter-package connections
(i.e., degrading the CRP). Furthermore, Martin [3] states that
the CCP and CRP principles are mutually exclusive and cannot
be simultaneously satisfied.

B. Developers’ Decisions and Original Packages Structure

The distribution of classes over packages might depend
on other factors than package cohesion and coupling [11],
[12], [13], [5], [3], [14]. Unfortunately, up to date, relevant
previous work on software re-modularization (e.g., [2], [7],
[1]) addresses the problem of maximizing cohesion and/or
minimizing coupling of packages/modules, regardless of the
original software structure and other design factors. Despite its
success, this body of work raises the following uncomfortable
questions:
• What if software maintainers want to control the opti-

mization process and guide it?
• How to improve package cohesion and coupling by

performing minimal modifications on existing packages
organization?

We believe that the existing modularization is an important
map that reflects the decisions of the domain experts. Addi-
tionally, we claim that the optimization approach of packages
structure should allow its end users to control the optimization
process and guide it, so that to produce acceptable solutions
from developer’s perspective.

C. Package Size and Class Distribution

Studies agree that package size should not exceed a given
limit [15]. However, it is unfortunately difficult, or unfeasible,
to determine automatically that limit and/or an ideal package
size [5]. Furthermore, in real applications, packages do not
have similar sizes. Let us take the example of JBoss and
ArgoUML applications (see VI-A for more information about
studied applications). Both applications contain large packages
beside many small packages (e.g., 106 packages in JBoss
contain no more than a couple of classes).

In summary, the existing modulrization is an important
map that reflects acceptable package sizes from developer’s
perspective, however Blob packages should be avoided.

IV. RELEVANT RELATED WORK

Praditwong et al. have recently formulated the problem of
software clustering as a multi-objective problem [2]. Their
work presents two multi-objective clustering approaches. Their
approaches use the following objectives: (1) maximizing the
Modularization Quality (MQ) measurement [16]; (2) reduc-
ing inter-package dependencies; (3) increasing intra-package
dependencies; (4) maximizing the number of clusters, which
aims at producing clusters of similar sizes; and (5) minimizing
the number of isolated clusters. What is surprising in (2) and
(3) objectives is that they are formally identical. In fact, in their
approach, as in ours, a dependency is either intra-package or
inter-package, but never both or none. Thus, reducing inter-
package dependencies by a δ value surely leads to increase
intra-package ones by the same δ value. As for the 4th
objective, it raises the following uncomfortable question: what
is the relationship between the produced clusters and the
design factors of the original packages structure?. Praditwong
et al. said clearly that the goal of their approaches is to
produce cohesive clusters, as much as possible, regardless of
the package original design.

Similar to the aforementioned approach of Praditwong et
al., Bavota et al. [11] proposed an interactive multi-objective
remodularization approach. In their approach, in each gener-
ation of the re-modularization process, the solution with the
highest MQ value in the Pareto set is selected and suggested
to end users. Then, end users should analyze the suggested
solution, class-by-class/package-by-package, and provide their
feedback. User feedback can be either about classes which
should stay together, or not, and/or about small/isolated clus-
ters. After that, the remodularization process restarts with the
suggested solution, but keeps user feedback penalizing the
fitness of solutions which do not satisfy user feedback.

In literature, few prior articles address the problem of
optimizing packages structure within existing modularizations
[7], [8]. Recently, Bavota et al. [7] proposed an approach that
tackles the problem of package size and cohesion improve-
ment. They proposed a single-objective, automatic, approach
to split an existing package into smaller but more cohesive
ones, — from the perspective of structural and semantic
relationships between package classes. The main drawback of
their approach is that it does not consider the relations be-
tween different packages (i.e., package coupling/connections).
Furthermore, their package decomposition approach cannot
propose appropriate refactorings for small packages (e.g.,
packages which contain no more than a couple of classes:
the case of 106 packages in JBoss).

Abdeen et al. [8] defined single-objective optimization
approach based on the Simulated Annealing technique (SA).
The SA optimization approach aims at improving package
cohesion and reducing package coupling and cycles by moving
classes among existing packages. However, as a single objec-
tive optimization approach, SA takes the risk of optimizing
some property at cost of others. For instance, Abdeen et al.
state that their approach has a strong trend to improve package
coupling at cost of class distribution and package size property.
Abdeen et al. state that in the SA’s produced solutions a large
set of packages, especially small ones, are removed since their
classes are merged to larger packages.

Like the SA optimization approach proposed in [8, Abdeen
et al.], this paper addresses the problem of optimizing existing
modularizations rather than producing new ones (e.g., software

clustering: [11, Bavota et al.] and [2, Praditwong et al.]). We
define an approach that considers the original modularization
as an important map that reflecting developers’ decisions.
Indeed, our optimization approach considers explicitly the
objective of minimizing the size of proposed refactorings.
However, unlike the SA optimization approach, this paper
proposes a multi-objective optimization approach that avoids
improving a property of package design at cost of other
properties, and avoids merging the classes of small package
into larger ones.

Inspired by the interactive approach by Bavota et al. [11],
to improve packages structure in an iterative and interactive
manner, our approach allows maintainers to control and guide
the whole process of optimization, using generic constraints.
However, unlike the approach by Bavota et al., the constraints
used by our approach are generic enough to cover a large
variety of contexts, which would facilitate the end user tasks.
For instance, maintainers can specify a limited amount of
authorized modifications, classes which should not change
their packages, packages which should not be changed, and
specify the locality of classes that may change their packages.
Moreover, our approach does not violate the maintainer con-
straints along the optimization process, rather than requesting
the maintainer feedback in every generation.

V. MULTI-OBJECTIVE OPTIMIZATION APPROACH

This paper proposes a multi-objective approach that aims
at improving all the package properties CCP, CRP and ADP,
within existing modularizations. This is by perturbing as less
as possible the existing packages organization, and without
merging small packages into larger ones. To this contribution,
we selected and adapted a multi-objective evolutionary algo-
rithm: the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [9]. The aim of NSGA-II is to find in a single run a set of
Pareto optimal solutions that are non-dominated with respect
to each other. By definition, a solution s1 dominates another
one s2 with regard to a list of objectives O (s1 �O s2), if
s1 is better than s2 for at least one objective, while s2 is not
better than s1 regarding all the objectives in O [9]:
∀oi ∈ O. oi(s1) ≥ oi(s2) ∧ ∃oj ∈ O. oj(s1) > oj(s2) (1)

The NSGA-II explores the search space by making and
evolving a population of candidate solutions using selection
and genetic operators. The output of the algorithm is a set
of the fittest solutions produced along all generations. To
apply NSGA-II to a particular problem, the following elements
have to be defined for its implementation: the optimization
objectives, domination function and the Genetic operators used
to explore the search space. The next sections explain our
design and adaptation of these elements to the problem of
optimizing packages structure.

A. Optimization Objectives
The objectives of our optimization approach are:

Maximizing package cohesion by transforming inter-package
dependencies (IPD) to intra package ones.

Minimizing package coupling by reducing inter-package con-
nections (IPC).

Minimizing package cycles by reducing inter-package cyclic
dependencies and connections (i.e., IPCD and IPCC).

Avoiding Blob packages by avoiding merging the classes of
small packages into larger ones.

Minimizing the modification of original modularizations, so
that the modification of existing packages organization is
near-minimal “with respect to the achieved improvements
to package cohesion, coupling and cyclic connectivity”.

However, Ishibuchi et al. [17] reported that the convergence
of NSGA-II to the Pareto front considerably slows down
when the number of objectives exceeds 4 objectives. To
adapt NSGA-II for many objective problems and improve its
convergence to the Pareto front, Sato et al. [18] proposed to in-
troduce minor changes to NSGA-II by modifying the objective
functions as follows: coi(s) = oi + β ×

∑
oj(s) ,∀oi ∈ O.

Where O is the set of objectives, β is a prespecified constraint
and coi is the modified objective corresponding to the ith

objective (oi) in O. Ishibuchi et al. [17] reported that this
modification of the objective functions noticeably improves the
convergence property of NSGA-II. Basing on the aforemen-
tioned studies of Sato et al. and Ishibuchi et al., we carefully
define our objectives using a formula similar to that one above-
mentioned. Since our optimization process does not change
the dependencies between classes (ICD), we use ICD to
normalize some of our metrics in the interval [0..1].

High Cohesion Objective: we define the Quality of
Common Closure Property (QoCCP) and the Quality of
Acyclic Dependencies Property (QoADP) measurements by
using respectively the normalized ratio of IPD and IPCD to
ICD: QoCCP = 1−(IPD/ICD); QoADP = 1−(IPCD/ICD).
Maximizing QoCCP and QoADP will reduce (increase)
inter (intra) package dependencies and reduce inter-package
cyclic dependencies, and this will optimize the common clo-
sure and acyclic dependencies properties. Hence, we formulate
the objective of high Cohesion (Coh) as follows:

Obj.1Coh = λ× (QoCCP + β ×QoADP)

The rational behind the occurrence of the term β ×QoADP
in the above equation, rather than merely QoADP , is to give
weight to cyclic-dependencies (β ≥ 1). In this paper we set
the value of β to 2, so that cyclic-dependencies have double
weight than acyclic ones. The rational behind the occurrence of
the λ factor is that optimizing QoCCP and QoADP could be
done by merging some packages into other ones: i.e., reducing
the number of packages. In order to avoid such solutions, we
use the λ factor which we define as follows:

λ =
| notEmptyPackages |
| allPackages | (2)

The λ factor takes its value in]0..1]. When the number of
empty packages increases then the λ value decreases and pe-
nalizes the Coh value. Our hypothesis is that optimizing Coh
will increase (reduce) intra- (inter-) package dependencies, and
particularly reduce inter-package cyclic dependencies, and this
is not at cost of removing some packages.

Low Coupling Objective: similarly to the objective of
high cohesion (Coh) –Obj. 1, we formulate the objective of
low Coupling Cop as follows:

Obj.2Cop = λ× (QoCRP + β ×QoACP)

Where QoCRP and QoACP measures respectively the
Quality of package Common Reuse and package Acyclic
Connection properties, and defined similarly to QoCCP and
QoADP : QoCRP = 1 − (IPC/ICD); QoACP = 1 −
(IPCC/ICD). Our hypothesis is that optimizing Cop will
reduce inter-package connections, particularly cyclic ones, and
this is not at cost of removing some packages.

Low Modification Degree Objective: to evaluate the
modifications applied to the original modularizationMoriginal

in order to obtain a new one Mnew, we define the Mod-
ification Degree (MD) in Mnew as the number of moved
classes in Mnew. The smaller the MD value, the smaller
the perturbation of original packages organization. However,
our objective is not to minimize the MD in an absolute
way. Rather, it is to ensure that the achieved improvement of
packages structure cannot be done with a smaller modification
degree. For this purpose, we formulate the objective of Low
Modification Degree, LMD, as follows:

Obj.3LMD = Coh+ Cop− (∆×MD)

The rational of LMD is to ensure that an improvement of
Coh and/or Cop should not be accepted unless it is larger than
the applied modification. Moreover, with the LMD objective,
if two solutions have the same cohesion and coupling quality,
then the solution with the smallest modification degree will
be selected. As for the ∆ factor in the above equation, we
define it as follows: 1/ICD –since Coh and Cop are defined
relatively to the number of inter-class dependencies (ICD: see
the aforementioned definitions of QoCCP,QoADP,QoCRP
and QoACP).

Quality of Class Distribution: the idea is that the
optimization process should avoid moving classes from small
packages to large ones. This paper defines the border which
specifies the size-range of small packages and that of large
ones as the Average Package Size (APS = | C |/ | P |).
ASP represents the size of every package if classes are
distributed equally over packages. Let size LargePackages
(size SmallPackages) denote the number of classes packaged
in large (small) packages. We define the Quality of Class
Distribution QoCD as the ratio of size SmallPackages on
size LargePackages.

Obj.4
QoCD =

size SmallPackages

size LargePackages

If large packages grow and small ones shrink, then the value
of QoCD becomes smaller. Hence, the optimization process
must avoid degrading QoCD. However, in this paper we do
not assume that classes should have an uniform distribution
across packages (see our discussion in Section III-C). There-
fore, our approach does not use the objective QoCD for
maximizing, but rather as a constraint for avoiding God pack-
ages. Next section presents our adaptation of the domination
function and usage of the QoCD objective.

B. The Domination Function
We define our domination function using the metrics in-

troduced in Section V-A: O = {Coh, Cop, LMD, QoCD}.
On the one hand, among those objectives, our optimization
approach aims at maximizing the following subset: Oopt =
{Coh, Cop, LMD}. On the other hand, the optimization
process must avoid solutions that degrade the quality of
class distribution QoCD. For this purpose, we introduce
the predicate QoCD�(M) which returns true if, and only
if, the quality of the class distribution is not worse in M
than in the original modularization Moriginal. We adapt the
domination function, so as we say that M1 dominates M2 if
M1 dominatesM2 with regard to Oopt (see Equation (1)) and
QoCD�(M1) is true. Hence, solutions with degraded QoCD
cannot dominate other solutions.

C. Modularization Evolution with Maintainer Constraints
The NSGA-II uses crossover and mutation operators to

explore the search-space. In the following, we explain our
adaption of the crossover and mutation operators.

The crossover operator considers every modularization M
through its class-moving list (CML) (Section II). When ap-
plying crossover on two parents, M1 and M2, one crossover
point will be randomly selected in the CMLs of the parents,
and two new CMLs, representing two children (M′1, M′2),
will be generated by crossing the parent lists. Applying the
mutation operator on a modularization will produce a new
one where some class c, namely the modification actor cactor,
is moved from its current package to another one. However,
maintainers may specify the following constraints:
C1. Constrain the Refactoring Space: maintainers can

specify some classes and/or packages as frozen. As a
consequence, a frozen package will never be changed and
a frozen class will never change its package.

This is an important constraint since maintainers may agree
that some packages, even though they are not “cohesive”,
are well designed and should not be changed. Furthermore,
maintainers may be interested in limiting the refactoring space
to a given subsystem. In such a context, the advantage of our
approach is that it will search for a refactoring list limited
to that subsystem but takes into account the improvement of
package cohesion, coupling and cycles of the whole system.
C2. Guide the Refactoring Process: specify to which pack-

ages a class is likely to move.
The particular importance of this constraint is that maintainers
can enforce some rule on class locality. For example, in
a layered application context, the maintainer might need to
control the optimization algorithm, so that the classes of each
layer move only among the packages of that layer. For this
purpose, we introduce the class-package friendship concept: a
class c can move only to its friend packages. We use Fr(c)
to denote the set of packages that are friends to c.
C3. Limit the Refactoring Size: specify the maximal num-

ber of classes that may move.
Although our approach considers the objective of minimiz-
ing the modification amount (see Obj.3), this constraint is
important when maintainers look for local solutions that are
limited to a pre-specified amount of modification. We use
dmax to denote the maximal number of classes that can
change their packages. To satisfy this constraint, a class c in
a modularization M can move if: (1) the number of classes
changed their packages inM is smaller than the dmax; or (2)
c has already changed its original package, thus moving it will
not increase the number of classes changed their packages.

It is worth noting that utilization of the above-mentioned
constraints could lead to local-optimal solutions. Our optimiza-
tion approach take this risk since it is intended to satisfy the
following goals:

Avoid bad refactoring we want to avoid moving a class to
packages that are not related, at all, to that class, therefore
classes may move only to their friend packages.

Support further constraints we want our optimization
approach to be extensible for different restrictions to the
refactoring space. The maintainer may define the friends
set differently for different classes: e.g., some classes can
move to their client and provider packages, while other
classes can move only among UI packages.

VI. EXPERIMENT DEFINITION

This section describes the experiment conducted to evaluate
our optimization approach.

A. Context, Goal and Perspective
The context of the study consists of four object-oriented

applications: JHotDrawv7.1, is a Java GUI framework for
technical Graphics; JBossv6.0.0, is a widely used Java appli-
cation server; ArgoUMLv0.28.1, is an UML editing tool; and
Hibernatev4.1.4, is a Relational persistence for idiomatic Java.
As illustrated in Table I, we chose those applications since
they differ in terms of size, number of classes (| C |); number
of packages (| P |); number of inter-package dependencies
and connections (IPD and IPC), and cyclic ones (IPCD and
IPCC). For instance, the number of inter package cyclic depen-
dencies and connections (IPCD and IPCC) in ArgoUML and
Hibernate is much larger than that in JBoss (and JHotDraw).
Furthermore, in JBoss and Hibernate many packages have a
very small size: 106 packages in JBoss and 72 packages in
Hibernate contain no more than 2 classes.

The goal of the study is to investigate the quality of the
produced solutions of our approach and compare it to the
quality of original modularizations and of produced solutions
of another optimization approach. This is from the perspec-
tive of researchers and with respect to package’s cohesion,
coupling, cycles and size, and with respect to the amount of
modifications in produced solutions.

Baseline Optimization Approach: following our discus-
sion in Section IV, we believe that the SA optimization
approach proposed by Abdeen et al. [8] is the most appro-
priate baseline approach for our comparative study. Like our
approach (that we refer to by NSGA), SA aims at improving
existing modularizations rather than producing new ones, and
it considers package coupling (connections) and cycles.

B. Hypotheses and Assessment Criterion
Hypothesis on “Package Cohesion”: “NSGA’s solu-

tions are characterized with a better package cohesion than
SA’s solutions and original modularizations.”

F Assessment: in produced solutions, IPD and IPCD should
be reduced, and the values of the Modularization Quality
measurement (MQ) [16] should be increased. Although MQ
does not belong to the objectives of our approach NSGA
neither to the fitness function of the SA approach, we use it
since it is traditionally used in module clustering approaches
(e.g., [1] and [2]). A drawback of MQ is that its values may be
‘arbitrarily’ large, depending on the number of packages in the
concerned modularization [2]. Fortunately, both approaches
NSGA and SA do not increase the number of packages since
they are limited to move classes among existing packages.
In fact, we consider this drawback of MQ as an advantage
for comparing between the cohesion of NSGA’s solutions and
SA’s solutions: if the optimization approach reduces IPD at
cost of merging some packages into larger ones this will lead
to a reduced number of packages, and as a consequence will
negatively impact on the MQ value.

Hypothesis on “Package Coupling”: “NSGA’s solu-
tions are characterized with a lower package coupling than
SA’s solutions and original modularizations.”

F Assessment: the number of inter-package connections
(IPC), as well as that of cyclic ones (IPCC), should be reduced
in produced solutions.

Table I
INFORMATION ABOUT THE USED SOFTWARE APPLICATIONS.

Package Cohesion Package Coupling Package Size Basic information

IPD IPCD MQ IPC IPCC | P | QoCD | C | APS ICD

JHotDraw 1322 312 10.80 146 10 38 0.429 516 13 2196
JBoss AS 1741 461 221.73 374 19 343 0.406 2820 8 4303
ArgoUML 7289 1249 34.46 717 47 119 0.280 2365 20 9938
Hibernate 6956 1846 78.80 1557 123 259 0.371 3126 12 10555

Hypothesis on “Package Size”: “NSGA does not de-
grade the package size property, so that this property is more
respected by NSGA than by SA.”

F Assessment: to assess the package size property in
produced solutions, we use two measurements: QoCD Obj.4
(Section V-A) and the number of packages that their classes
have been merged to other ones (Pφ). In produced solutions,
the set of empty packages Pφ should be as small as possible.
Ideally, produced solutions should not include empty packages
(| Pφ |= 0). Moreover, the values of QoCD should not be
degraded (decreased) in the produced solutions.

Hypothesis on “Modifications versus Optimization”:
“The modification degree in the NSGA’s solutions is smaller
than that in the SA’s solutions, this is with regard to the
achieved improvement of packages structure.”
Generally speaking, the smallest the modification degree (the
MD value) is, the smallest the perturbation of original pack-
ages organization is. However, to assess the modification
degree in produced solutions with regard to achieved im-
provements, we define the Rate per Refactoring of Achieved
Improvement (RRAI) measurement. The RRAI aims at com-
paring the Rate-Per-Class (RPC) of each quality measurement
(i.e., IPD, IPCD, MQ, IPC and IPCC) to the Rate-Per-Moved
Class (RPMC) of the achieved improvement to that measure-
ment. The RPC of a given measurement m is computed as
follows: RPC(m) = mor/ | C |, where mor is the value of m
in the original modularization and C is the set of all classes.
Hence, moving a class should decrease/increase, on average,
the m value by the RPC value. The RPMC of the achieved
improvement to m in a produced solutionMnew is computed
as follows: RPMC(m) = δm/MD, where δm is the decreased
(increased) value of m in Mnew, if m is to be minimized
(maximized), and MD is the number of classes that changed
their packages in Mnew. Hence, the RPMC value represents
the average contribution of every moved class to the achieved
improvement to m. Our hypothesis is: the average contribution
of moved classes to the achieved improvement of m, i.e.,
RPMC(m), should be larger than the average contribution of
all classes to the original value of m, i.e., RPC(m). We define
the RRAI as the ratio of RPMC on RPC:

RRAI(m) =
RPMC(m)

RPC(m)
: m ∈ {IPD, IPCD,MQ, ...} (3)

F Assessment: the larger the value of RRAI(m), the
smaller the modification amount with regard to the achieved
improvement to m. Ideally, RRAI values would always be
larger than 1 (i.e., RPMC(m) > RPC(m)). However, since we
want to assess the quality of produced solutions with regard
to different measurements, we expect that the arithmetic mean
of RRAI values with regard to those measurements, RRAI,
should be larger than 1.

C. Experiment Scenarios

Global Optimization: in this scenario we do not specify
any constraint on the optimization process of NSGA and SA,
so that: all classes can change their packages, classes can move
to any packages and all packages can be changed.

Controlled Optimization: in this scenario we control and
limit the optimization process using the following specifi-
cations. We limit the locality of a class c to the c’ friend
packages (C2), which we define as the set of provider and
client packages of c. Hence, c can move only to packages that
contain classes directly related to c via explicit dependencies.
Furthermore, we want to test the optimization process when
the refactoring space is constrained (C1) and limited (C3). For
this purpose, we limit the maximal authorized modification
degree, dmax, to 5% (i.e., C3: only 5% of the application
classes can change their packages). Finally, based on the
benefits of isolating abstractions and details from each other
[19], we specify packages that contain only interfaces and/or
abstract classes as frozen packages (C1). This is in order
to keep those packages, with the interfaces/abstracts they
include, isolated from the implementation classes. Hence, the
number of packages/classes that will be frozen in the studied
applications is as follows: none in JHotDraw, 8 packages and
45 classes in JBoss, 2 packages and 23 classes in ArgoUML,
26 packages and 71 classes in Hibernate.

D. Algorithmic Parameters
Regarding the algorithmic parameters of our NSGA ap-

proach, we set the population size and the number of gener-
ations to 100 and 200, receptively. As for the SA (Simulated
Annealing) optimization approach, we set its algorithmic pa-
rameters as follows: the start and stop temperatures are respec-
tively set to 22.8 and 1 (using a geometric cooling scheme:
Tnext = 0.9975×Tcurrent [8]), and the number of local search
iterations is set to 15; so that the number of candidate solutions
evaluated during the evolution process of both approaches,
NSGA and SA, is the same. Regarding the parameters of
the genetic operators, we use values similar to those used by
Praditwong et al. [2]: the probability of crossover and mutation
are respectively 1.0 and 0.04× log2(| C |), where | C | is the
number of classes in the concerned modularization.

E. Solution Selection and Results Collection
The output of our multi-objective approach NSGA is usually

a set of solutions (Pareto set solutions), but the output of the
single-objective approach SA is a single solution. To fully
automate our comparative study, in each run of the NSGA we
calculate the arithmetic mean of the values of each objective
function o (Coh, Cop, QoCD and LMD) for all Pareto
set solutions. Then, the median solution in the Pareto set is
selected as follows:

schosen ⇔
|Pareto set|

min
i=1

√∑
oj∈O

(oj(si)− oj)2

 (4)

Since both optimization approaches, NSGA and SA, are
probabilistic by nature, it is essential to use statistical tests to
support the conclusions that we derive from the approach’s
results. For this purpose, with each optimization approach
we performed 30 runs on each application and collected the
representative solutions produced by every runs. Then we com-
puted the assessment measurements for all collected solutions
(Section VI-B) and compared between the NSGA’s produced
solutions and the SA’s ones using two-tailed Wilcoxon tests.

VII. RESULTS ANALYSIS

This section analyzes the results of the experimental study
to address the research hypotheses outlined in Section VI-B.

A. Package Cohesion
NSGA. Table II shows that our optimization approach (NSGA)
succeeded in improving package cohesion, as measured by
IPD, IPCD and MQ, for all studied applications and in
both experiments: Global optimization and Controlled one.
However, Table II shows that the improvement of the Acyclic
Dependencies property (i.e., the reduced value/percent of the
IPCD original value in Table I) is significantly larger than the
improvement of other cohesion properties. This is explained
by our definition of the high cohesion objective (Obj.1), where
reducing inter-package cyclic dependencies has more impor-
tance than reducing acyclic ones. Taking for example the case
of Hibernate application in the global optimization experiment,
the NSGA approach improved package cohesion on average as
follows: transformed 333 inter-package dependencies (≈ 5%
of IPD in the original modularization) to intra-package ones;
removed 707 inter-package cyclic dependencies (≈ 38%); and
increased the MQ value by 14 (≈ 18%).
NSGA compared to SA. Reading the delta values of cohesion
measurements in Table II we observe the following. With
regard to the MQ measurement, the NSGA performed better
than SA in almost all cases and both experiments. A notable
exception is the case of JBoss in the controlled optimization
experiment, where the average MQ value is higher in SA’s
solutions than in NSGA’s solutions (MQNSGA - MQSA =
−0.55). However, the delta value in this case is not statistically
significant. We also observe that NSGA succeeds in reducing
inter-package cyclic dependencies (IPCD) much more than
SA. Keep in mind that we set the same weight to cyclic
connections and dependencies in both approaches NSGA and
SA. Besides, we observe that SA performed better than NSGA
in reducing (increasing) inter- (intra-) package dependencies
(see δIPD values): five cases in favor of SA (ArgoUML
and Hibernate in both experiments, and JBoss in the second
experiment) against 3 cases in favor of NSGA (JHotDraw in
both experiments, and JBoss in the first experiment).

As a summary, the NSGA approach can well improve
the cohesion of existing packages, even though maintainers
constrain the refactoring’s space and/or size. Indeed, the
NSGA approach significantly outperforms the SA approach
in reducing inter-package cyclic dependencies and improving
the modularization quality as measured by MQ. However, we
believe that the contradictory results with regard to the IPD and
MQ measurements are mainly due to changes in the package
size property. We return back to this point later in this section.

B. Package Coupling
NSGA. Same as package cohesion, Table II shows that
our approach succeeded in well reducing package coupling
and cycles in all studied applications and both experiments.
This is even true for case-studies that have tightly coupled
packages, such as ArgoUML and Hibernate (see Table I and
Section VI-A). Taking for example the case of ArgoUML in
the global optimization experiment, NSGA reduced, on aver-
age, inter-package connections (IPC) and cyclic ones (IPCC)
by 144 (≈ 20%) and 19 (≈ 40%), respectively. Another
example is the case of Hibernate in the controlled optimization
experiment, where NSGA reduced IPC and IPCC by ≈ 10%
and ≈ 39%, respectively. This is an empirical evidence that
the NSGA optimization approach successes in reducing and
optimizing package connectivity in existing modularizations,
regardless of their size and/or complexity.
NSGA compared to SA. By comparing the values of IPC
and IPCC measurements between NSGA’s solutions and SA’s
solutions (see the delta values of coupling measurements in
Table II) we observe the following. SA performed better
than NSGA in reducing package connections, whilst NSGA
performed better than SA in reducing package cycles. Taking
for example the case of Hibernate in the global optimization
experiment, where SA reduced, on average, 100 connections
(≈ 6%) more than NSGA; whilst NSGA reduced, on average,
10 cyclic connections (≈ 8%) more than SA. We believe that
this different results can be explained as follows. NSGA as
a multi-objective optimization approach, unlike SA, aims at
improving the package design properties mutually (not at cost
of each others). Furthermore, it is worth noting that merging
some packages into others would automatically reduce inter-
package connections (and dependencies), but not necessarily
package cycles. Hence, we need to check the package size
property in solutions produced by NSGA and SA before
deriving our conclusions about package coupling.

C. Package Size and Class Distribution

NSGA. Table III shows that for all case-studies, and in both
experiments, the general shape of package size and class
distribution in NSGA’s solutions is very similar to that shape
in original modularizations. Actually, in NSGA’s solutions for
all case studies no package is removed (| Pφ |= 0). Moreover,
we observe that the quality of class distribution (QoCD)
in NSGA’s solutions is not degraded. Rather, the QoCD is
improved in some cases: e.g., in JBoss, which contains a large
set of very small packages, the QoCD is increased by 0.01
(≈ 2% of the QoCD original value).
NSGA compared to SA. As for the SA’s solutions, we observe
that a relatively large set of packages are merged into other
ones, and the QoCD is considerably degraded. That is for all
case-studies, and in both experiments. Taking for example the
case of Hibernate in the first experiment, where on average
63 packages (≈ 24% of packages in the Hibernate’s original
modularization) are merged to other packages. In this case,
the QoCD is decreased (degraded) by 0.09 (≈ 24% of QoCD
original value). Another example is the case of JHotDraw
in both experiments, where on average 7 packages (≈ 18%
of packages in the JHotDraw’s original modularization) are
merged to other packages, and the QoCD is decreased (de-
graded) by ≈ 23%.

Table II
COHESION AND COUPLING IMPROVEMENTS IN THE SOLUTIONS PRODUCED BY NSGA AND SA.

THE MEANS (µ) OF ACHIEVED IMPROVEMENTS TO COHESION AND COUPLING MEASUREMENTS, AND THE DELTA VALUES (∆ : NSGA - SA) OBTAINED
WITH TWO-TAILED WILCOXON TESTS (α = 0.05).

Cohesion Coupling

δIPD δIPCD δMQ δIPC δIPCC

µ
NSGA

µ
SA

∆ µ
NSGA

µ
SA

∆ µ
NSGA

µ
SA

∆ µ
NSGA

µ
SA

∆ µ
NSGA

µ
SA

∆

Global Opt.
JHotDraw -123.87 -81.10 -49.00* -249.27 -62.80 -189.00* +4.51 +3.41 +1.16* -37.27 -37.20 -1.00 -6.07 -3.80 -2.00*
JBoss -274.70 -233.66 -44.00* -161.60 -38.43 -123.00* +32.52 +30.83 +1.93* -105.53 -95.03 -12.00* -10.20 -5.40 -5.00*
ArgoUML -252.50 -378.70 +125.85* -604.23 -85.60 -515.00* +3.57 +3.52 +0.06 -144.27 -177.50 +36.00* -19.17 -4.90 -15.00*
Hibernate -333.90 -491.80 +162.97* -707.23 -367.10 -346.34* +14.00 +11.40 +3.00* -155.90 -255.10 +100.00* -43.40 -32.60 -10.00*

Controlled Opt.
JHotDraw -148.23 -68.30 -81.00* -179.50 -37.60 -142.00* +3.92 +3.04 +0.89* -27.50 -38.20 +12.00* -5.73 -3.00 -3.00*
JBoss -156.93 -209.40 +52.00* -92.27 -28.70 -62.00* +28.16 +28.64 -0.55 -79.87 -87.50 +9.00* -9.43 -4.10 -5.00*
ArgoUML -242.10 -250.70 +9.00 -544.47 -32.30 -516.00* +4.80 +3.57 +1.00* -122.37 -146.20 +23.81* -14.37 -4.00 -10.00*
Hibernate -206.97 -257.80 +55.00* -777.93 -134.30 -664.30* +7.33 +7.22 +0.06 -148.56 -178.80 +32.00* -48.50 -17.70 -31.00*

* denotes statistically significant deltas at α = 0.05. Delta values that are in bold-face (italic-face) denote that NSGA performed better than SA (SA performed better than
NSGA), with regard to the corresponding measurement/property.

Table III
PACKAGE SIZE AND CLASS DISTRIBUTION PROPERTY IN THE SOLUTIONS

PRODUCED BY NSGA AND SA.
THE MEANS (µ) OF IMPROVEMENT/DEGRADATION TO PACKAGE SIZE

MEASUREMENTS, AND THE DELTA VALUES (∆ : NSGA - SA) OBTAINED
WITH TWO-TAILED WILCOXON TESTS (α = 0.05).

Empty Packages (Pφ) δQoCD

µ
NSGA

µ
SA

∆ µ
NSGA

µ
SA

∆

Global Opt.
JHotDraw 00.00 6.70 -7.00* +0.04 -0.10 +0.12*
JBoss 00.00 36.50 -37.00* +0.01 -0.04 +0.05*
ArgoUML 00.00 32.10 -32.00* 0.00 -0.06 +0.06*
Hibernate 00.00 63.00 -62.50* 0.00 -0.09 +0.10*

Controlled Opt.
JHotDraw 00.00 6.80 -7.00* +0.03 -0.08 +0.11*
JBoss 00.00 35.50 -36.00* +0.01 -0.04 +0.04*
ArgoUML 00.00 27.10 -27.00* 0.00 -0.05 +0.05*
Hibernate 00.00 46.20 -46.00* 0.00 -0.06 +0.06*

* denotes statistically significant deltas at α = 0.05. Delta values that are in bold-face
denote that NSGA performed better than SA.

This degradation of package size and class distribution
property in SA’s solutions explains why the SA approach
succeeded in reducing IPC and IPD more than the NSGA
approach in some cases. Additionally, these results show that
our approach succeeds in optimizing the quality of existing
packages without merging small packages into larger ones.

D. Achieved Optimization vs. Applied Modifications
NSGA. Table IV shows that a relatively small number of
classes changed their packages in NSGA’s solutions, compared
to the number of reduced dependencies, connections and
cycles among packages (Table II). For example, in the global
optimization experiment, where 100% of applications’ classes
can change their packages, NSGA moved on average the
following numbers (percentages) of classes: ≈ 30 (≈ 5.8%)
for JHotDraw, ≈ 362 (≈ 12.8%) for JBoss, ≈ 101 (≈ 4.3%)
for ArgoUML, ≈ 190 (≈ 6.1%) for Hibernate. Moreover,
Table IV shows that the mean of RRAI values in NSGA’s
solutions is, in the worst case (JBoss case in the first exper-
iment), strictly twice as large than the baseline value (which
is 1). Hence, for all case-studies the average contribution

Table IV
MOVED CLASSES AND THE RATE PER REFACTORING OF ACHIEVED

IMPROVEMENT (RRAI) IN THE SOLUTIONS PRODUCED BY NSGA AND SA
THE MEANS (µ) OF MODIFICATION AMOUNT MEASUREMENTS IN

PRODUCED SOLUTIONS, AND THE DELTA VALUES (∆ : NSGA - SA)
OBTAINED WITH TWO-TAILED WILCOXON TESTS (α = 0.05).

Moved Classes RRAI

µ
NSGA

µ
SA

∆ µ
NSGA

µ
SA

∆

Global Opt.
JHotDraw 29.87 36.90 -5.00* 7.53 3.45 +4.13*
JBoss 361.50 162.53 +201.00* 2.30 3.11 -0.85*
ArgoUML 100.93 186.00 -80.00* 6.00 1.47 +4.03*
Hibernate 189.43 336.90 -151.63* 3.52 1.56 +1.94*

Controlled Opt.
JHotDraw 24.43 26.00 -1.00* 7.66 4.03 +3.63*
JBoss 139.93 141.00 -9.05* 4.54 3.05 +1.48*
ArgoUML 78.57 119.00 -46.00* 6.63 1.80 +4.83*
Hibernate 150.90 157.00 -2.00* 4.30 1.83 +2.48*

* denotes statistically significant deltas at α = 0.05. Delta values that are in bold-face
denote that NSGA performed better than SA.

of a moved class to the improvement of package cohesion
and coupling is considerably important. This is an empirical
evidence that NSGA does relatively small modifications in
original modularizations.
NSGA compared to SA. By comparing the number of moved
classes and the RRAI values in SA’s solutions to those in
NSGA’s solutions, we observe the following. For all case-
studies, except for JBoss in the first experiment: (1) the number
of moved classes with NSGA is smaller than that with SA,
and (2) the rate per refactoring of achieved improvement to
package cohesion and coupling is considerably more important
with NSGA than with SA. We believe that the exception
of JBoss case in the first experiment is mainly due to the
following: NSGA preferred to move a larger number of classes
than SA, rather than merging a large set of small packages
into larger ones (see the results about package size property
in Section VII-C). However, in the controlled optimization
experiment, where the refactoring size is limited to only 5%
of the application classes, NSGA performed better than SA
even in the case of JBoss application.

Results Summary
The results show significant evidence that the presented

multi-objective approach, NSGA, outperforms the existing
single-objective approach, SA, in improving exiting packages
structure. Indeed, the empirical results show clearly that our
optimization approach, NSGA, can well improve package
cohesion and reduce package coupling and cycles by doing
very small modifications in existing modularizations. That is
without merging small packages into larger ones and without
degrading the quality of class distribution, and finally, despite
the extra constraints on refactoring size and on class locality.

VIII. DISCUSSION
This section discusses the contributions and limitations of

our optimization approach, and contrasts it from existing
approaches on the software re-modularization problem.

A. Contributions
The contribution of this paper with respect to the existing

work on automated optimization of packages structure (e.g.,
[11], [2], [7], [8]), is that this paper proposes a rich, open,
iterative and extensible multi-objective optimization approach.

a) Rich: our approach uses a rich model for evaluating
the quality of packages structure. It can improve all of pack-
age cohesion, coupling and cycles, and this not at cost of
each other or at cost of package size and class distribution.
Moreover, it attempts to minimize the size of proposed refac-
torings with regard to the achieved improvements. Hence, our
approach attempts to minimize the perturbations of the design
factors of original modularizations. This, in its turn, should
reduce the effort for understanding and validating produced
solutions. To the best of our knowledge, up to date there is no
existing remodularization/optimization approach that considers
all those objectives (see Section IV).

b) Open: thanks to the openness of our approach to
different kinds of constraints, maintainers can empower the
optimization process to produce acceptable packages structure,
with regard to different design factors (e.g., see the setup of
the conducted experiment in Section VI-C). The contribution
of our optimization approach over existing remodularization
approaches that allow end-users to interact with the remod-
ularization process (e.g., [7]) is the following. First of all,
our approach is an optimization approach rather than re-
modularization one. Additionally, the constraints used by
our approach are generic enough to cover a large variety
of contexts. Unlike the interactive approach in [7] which
requests feedback of end-users in every step of the evolution
process, end users should setup their constraints only once
before starting the optimization process of our approach. We
believe that this would facilitate the end user tasks. In this
paper, we tested our approach in a context where classes can
move only to packages that are directly related to them via
explicit dependencies. However, depending on the preference
of decision makers, the class-friends rule can be specified
differently with different groups of classes. For example,
inspired by the optimization approach of [11], the class-friends
rule can be aligned to the semantic similarity between classes.
In this way, our approach is expected to increase the structural
cohesion of packages whilst it takes into account the semantic
similarity between classes belonging to the same package.
Nevertheless, further investigations for assisting maintainers in
defining the class-friends rule, as well as further validations of
our approach with different rules of class-friends, are desired.

c) Iterative: moreover, maintainers can use the approach
to optimize existing packages structure in an iterative way.
Maintainers can set the dmax value to a very small num-
ber/percent of the application classes (e.g., dmax = 1%) and/or
limit the refactoring space to some subsystem(s) –by freezing
all packages outside that (or those) subsystem(s). In this way,
the optimization process will try to optimize the cohesion
and coupling properties of packages inside and outside that
subsystem –since the evaluation model still takes into account
the quality of the whole modularization. At the end of the
optimization process, maintainers can investigate the produced
solutions and select one of them. After that, maintainers can
redefine their constraints and restart the optimization process
on the selected solution, and so on. However, even though
maintainers should investigate produced solutions at the end
of each optimization step, this task would be relatively easy
thanks to the limited/controlled size/space of refactorings.
Still, as a future work, we plan to investigate our aforemen-
tioned claim by evaluating our approach with developers.

d) Extensible: thanks to the multi-objective formulation
of the optimization approach, our approach can be easily
extended with different objectives. For example, the objective
for assessing the quality of class distribution (Obj.4) can be
replaced by another objective for assessing the semantic cohe-
sion of packages. This way, the optimization approach will be
expected to improve the quality of packages structure without
degrading the semantic cohesion of packages. Furthermore,
our approach can also be easily extended with additional
objectives (i.e., new metrics for assessing further properties
of packages). However, further investigations will be desired
to assess the performance of the optimization approach with
different/additional objectives.

B. Main limitations
Now that we have presented the contributions of our ap-

proach, the following discusses its main limitations.
e) It is an optimization approach: our approach does not

address the problem of modularizing/decomposing software
systems from scratch (e.g., module clustering [2]). Moreover,
it is not intended to be used for a radical restructuring of
packages (e.g., decomposing large packages [7]). Rather, it
aims at assisting software maintainers in the task of improving
the quality of existing packages structure by doing as less as
possible of modifications in it.

f) It is limited to moving classes among packages: our
approach does not take into account the design quality at the
class level. In fact, in some cases, high coupling between
packages and/or low cohesion of some packages can be due to
design defects at class level [20]: e.g., a God class that points
a large number of dependencies to data classes packaged
in different packages may be the cause of a high coupling
between packages; and the existence of a large number of data
classes may be the cause of low cohesion of their packages.
In such cases, it would be better to detect and correct the
class design defects (e.g., [10]) before using our optimization
approach. However, to the best of the authors’ knowledge, up
to date there is no research effort on the problem of improving
the quality of software structure at both levels (classes and
packages) at the same time.

g) It is a semi-automated optimization approach: it is
important to note that we do not claim that the optimization
approach automatically improves packages structure with re-
gard to every design factor. As outlined in earlier sections, this

work addresses the problem of improving packages structure
with regard to specific design principles, which are CCP,
CRP and ADP (Section III). However, the optimization ap-
proach attempts to minimize the perturbation of other design
factors that are involved in original modularizations. In our
approach, software maintainers should specify, according to
their preferences, their own constraints on the other design
factors. As a consequence, in addition to increasing cohesion
and decreasing coupling, our approach can attempt to propose
solutions that are meaningful from a developer’s point of
view. Still, as a future work, we plan to perform further
experiments with qualitative analysis of proposed solutions,
aiming at investigating the suggested refactorings.

C. Threats to Validity
As a matter of fact, the external validity concerns arise

from the use of a limited set of software projects. However,
the study reported in this paper is concerned with an abstract
representation of software systems (their Package Dependency
Graphs: Figure 1). Since many software systems could have
the same package dependency graph, the results reported in
this paper can thus be automatically generalized to a wider
range of software systems: all systems that have similar
package dependency graphs to that of the case-studies. As
a consequence, this might considerably mitigate the external
threats to validity of the reported experiments.

The threats to internal validity of our experiments concern
the used independent variables (e.g., IPD, IPCD, MQ, etc.).
In these experiments, the values of all used measurements
are computed by a static analysis tool. Due to programming-
language dynamic mechanisms such as polymorphism and
dynamic class loading, the derived values of the independent
variables could be under or over-estimated. In fact, for the
construct validity also, the package dependency graphs of the
considered applications can differ from one analysis tool to
another. This can be due to the analysis approach of the used
tool (statistic or dynamic) and/or the hypotheses made when
extracting the dependencies between software classes.

IX. CONCLUSION AND FUTURE WORK

This paper presents a multi-objective optimization approach
for improving existing packages structure with regard to well-
known cohesion and coupling principles of package design.
To limit the perturbation of the other design factors that are
involved in the original packages organization, the optimiza-
tion process minimizes the modification amount on original
modulaizations with regard to the achieved improvement of
package cohesion and coupling. Furthermore, the optimization
process avoids improving of package cohesion and coupling
at cost of merging small packages into larger ones and/or
increasing the size of large packages. It also considers different
types of constraints that maintainers can define to guide the
optimization process with regard to other design factors than
cohesion and coupling.

To evaluate the optimization approach we performed a
comparative study with the Simulated Annealing optimiza-
tion approach proposed by Abdeen et al. [8], covering four
large object-oriented applications that have radically different
modularizations. The results provide an empirical evidence on
the efficiency of our optimization process to improve existing
packages structure by moving very small number of classes
from their original packages. These results are important since

they were obtained without degrading the quality of class dis-
tribution over packages and without merging small packages
into larger ones. Furthermore, they were obtained with the
consideration of different constraints that were specified with
regard to other design factors different than cohesion, coupling
and cycles.

As future work, we intend to extend the optimization
approach with additional objectives. For example, future work
can consider semantic cohesiveness within packages. We also
plan to set up a new study to validate empirically the improve-
ments to the resulting source code structures.

ACKNOWLEDGMENT

This publication was made possible by NPRP grant #09-
1205-2-470 from the Qatar National Research Fund (a member
of Qatar Foundation).

REFERENCES

[1] B. S. Mitchell and S. Mancoridis, “On the automatic modularization
of software systems using the bunch tool,” IEEE Trans. on Soft. Eng.,
vol. 32, no. 3, pp. 193–208, 2006.

[2] K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Trans. on Soft. Eng.,
vol. 37, no. 2, pp. 264–282, Mar. 2011.

[3] R. C. Martin, Agile Software Development. Principles, Patterns, and
Practices. Prentice-Hall, 2002.

[4] H. Abdeen, S. Ducasse, and H. A. Sahraoui, “Modularization
metrics: Assessing package organization in legacy large object-oriented
software,” in Proceedings of WCRE’ 2011. IEEE Computer Society
Press, 2011, pp. 394– 398.

[5] H. Melton and E. Tempero, “The crss metric for package design
quality,” in Proceedings of ACSC’ 2007. Australian Computer Society,
Inc., 2007, pp. 201–210.

[6] F. B. e Abreu and M. Goulao, “Coupling and cohesion as modularization
drivers: are we being over-persuaded?” in Proceedings of CSMR’ 2001,
Mar. 2001, pp. 47–57.

[7] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Software re-
modularization based on structural and semantic metrics,” in Proceed-
ings of WCRE’ 2010, 2010, pp. 195–204.

[8] H. Abdeen, S. Ducasse, H. A. Sahraoui, and I. Alloui, “Automatic
package coupling and cycle minimization,” in Proceedings of WCRE’
2009. IEEE Computer Society Press, 2009, pp. 103–112.

[9] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[10] A. Ouni, M. Kessentini, H. A. Sahraoui, and M. Boukadoum, “Main-
tainability defects detection and correction: a multi-objective approach,”
Autom. Softw. Eng., vol. 20, no. 1, pp. 47–79, 2013.

[11] G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and R. Oliveto,
“Putting the developer in-the-loop: An interactive ga for software re-
modularization,” in Proceedings of SSBSE’ 2012, 2012, pp. 75–89.

[12] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised software modu-
larisation,” in Proceedings of ICSM’ 2012, 2012, pp. 472–481.

[13] N. Anquetil and J. Laval, “Legacy software restructuring: Analyzing a
concrete case,” in Proceedings of CSMR’ 2011. IEEE Computer Society
Press, 2011, pp. 279–286.

[14] H. Abdeen, S. Ducasse, D. Pollet, and I. Alloui, “Package fingerprints:
A visual summary of package interface usage,” Information and
Software Technology, vol. 52, no. 12, pp. 1312–1330, Dec. 2010.

[15] B. Meyer, Object success: a manager’s guide to object orientation, its
impact on the corporation, and its use for reengineering the software
process. Prentice-Hall, Inc., 1995.

[16] S. Mancoridis and B. S. Mitchell, “Using Automatic Clustering to pro-
duce High-Level System Organizations of Source Code,” in Proceedings
of IWPC’ 1998 (International Workshop on Program Comprehension).
IEEE Computer Society Press, 1998.

[17] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in IEEE Congress on Evolu-
tionary Computation, 2008, pp. 2419–2426.

[18] H. Sato, H. E. Aguirre, and K. Tanaka, “Local dominance and
controlling dominance area of solutions in multi and many objectives
eas,” in Proceedings of GECCO’ 2008. ACM, 2008, pp. 1811–1814.

[19] R. C. Martin, “The dependency inversion principle,” C++ Report, 1996.
[20] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical

study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension,” in Proceedings of CSMR’ 2011. IEEE
Computer Society, 2011, pp. 181–190.

