inria-00533618, version 1 - 8 Nov 2010

Visualization of Practices and Metrics

Visualisation graphique des pratiques et
métriques

Workpackage: 1.2

31 March 2010

http://hal.inria.fr/inria-00533618/fr/
http://hal.archives-ouvertes.fr

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

This deliverable is available as a free download.

Copyright © 2008-2010 by S. Ducasse, S. Denier, F. Balmas, A. Bergel, J. Laval, K. Mordal-Manet, F.
Bellingard.

The contents of this deliverable are protected under Creative Commons Attribution-Noncommercial-Share Alike
3.0 Unported license.
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license.

e For any reuse or distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to this web page: creativecommons.org/licenses/by-sa/3.0/

e Any of the above conditions can be waived if you get permission from the copyright holder.
e Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-readable summary of
the Legal Code (the full license):
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

First Edition, January, 2009. Final Edition, March, 2010.

creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Workpackage: 1.2

Title: Software metric for Java and C++ practices

Titre: Visualisation graphique des pratiques et métriques
Version: 1.1

Authors: S. Ducasse, S. Denier, F. Balmas, A. Bergel, J. Laval, K. Mordal-Manet,
F. Bellingard

Planning
e Delivery Date: 28 June 2009
e First Version: 15 November 2008

e Final Version: 31 March 2010

inria-00533618, version 1 - 8 Nov 2010

Abstract

Measuring applications is a challenge and one of the goal of the Squale project is to
propose a sound quality model. Now presenting the results of such analysis is also a
challenge since it is complex to output and present to the user for the following rea-
sons: first a lot of data should be presented and at different audience. Second displaying
information is one aspect another one is navigating the information. Finally it is im-
portant not to overwhelm the users with too much visualizations. This workpackage
presents a state of the art in terms of software visualization approaches that are specif-
ically designed to display metrics. In addition it sets up the context for the application
of such visualization to practices.

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Contents

1 Context and Challenges for adapted Metric Visualizations

1.1 Overview of existing approaches
1.2 Technological Challenges

2 Selection Criteria and Template

2.1 Visualization Template
2.2 An Example: DISTRIBUTION MAP

3 A selection of Visualizations

31 TREEMAP e
32 TREERING
33 ICICLEPLOT,
34 POLYMETRIC VIEWS i iii .
35 FILEDOT
3.6 KIVIAT DIAGRAM
3.7 DOTPLOT AND CORRELATION MATRIXES
3.8 EVOLUTION MATRIX o v v i i i e
39 VERSO e e e

4 Conclusion

w

9}

13

R
A
.. 20
... 23
.29
... 33
R ¥

... 43

48

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Chapter1. Context and Challenges for adapted
Metric Visualizations

1.1 Overview of existing approaches

There is a plethora of program visualizations to support program understanding and
their execution [SDBP98, War00, SpeO1]. Bertin [Ber74] defines semantics of map
and visualizations. Healey shows the importance of preattentive properties [Hea92] —
Researchers in psychology and vision have discovered a number of visual properties
that are preattentively processed. They are detected immediately by the visual system:
viewers do not have to focus their attention on a specific region in an image to deter-
mine whether elements with the given property are present or absent. An example of
a preattentive task is detecting a filled circle in a group of empty circles. Commonly
used preattentive features include hue, curvature, size, intensity, orientation, length,
motion, and depth of field. However, combining them can destroy their preattentive
ability (in a context of filled squares and empty circles, a filled circle is usually not
detected preattentively).

[FJ98, HVvWO05, WLO07a] use 3D to show static information. [WL07b] uses 3D to
show software metrics using a city metaphor. [LSP05] uses constrained 3D to display
multiple class properties at the application level. [MFMO3] et al. propose an interesting
2D software maps that they generalize in 3D. In their approach one dot represents some
property of a line. This way they can visualize entire system.

Several researchers displayed dynamic information [FM86, DPLVW98, EGK+02].
Bertuli et al. used metrics to quantify dynamic execution information [BDL03, DLB04].

Some work focus on object-oriented software and classes [Fyo97, SK98]. For ex-
ample, ClassBlueprint offers a way to understand how classes are build from method
invocations and attribute accesses and their interaction with their superclasses [LDO02].
Schauer et al. present hot-spots on class hierarchy [SK98]. Package fingerprints stress
how classes are co-used in a package or how they use other packages [AADT08]. Pack-
age Blueprint displays, in an extremely compact form, how a package is referencing
other classes and how it is used by other classes in a system [DPS™07] and this without
edges.

Polymetric views display the conceptual entities that compose software (classes,
attributes, methods, ...) but enrich them with software metrics [LD03]. The shapes of
the entities reflects some of their properties and from this combination extra meaning
emerges. This visualization puts the metrics in context and perspective. In addition, the
same metaphor supports the understanding of the entities evolution [GLDO05]. One of
the important problem when dealing with graph (and software is a graph) is how to deal
with edges since they can introduce a lot of noise. Distribution Map is a specialized
software maps to represent how properties spread into a system [].

Presenting data got a lot of attention, for example the following web site http://www.
smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/ presents some
modern approaches. http://www.randelshofer.ch/treeviz/index.html presents some de-

http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/
http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/
http://www.randelshofer.ch/treeviz/index.html

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

fault visualizations. To deal with such a profusion of approaches, several assessment
frameworks have been proposed [GHMO05, KM07, Kos03, PRWO03, PBS93, SDBP9S,
T™O02, SvGO5].

Given the plethora of works on visualization, it is important to be able to describe
the ones that are better-suited to be used in software quality analysis.

1.2 Technological Challenges

The key challenges addressed by this workpackage are the following ones:

e Plethora of information. Squale generates a lot of either new metrics or refined
ones, practices. Therefore, it is difficult to decide which metrics should be dis-
played and how.

e Put in context and navigation. In addition to just displaying information, it is
important to present it in the right context and to support its navigation.

e Multiple users. Since different kinds of users (lead developer, manager, project
leader) will use the information provided by Squale, the presentation of such
information should be adapted to the user.

e A coherent sets of software maps. There are a plethora of visualizations and for
each one the user will have to learn and feel confident with it, therefore it is not
possible to use a too large set of visualization.

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Chapter2. Selection Criteria and Template

2.1

Since the amount of works is large, we need to define some criteria that will help us to
drive the selection of work that could be used to support software quality presentation.
In the context of Squale, visualization primary goal is to convey the quality of the
different software artifacts. Here is a list of criteria that visualization should support.

Ease of understanding. A given visualization should require a limited training to be
understandable by end-users. We do not aim for zero training else we would
remove too much interesting possibilities. In addition, the visualization should
be understandable by a wide range of users and not only some researchers on
program visualization.

Flexible, adaptable. Some visualizations are good but too specific and difficult to
adapt to new data. Since Squale is open in term of tools used to gather in-
formation and the kind of practices used to qualify software, we should favor
generic visualizations that can be customized at will in the future. In addition
the visualization should be adaptable to different audiences.

Scalability. Lot of visualizations are optimized to scale well with the number of nodes
or edges. Now the scalability we are looking for in Squale is not just a scalability
in terms of millions of nodes displayed on the screen. We are looking at how to
convey in a compact way information about software artifacts of different levels
of abstractions (folders, systems, packages, classes, methods).

Ease of implementation. The goal of Squale is not to focus on specific algorithms
to display information. Therefore the proposed visualization should be either
simple to implement or well supported by available libraries.

Navigability. Since software is apprehended at different levels of abstraction, it is im-
portant that the visualization not only conveys the quality of the artifacts but that
it supports user navigation inside the software abstraction space.

Required information. Since the goal of Squale is to act as a meta-plug that builds
up its quality model on top of information provided by available tools, the visu-
alization should be dependent as few as possible on requirements related to the
kind of information extracted from software artifacts. Still it is important that the
information extracted by foreign tools is described in a way that the visualization
engine can do something meaningful with it.

Patent free. Since Squale is an open-source project, the visualization algorithms should
not be patented.

Visualization Template

To be able to compare the selected visualizations on a common ground, we define
the following description template.

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Identification

Name and reference: This section indicates the name of the visualization and its exact
references. Alternate names are also given.

Goal: This section stresses the main goal and the key points of the visualization.
Principle: This section presents the key underlying mechanisms or layout positioning

of the visualization. It may contain a sketch to describe the principle.

Example

This section presents the visualization on a particular case.

Metrics

This section presents the metrics that can be used in the visualization. In particular,
this section should stress whether the visualization is targeting experts or managerial
level.

Analysis

This section puts the visualization in perspective, especially in the light of the cri-
teria exposed before.

Navigation: This section presents how the visualization support the navigation in the
software artifacts space.

Applicability: This section presents the information needed to be able to express and
apply the given visualization. For example, if we need references between classes,
method invocations or any specific information to be extracted from the source code.

Algorithm cost/Implementation cost: This section discusses if the visualization is
easily reproducible in terms of computational cost. In addition, this criterion also cov-
ers whether it is simple to implement the visualization in another environment than the
other presented by the referenced paper.

Variability: This section presents possible variations or adaptation strategies of the
visualization.

Summary Pro/Cons: This section concludes with a pros cons summary.

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

2.2 An Example: DISTRIBUTION MAP
2.2.1 Identification

Name and reference: DISTRIBUTION MAP [DGKO06]

Goal: Often, the results of software analyses categorize existing software entities
(packages, classes,...) into new groups or associates them with mutually exclusive
properties, but it is difficult to understand how such new groups or properties relate
to the original code structures (packages or classes). DISTRIBUTION MAP solves this
problem. It is a generic visualization showing how properties spread over code en-
tities. DISTRIBUTION MAP stresses the focus, which shows whether a property is
well-encapsulated or cross-cutting, and spread, which shows whether the property is
present in several parts of the system.

Principle: The principle of DISTRIBUTION MAP is to represent containing entities
(subsystems, folder, packages, classes...), to spatially nest their elements inside them
and to display each element with the color dedicated to its linked property.

part 1 part 2 part 3

part 5 part 4

Figure 2.1: A DISTRIBUTION MAP showing five packages and four properties: Red,
Blue Green and Yellow.

Figure 2.1 illustrates the DISTRIBUTION MAP principle with five containing en-
tities, called parts, containing 6, 2, 5, 10 and 14 elements respectively and with four
properties: Red, Blue, Green and Yellow. On the visualization, for each part p,, there
is a large rectangle and within that rectangle, for each element s; € p,, there is a small
square whose color refers to the property g, attributed to that element.

From the visualization we can characterize both the parts with respect to the con-
tained properties, and the properties with respect to their distribution over the parts. In
Figure 2.1, we say that property Blue is well-encapsulated, that Yellow is cross-cutting
and that Green is like an octopus because it has a body (part 1) and tentacles spread
over the system. We also say that part 1 and part 5 are self-contained or exhibit the

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

same properties which are local to them. Note that parts 1 to 5 can be either classes,
packages, groups of packages. ..

Two layout strategies are used to reinforce the visual impact of distribution. First,
colors (properties) are always grouped and displayed in the same order within each
part, which allows to easily count elements of a given property and compare between
parts. Second, parts are ordered using a dendogram seriation algorithm, which places
similar parts (according to the properties they share) near each other. Thus, properties
spread over different parts still appear in the same area, allowing the user to see all
touched parts at once and making visual patterns of distribution more visible.

2.2.2 Examples

DISTRIBUTION MAP can be applied to show a large variety of information ranging
from metrics to semantic information or authorship. Here we show two of them.

Figure 2.2 shows the concepts (which are computed out of vocabulary in the source
code) of JEdit and their distribution on the complete system. Red points to classes
identified as core classes for JEdit: it is spread across multiple packages, showing
which are parts of the core and which are not. Green points to Ul classes, which appear
in the same packages as core classes. On the contrary, blue classes (scripting) and cyan
classes (regular expressions) are more encapsulated in their own packages.

Figure 2.3 shows the number of commits per class for JBoss using a heat scale
(red for files with more than 50 commits, yellow for more than 20 commits, light blue
for less). The folders plugins, metadata, ejb, and jdbc are the most actively
developed. With respect to their number of files, the folders j2ee and e jbgl appear
more stable.

Lat. com. doc. menu msg util menu QuickMo, browser macos search

(m] [m] [m] Ilzj:l;l IJ;_Lil @ @ EEEE| (e (EEEE \ﬁ‘ EEEE EEEEE

AN NN EEEE EEEE EEEOO
HEEC| |[ODOm OO0 mm OEEE

jedit installer options qui help pluginm, ref. colle.
ENEEEEEE EEEEDD| (EEEEEEED o [m] [mm]
EEEEEEEE ODEEENDD| (DEEOEEEE HEE
EEEEEEEC ODEEE00| |DIEEDEEEE OEE
OOCDOOEEE oooo ODEEOOOEE
OOo0CEEEE E00O00O000
oooo

scrip, syntax regexp buffer print _textares Eull asm
|ﬁ| Doooo| [ooooo| (Wemoo [ET=]=]s EEED

OIDDDD| DfDDDO| Do@@E@E EEOO OEmEE
ood ODDDDO EEE@E oood mm
Oooo@E@E
oo@

Figure 2.2: Concepts in JEdit.

-00533618, version 1 - 8 Nov 2010

inria

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

inveker web naming

ool (mmO0| | mooooo ooog| (moooo
oooo| |[oooood Oooo| ([Doooo
oooo| ([ocogoo oogf |oocoo
ooo EEDDDD ooog| ([oooo

plugins invecstion plugins security metadsts jexrpcmappi. confi. logging deployment

EOOOO00 EEEEEEEC) | DO0000 Oooooo| | mEooooo
ODOoooood| ([OO0O000000(|Doaoa OoooEo| [ooooooo
Ooooodoooog| |Doooooo| |og Cooooog| ([Cooooood| ([oog Oooooo| |joooooog
Ooooooooood| [Doom CODOOO0| ([DOoOoooOoo oooo ooooooo
oooooooooog Ooooood| |Doocoooo ooooo
goooooooooo 0ooooon| |[oooood
Ooooooooooo
handle system compiler jboss sib util
oooooood| ([cooo ENENEENENED| |DO000O0O000
OoO0ooood| ([oood OO0O0O0000000| |D000000080
oooooooo| (oo OO0O0000C00dOd| | Doooocooooo

oooooooo COCO0O00O000O0| |Dooooooooo
oooo 00000000000 | D000Ccooooo
COo000oooooo| |[ooooo
oooono

idbe
Booooo
oooooo
oooooo
ooooog

times. _samples session _pro: ted catal. secur. cluster _ editors interface. deplovment
Oo0ogd| (DO000| |[OD00o0
OOoOo| (DOO0O0| |[DoCooo
ooo oo EEDDD

. inter. clisn.

client interfaces mat mejb

oooooooo| |joooo oooog
Oooooooo| |joooo ooooo
doooog| (oooo oog
ODoooooo| |oEm
oooooooo
notificat. j2ee
OOOd| [COOO00000000| | D0ooooog
O0O00O0(|[DE0CO00000000| | Doooooco
o o o
oog o o o o i o e
OOddooodoooo| |[oooo
oo o i i o o o
Oooooooocog
jsris xsd metadsts metsdata webservice wsdl txtimer

OooO| |DE0o0| |[Dooooog| |joooooog

0000 | D0000| |D0000000)| |D0000oa

0000 |D0000| |Dooooog| |oopooog
ogo

hila schema brida. i i
[_|m]=]m) ENEEEEE EEEECOO
oooo ooooooo ooooooo
oo ooooooo ooooooo
ooooocao
ooooooo
Oooooooo

copy Sntity

Oooo| ([Doooo

ooog| |[poooo

Oood| ([Doooo
ooo

sibal sibgl
Ooooooo0oooood| |[oocao
Oooooooooooog| |[gooo
ODOod0dooooood| |[@oa
doooooooooooo
Oooooooooooogo
doooooooooooo
Oooooooooooono
Oooooooooo

timeo

plugins aggrega. xa datas.
ooo| |[Daoo
ooo| |[oog| |3

secur. sibal schema sibal query keygen

00000 | OD00O0O0| |[D000Q0| |DoCgooo| |jooood
OOOO00 DD000O0| | D000O| |D0fOOooO| |[oooog
00000 | D000O| |D0000| |DoCcoooo| |ooo

oog oog ooo ooooooo

Figure 2.3: Number of Commits in JBoss.

2.2.3 Metrics

Metrics: Metrics can be either mapped to color or to dimensions following the poly-
metric views principle [LD03]. Figure 2.4 shows the use of the two dimensions of a
box to display metrics, complementary to the basic distribution map principles.

Properties should be mutually exclusive if possible or ordered by their importance

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

so that each element is linked with only one property. Colored metric uses discrete,
easy to distinguish colors to show properties. To retain the distinguishing property of
colors, there should be few of them (a dozen) hence a small set of significant properties
must be chosen.

Color mapping to properties can be chosen randomly, using similar colors to show
relationships between some of the properties, or using symbolic values. For example,
a class can be green to represent that its quality is ok, orange or red when there is a

quality problem.
- | two different metrics
I width metric
- height metric

Figure 2.4: Displaying metrics as box size.

2.2.4 Analysis

Applicability: While DISTRIBUTION MAP is flexible and can be applied without any
change to folder/file, packages/classes, classes/methods and other groups, there is a
strong constraint to get its maximum benefit. The displayed properties should be mu-
tually exclusive on an element; in other terms, an element can only show one property.
Note that using the border of a box to display an additional property usually does not
work since colors get anti-aliased.

Navigation: DISTRIBUTION MAP supports a good navigability at two levels: First,
the part and container metaphor works at any level of abstraction. A container can be
a folder with files or subfolders, a package with classes and sub-packages or methods
inside a class. So using a single model we can display metrics and quality informa-
tion. Second it is possible to nest distribution maps within another layer. Therefore a
package may contain other packages which may contain classes and finally methods.

Algorithm cost/Implementation cost: DISTRIBUTION MAP algorithmic complexity
is rather low. Two main loops are necessary: one for the part and one for container. To
enhance the pre-attentive visual property of the visualization, parts should be sorted by
properties inside a container.

In addition parts can also be grouped when having similar properties. However, the
overall complexity is still quite low and the visualization can be drawn with a simple
toolkit in a couple of hours. Our experience shows that in 3 hours we could get a first
version.

10

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

The structural shape of DISTRIBUTION MAP fits well the nested structure of soft-
ware static elements (folders, packages, classes, methods...).

The scalability of DISTRIBUTION MAP is clear when we see JBoss in a single page.
Since DISTRIBUTION MAP does not draw edges the noise produced by edge drawing
is absent.

Variability: DISTRIBUTION MAP is an interesting visualization because it can be
adapted to fit specific intention.

e Part colors. As we show in the metrics section, it is possible to change the
dimensions of the elements to reflect one or two measures. In addition it is
possible to change the color of the part to reflect a value computed based on its
elements. So the part can reinforce the general information or create new one as
shown in Figure 2.5.

Two composites and
their constituents
-

Figure 2.5: Using part colors to convey summary.

¢ Fixed element position vs. color effect. The ordering of the elements can
be kept the same using an arbitrary ordering such as a timestamp or filename.
However the color grouping effect will be weaken up.

Analysis Pro/Cons.

Distribution map works intuitively at both the macro-reading level and the micro-
reading level, making it very easy to grasp by technical and non-technical users. Its
layout strategies allows one to easily see distribution patterns at the macro level, while
the simple schema of nested boxes and colors allows one to relate and count elements
and properties within each part.

DISTRIBUTION MAP offers several good properties when applied to software sys-
tems:

e Straightforward mapping between source code and visualization. There is a one-
to-one mapping between the structural code and the visual elements it represents.
The reengineer can easily relate the parts and elements in the visualization with
source code structure while investigating.

o Simplicity. The idea is simple and intuitive.

11

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

e Good overview and noise reduction. Edges are not shown but replaced by spatial
nesting and it is possible to display large applications as we show with the JBoss
case study.

e Navigation. The navigation while limited to structural nesting is adapted to large
software systems.

12

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Chapter3.

A selection of Visualizations

We describe the following visualizations (the list is not exhaustive). Note that our anal-
ysis is focusing on software metrics and can be biased from certain other perspectives.
In addition to DISTRIBUTION MAP presented in the previous chapter we present the
following visualizations:

TREE MAP

TREE RING

ICicLE PLOT

POLYMETRIC VIEWS

FILE Dot

KIVIAT DIAGRAM

DOTPLOT AND CORRELATION MATRIXES
EVOLUTION MATRIX

VERSO

Barlow and Neville [BNO1] studied four two-dimensional visualizations of hierar-

chies:

organization chart, icicle plot, treemap, and tree ring and their results suggest

that the tree ring or icicle plot is equivalent to an organization tree. Still we present
them as they offer way to display information.

13

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

3.1 TREE MAP
3.1.1 Identification

Name and reference: TREE MAP [JS91, BDLO5] (http://www.cs.umd.edu/hcil/treemap/)

Goal: The objective of a treemap is to display tree-based information in a compact
form which maximizes use of the screen space.

Principle: Figure 3.1 illustrates the treemap principle. The complete tree is represented
as arectangle. Each sub-tree is represented as a sub-rectangle in its parent rectangle. At
the first hierarchy level, the complete rectangle is split vertically. Then, sub-rectangles
are split horizontally. Sub-sub-rectangles are split vertically, and so on. Each splitting
is done so that the area covered by a rectangle is proportional to the number of nodes
it contains. Figure 3.1 compares a tree with a tree map and shows that TREE MAP is

more compact.

®
@@\@

Organization Chart Treemap

G 7

at ot c12

a2 c2

Figure 3.1: (left) A TREE MAP showing four levels of nesting with six leaf nodes.
(right) Comparing a TREE MAP and an organization tree (taken from [BNO1]).

Organization Chart Treemap
1

G 7

Figure 3.2: Comparing a TREE MAP and an organization tree (taken from [BNOI1]).

14

http://www.cs.umd.edu/hcil/treemap/

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

3.1.2 Examples

The TREE MAP web site contains a lot of examples. In the context of software vi-
sualization, panopticode http://www.panopticode.org/ uses treemaps to stress elements
with quality problems. Figure 3.3 shows methods grouped into classes from the inte-
gration framework CruiseControl. In the figure, elementary boxes are methods, com-
posed boxes delimited by white lines are classes. The colors are used to convey four
quality level information (black for extreme value, red for bad quality, green for good,
and yellow for middle). The complete picture displays a package.

NDepend also uses treemap visualization, highlighting entities resulting from queries.
Figure 3.4 shows packages containing classes themselves composed out of methods.

CruiseContrl Complexty

[ccn 5 [Joones W con 024 W con s WA]

Figure 3.3: TREE MAP showing quality metrics in CruiseControl with methods as
elementary boxes and classes as composed boxes.

Figure 3.4: NDepend example.

15

http://www.panopticode.org/

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

3.1.3 Metrics

The box color is the primary attribute to convey some information in TREE MAP.
Since it provides a space efficient overview of all entities in an organized system, we
can get a symbolic idea of a metric values by looking at predominant colors. The size
of the leaves can represent two metrics but this makes the computation of the TREE
MAP layout more complex and can hamper the visualization. However, it is not simple
to determine or to represent the metrics of the enclosing entity.

3.1.4 Analysis

Applicability: Treemaps can be applied to quality assessment result as demonstrated
by panopticode (Figure 3.3).

Navigation: A treemap is a good support for an overview. In addition, since elements
(methods or classes) are contained and grouped in their enclosing entity (classes or
packages), a treemap supports navigation. However, navigating through the hierarchy
of enclosing elements requires skill and knowledge of TREE MAP layout. It is not
straightforward to access the enclosing entity, since space is used by its elements.

Re- Es. Kiss. Bran- Co- Wor Office: W-

Leay: Wal- So- Ali-

ITurnT. Ever: suga- Sta- Kin- A - T

N-L SP* I |7
Dile- Moy- MO: Wh- Las- Bev- The: Th- T ga

s | T-
Inappr- LiveY: Séné- Drea- Why- Th- Wri- Ko T
Kin-
. Na- Ru- R:
Obje- L Mo- G- P WhatT- Na- Pri-
The Br- Ho- Iron - Nex-
Turn- p- Don’- JustLlo- |u- li- R C H-
pow- T- Sand: LoseYo: Ly. |nt- = T V-
Going:- Pi- T- U-
Ult- A_- Th-
RockMyL- RockM: Juli-Geil- - The | Spi-

Bring - Mo- Su- Sti- Ter. The.

Figure 3.5: TreeMap taken from http://www.randelshofer.ch/treeviz/index.html.

Algorithm cost/Implementation cost: Treemap algorithm is simple to implement and
lot of implementations are available.

Variability: The basic layout presented in the previous section is called “slice and
dice”. Regardless of the shape of the parent rectangle, it is sliced vertically or hori-
zontally, depending on the depth of the node. To improve readability, other algorithms
have been proposed to enforce an aspect ratio which is as close as possible to 1. Balzer
et al [BDLOS] uses Voronoi shapes instead of rectangles. Using TREE MAP to show
more information than the ones presented in Figures 3.3 or 3.4 seems difficult.
Composite, more complex visualizations such as Verso [LSP05] and CodeCity
[WLO7a] have used TREE MAP as a general layout for the system structure and re-

16

http://www.randelshofer.ch/treeviz/index.html

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

fined leaf area with custom shapes to show more metrics.

Analysis Pro/Cons. TREE MAP are used for all kinds of domains. They are pow-
erful and group naturally together hierarchical entities. Treemaps have the following
limits: they are compact but show mainly leaves of the structure. Therefore it is not
obvious to get enclosing entity (class/package) information when looking at element
(methods/classes), beside an overview. Figure 3.5 which classifies files (movies, mu-
sic...) clearly shows that TREE MAP can be really blurry and not efficient to support a
structural navigation. Finally they have the problem that leaves at different depth lev-
els have different size in the representation which arbitrarily gives less “importance” to
deeper leaves.

3.2 TREE RING

3.2.1 Identification

Name and reference: TREE RING [AH98]
Goal: The goal is to obtain more compact trees and support a better navigation.

Principle: The tree ring is a space-filling visualization approach. TREE RING displays
tree topology and nodes size. Node size is proportional to the angle swept by a node as
shown by Figure 3.6. It may contain empty space contrary to TREE MAP.

QOrganization Chart Tree ring

Figure 3.6: Tree ring principle (taken from [BNO1]).

3.2.2 Examples

We can see Sunburst [SCGMOO0] (http://www.cc.gatech.edu/gvu/ii/sunburst/) and
Sunray visualizations as TREE RING variations. Figure 3.7 shows two examples.

3.2.3 Metrics

In general two metrics can be displayed: one for the node size and one for their
color, except for the root node where the node size cannot be rendered. TREE RING

17

http://www.cc.gatech.edu/gvu/ii/sunburst/

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

oY

20. (Y
@

Figure 3.7: (left) Tree ring principle applied in Sunburst — (right) Tree ring principle
applied in Sunburst. (taken from http://www.randelshofer.ch/treeviz/index.html)

can be used in the same fashion TREE MAP is used as shown in Figure 3.3 and 3.4
where node colors can convey symbolic information and node size some structural
information.

3.24 Analysis

Navigation: TREE RING can support navigation at system level since packages can be
used as root and classes and methods as tree elements. One problem is that the visual-
ization should offer zooming or interactive facilities to access deep leaves. Therefore
the navigation is not optimal.

Applicability: There is no specific constraint for the applicability of TREE RING,
besides having a hierarchical structure.

Algorithm cost/Implementation cost: The algorithm is not complex but requires that
the widget kit supports arc drawing. Several implementations are available.

Variability: While a large variety of data can be visualized with TREE RING, the
potential of variation in presence of several software metrics is not as open as for other
representations such as POLYMETRIC VIEWS: A maximum of two metrics can be
displayed. In addition it is not clear that comparing two tree rings showing different
properties is a simple task and supported by the TREE RING itself.

Summary Pro/Cons: TREE RING is a valuable visualization. The scalability as well
as navigability may be an issue for large system. Understanding subpart is easier than
in TREE MAP where the leaves are nested inside their parents. The metrics application
may be limited too since only coloring may be adequate.

18

http://www.randelshofer.ch/treeviz/index.html

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo

Squale Consortium

19

inria-00533618, version 1 - 8 Nov 2010

3.3

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

ICICLE PLOT

3.3.1 Identification

Name and reference: Icicle plot [KH81, BNO1]

Goal: Similarly to TREE RING, ICICLE PLOT goal is to offer a compact representation
of trees.

Principle: ICICLE PLOT principle is depicted by Figure 3.8: a line represents a tree
level. A line is split according to its number of children. Unlike TREE RING, the icicle
plot may contain empty space. Like the tree ring, ICICLE PLOT may use node size to
convey extra information.

QOrganization Chart Icicle Plot
1

Figure 3.8: ICICLE PLOT principle (taken from [BNO1]).

3.3.2 Examples

Figure 3.9 shows the same data than Figures 3.5 and 3.7. It is worth mentioning
that ICICLE PLOT and TREE RING provide a better understanding of the structural
relationships between elements than TREE MAP. These examples illustrate that TREE
RING and ICICLE PLOT are closely related and that having the two visualizations is
not interesting.

3.3.3 Metrics

In general two metrics can be displayed: one using the node size and one using the
node color, except for the root node where one cannot use any size (a low value would
result in a small top node that would produce a very narrow representation). ICICLE
PLOT can be used in the same fashion TREE MAP is used as shown in Figure 3.3 and
3.4 where node colors can convey symbolic information and node size some structural
information.

20

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Bjork Bjork

Music Vide-

Music Vide-
Movies Movies

2002
2003

Trailer 2005

2006 Trailer

Figure 3.9: (left) ICICLE PLOT example — (right) ICicle Plot principle applied in
Iceray. (taken from http://www.randelshofer.ch/treeviz/index.html).

3.3.4 Analysis

Navigation: ICICLE PLOT can support navigation at system level since packages can
be used as root and classes and methods as tree elements. One problem is that the visu-
alization should offer zooming or interactive facilities to access deep leaves. Therefore
the navigation may not be optimal.

Applicability: There is no specific constraint for the applicability of ICICLE PLOT,
besides having a hierarchical structure.

Algorithm cost/Implementation cost: The algorithm is not complex. Several imple-
mentations are available.

Variability: While a large variety of data can be visualized with ICICLE PLOT, the
potential of variation in presence of complex software metrics is not as open. Indeed
a maximum of two metrics can be displayed. In addition it is not clear that comparing
two ICICLE PLOTs showing different properties is a simple task and supported by the
ICICLE PLOT itself.

Summary Pro/Cons: Similarly to TREE RING, ICICLE PLOT is a valuable visualiza-
tion. Scalability as well as navigability may be an issue for large systems. Understand-
ing subparts should be easier than in TREE MAP where the leaves are nested inside
their parents. The metrics application may be limited too since only coloring may be
adequate.

21

http://www.randelshofer.ch/treeviz/index.html

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium

AirFrance - INRIA - Paris 8 - PSA - Qualixo

22

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

3.4 POLYMETRIC VIEWS
3.4.1 Identification

Name and reference: Polymetric Views [LD03, DDL99, LD03, GLDO05]

Goal: The idea promoted by polymetric views is to offer a lightweight software visu-
alization technique where the graphical representation of a software entity (package,
class, method) is enriched with software metrics.

Principle: The visualization uses two-dimensional display to visualize object-oriented
software [DDL99]. The nodes represent software entities or abstractions of them, while
the edges represent relationships between those entities. We enrich this basic visual-
ization by rendering up to five metrics on a single node simultaneously, as shown in
Figure 3.10. Additionally, an edge can render up to two metrics.

Position Metrics (X, Y)

~—— Width Metric ——»

Color Metric Height
Metric

[—>

Entities
: : Edge Width Metric
Relationship and Color Metric

Figure 3.10: Polymetric Principle.

Node Size/Edge Width. The width and the height of a node can each render one
metric measurement. The bigger these measurements are, the bigger the node is in one
or both of the dimensions.

Node/Edge Color. The color interval between white and black can be used to
render another metric measurement. The convention is that the higher the metric value
is, the darker the node is. Thus light gray represents a smaller metric measurement than
dark gray.

Node Position. The X and Y coordinates of the position of the node can also reflect
two metrics measurements. This requires the presence of an absolute origin within a
fixed coordinate system. Not all layouts can exploit absolute position metrics, as some
of them constrain the position of the nodes (e.g., a tree layout).

Figure 3.11 shows how inheritance trees are rendered using metrics to provide more
contents. Nodes represent classes, edges inheritance relationship. Node width repre-
sents the number of attributes; node height represents the number of locally defined

23

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

methods and node color the number of lines of code.

DDDED&E']*E‘ neiapo :n}u:izﬂcﬂﬂﬂ]ﬁtg juijhuﬂ[uiﬂﬁ%ég ml«%nn“]liu

|]

kil

[oy

il

E:[f}U:EDiI]D" JFHDPDEDE"[F go D’;DJ]H;I.]EU%;]U”]_‘,%D] WTEiW’”D
) | i |
4 (I [

Figure 3.11: Polymetric view applied to inheritance. Width: NOA (Number of At-
tributes). Height: NOM (Number of Methods). Color: LOC (Line of Code).

3.4.2 Examples

Polymetric views embed a versatile visualization principle, which may be declined
in a variety of views. We will present here only one example: system complexity. It
is used heavily in the Moose environment to get an overview of a system. Literature
contains other examples such as checkers to provide overview [LDO03].

System Complexity View. System Complexity view decorates class hierarchies with
metrics measuring the size of classes (such as number of methods, attributes, and lines
of code).

This view is based on the inheritance hierarchies of a system and gives clues on its
complexity and structure. For very large systems it is advisable to apply this view first
on subsystems, as it takes space.

Signs: (1) Tall, and narrow nodes represent classes with few attributes and many meth-
ods. (2) Deep or large hierarchies are definitively subsystems on which the views of
the inheritance assessment cluster help to refine understanding. (3) Large, stand alone
nodes represent classes with many attributes and methods without subclasses. It may
be worth to have a look at the internal structure of the class to learn if the class is well
structured or if it could be decomposed or reorganized. (4) Flat, light nodes with a
width:height ration of 1:2 often represent data storage classes that define several at-
tributes and for each attribute implement two accessor methods. The light color often
denotes that a class has very short methods as is the case for accessors.

24

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

1AL

Figure 3.12: System complexity. Width: NOA. Height: NOM. Color: WLOC.

3.4.3 Metrics

POLYMETRIC VIEWS have been designed to display metrics and in particular met-
ric combination. Here is another example where the displayed metrics are different.
More precisely, we want to understand the relationship between some already identi-
fied classes (A to I, in Figure 3.13) and their subclasses. For that purpose we display a
portion of the inheritance tree with metrics NMA (number of methods added to the ones
defined in the superclass), NMO (number of methods overridden in the subclass) and
NME (number of methods extending superclass methods) to assess the corresponding
ratios overridden.

Figure 3.13: Inheritance qualification: node width = NMA (number of method added),
height = NMO (Number of methods overridden), and color = NME (number of method
extended).

25

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

We can see that classes A, F and G are flat nodes: they define much functionality
(width), but override only little (height) because they are at the root of their respective
hierarchies. For the subclasses two different situations occur: either the subclasses are
flat (B), or they are tall (H, I and the subclasses of F).

This graph shows that the inheritance relationship can somehow be qualified: the
subclasses of A add a lot of methods and override very little, whereas the subclasses of
G tend to override more methods than they add. So we can consider G as a class de-
signed to be partly redefined whereas A can be seen as a complete piece of functionality
to be reused without modification.

3.4.4 Analysis

A Legend:

Nodes: Class Histories
Node Width: ENOM of the class history

C Node Height: ENOS of the class history
B Node Color: AGE of the class history;
Cyan for removed history
Edges: Inheritance Histories

Edge Width: AGE of the inheritance history

D
OE Edge Color: AGE of the inheritance history;
Cyan for removed history

Figure 3.14: Principle of polymetric usage for history analysis.

Scalability: POLYMETRIC VIEWS have been successfully applied to analyze large
industrial case studies, therefore showing that there is no real scalability issue.

The fact Squale practices are normalized between 0 and 3 ranges implies that the
polymetric views are not totally adapted to display practices but would help to put in
perspectives the metrics underneath the practices.

Limit: Outliers, with extra large values (such as methods with 6000 lines of code),
may flatten other data and really hamper readability. In such a case, one should either
uses a logarithmic scale or apply a top cut on outliers (that is, reduce all outliers to a
maximum threshold).

Navigation: While the navigation given by polymetric views is good, we believe that
for certain views, using a distribution map is more adapted since it shows the enclosing
and its elements altogether.

Applicability: There are no specific limit to the applicability of polymetric views.

Algorithm cost/Implementation cost: System complexity is rather low: the system
complexity algorithm is less than 15 lines.

26

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Variability: The essence of polymetric views is to be adaptable to new metrics and to
be able to display them in context. An interesting variation which goes much beyond
traditional metrics variability is the fact that polymetric views can also be used to show
trends or evolution of a given metric. Figure 3.14 gives an example [GLDO05]. A node
represents the history of a class during development: its width shows the evolution
of the number of methods in the class (i.e., the number of methods that have been
added and removed in the class) while its height displays the evolution of number of
statements in the class. The color shows the age of the class (the number of versions
since its creation).

Another example related to evolution is depicted in Figure 3.15. In this figure a part
of JBoss is rendered using the same evolution principle. This testifies the scalability of
our approach.

JBossTestCase

J2EE
ManagedObject
Stats MetaData SimpleNode

o
cococonon g I.I. a n W
p—

.D-

Figure 3.15: Overview of the evolution of Jboss.

Summary Pro/Cons:

POLYMETRIC VIEWS are a flexible and powerful visualizations to display software
metrics. They support also the representation of evolution. Combined with DISTRIBU-
TION MAP they can provide most of the need for software metric visualization. They
could be applied on packages or system level.

27

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium

AirFrance - INRIA - Paris 8 - PSA - Qualixo

28

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

3.5 FILE DoT

3.5.1 Identification

Name and reference: FILE DoT! [MFMO03].

Goal: The objective of a file dot visualization is to give an overview of file contents
based on line elements.

Principle: A file is represented as a rectangular grid made of squares. Each square
represents a line in the file, arranged in sequence. Figure 3.16 shows two files, fileA
and f£ileB. Square color represents a single property extracted from the line (e.g.
depth of indentation, within a control structure, access record or global variable, ...).

In the original publication, a square was not only representing a line but also its
surrounding context: for example, all the lines involved in a i f statement would have
the same color even if only the first one contains the actual if statement.

OOO0000000000o0n
OOO000000000000n
D O
O O O
OO0000000000000.O
I \

aline

fileA

O0000000000000000
OOO0000000000000
OooOEEEOOa000000
OOROO0000000

fileB

Figure 3.16: File Dot Principle: a box represents a line property.

3.5.2 Examples

Figures 3.17 and 3.18 (taken from [MFMO3]) illustrate two file dots on the same
set of files. The first shows the nesting level at which a line is. The second one shows
control flow constructs.

The name “FILE DOT” is proposed by the author of the current document since the original publication
did not define one for such visualization.

29

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium

AirFrance - INRIA - Paris 8 - PSA - Qualixo

Mai1Sys\AdminNailbox. cpp

MailSys\Mailbox.h

LT CCL TP
e
Mai1Sys\InputReader.cpp

Mai1Sys\InputReader.h
snnnnn
CCTET PP

MailSys\List.cpp

MailSys\List.h

MailSys\Mailbox.cop

MailSys\Message.h

MailSys\MessageQueus. cpp
.

MailSys\MessageQueue.h

Nesting Level
Level 0

W Level1

W Level2

W Level3

W Level4

3.5.3 Metrics

Figure 3.17: Nesting level (taken from [MFMO3]).

MailSys\Password.h
ssssssssnss
sanans

String\error.cpp

Only metrics applicable to a line of text may be used. A FILE DOT map represents
a source text file, and a line as a colored box. The indentation may be one simple metric
to compute. Indentation is recognized as a proxy for code complexity [HGHOS]. Colors
may also be associated to keywords for structure control.

3.5.4 Analysis

FILE DOT offers compact representation of a system using its fine grained structural
elements. However, FILE DOT is limited because it is constrained to the line elements.
It is difficult to identify language elements: methods, classes...

Navigation: One of the most important asset is the natural and direct mapping from the
visual metaphor to the source code and back. This in turn leads to a natural navigation
between the representations. This makes the visual representation easy to learn and
understand, yielding high levels of trust on behalf of the user.

30

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

NailSys\AdminMailbox.cpp MailSys\Mailbox.h MailSys\Newstr.cpp string\er h String\string.h

Mai1Sys\AdminMailbox.h

tring\teststr.cpp
..........

NailSys\InputReader.cpp . rEmmmmacanie

NailSys\InputReader.h

MaflSys\List.cop

MNailSys\list.h . prEassssssssssrsrrrr THEEEEEER 0 seses

Not in any control structures
if
m elseif
W else
W while
switch
m for

Figure 3.18: Control Flow Instructions (taken from [MFMO03]).

Applicability: FILE DOT is applicable to any languages. Its compactness supports
large files even if it may lead to problem for large systems.

Algorithm cost/Implementation cost: The implementation requires simple text pro-
cessing, for which regular expressions appear to be sufficient in most of the case. Im-
plementation remains trivial to realize, which constitute one strength of the map.

Variability: Different properties, especially symbolic ones, can be mapped and dis-
played using FILE DOT: authors, read/write access, access to global variable, FILE
DoOT has been ported to 3D environment, creating room for a new dimension (Figure
3.19). However, we believe that the 3D version loses the simplicity and readability of
the approach.

Summary Pro/Cons: FILE DOT offers a good summary of source code, it can be easy
to implement and fast to render. However it is too focused on source code and does not
support well metrics of the language entities.

31

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Poly Cylinder

Figure 3.19: Filedot 3D extension (taken from [MFMO03]).

32

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

3.6 KIVIAT DIAGRAM

3.6.1 Identification

Name and reference: KIVIAT DIAGRAM [Mor74]

Goal: The goal of a kiviat diagram is to display several values at once, describing
different properties of the phenomenon considered.

Principle: A kiviat diagram structures a radial space over several axes. On each axis
the value of a characteristic is plotted. The minimum value is located in the center, the
maximum value at the outer end. The axes are linearly scaled. Values for each plotted
characteristic are then joined by a line. The result creates a surface (See Figure 3.20).
For example, to compare digital cameras, the axes can be the shutter speed, quality of
the lens, weight, zoom quality. In such a case, the camera with the maximum surface
is the best.

Figure 3.20: Kiviat Principle.

3.6.2 Example

Figure 3.21 shows a kiviat diagram showing software metrics of a large system
taken from http://www.soft.com/TestWorks/Products/Screen/kiviat.html. It shows high
and low thresholds for each metric and the system properties values within this context.

3.6.3 Metrics

KIVIAT DIAGRAM can be used to display different metrics as shown by the selected
examples.

33

http://www.soft.com/TestWorks/Products/Screen/kiviat.html

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Unique Operators

2352,00

Figure 3.21: Kiviat Example.

3.6.4 Analysis

Kiviat diagrams are often used to compare digital cameras or other devices. Metric
tools also used them to present information focused on an entity.

In the context of software metrics, the interpretation of an axis is not as direct as
with digital camera. For certain metrics, having high value is not a good sign, therefore
the reader should be aware that for example a high coupling is not something valuable.
Therefore the shape of a good entity is not one maximizing the surface.

Navigation: The navigation is not really good since the visualization is focused on a
single entity.

Applicability: Figure 3.22 shows an example taken from the SD metrics toolkit. It
shows several software metrics of four different software entities. The original web-
site does not describe what the diagram is showing, still we can do two observations:
several kiviats are displayed together so this is either the evolution of an entity or sev-
eral entities displayed at once. In both cases this example could present problems since
one cannot see when a value decreases (imagine a light grey value smaller than the
dark grey one).

The difficulty with kiviat is to get a design which provides meaningful surfaces.
Here are some limits to take into account:

e A kiviat with too few branches or too many branches is difficult to interpret.

e Using different scales on the axes may produce wrong perception of the reality
and offer bad proportions to the intended comparison.

e The axes order generates different surfaces and influences the interpretation.

Algorithm cost/Implementation cost: The algorithm is simple and an implementation
can be obtained in a couple of hours.

34

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Numattr

IC_Par, NumOps

EC_Par‘ NumPubOps

IC_Attr. , Sefters

EC_Attr Getters

Atirinh Nesting

Opsinh . IFImpl

NOC

DIt NumDesc

NumAnc

Figure 3.22: Kiviat (taken from http://www.sdmetrics.com/manual/BrowseEl.html).

Kiviat Diagram Sample
Evaluation of the costs of different software packages

yCustomization

Package 1
Package 2
——Package 3

——Package 4

Maintenance Training
The smallest foolprint is best
Package | Customization| Treining | Mairterance | Support
Package 1| $65 000 $5.000| $110000 $12p00| $5.000
Package2| $70000 $6,000| $110000 $12600] $5.000
Package 3| $50000 $25000| $100000 $102800 | 95,000
Package 4| _$98 000 $5,000 | $130000 $19 500 | $4.000

Figure 3.23: A not really readable kiviat diagram — Taken from http://it.toolbox.com/
blogs/enterprise-solutions/better-kiviat-diagrams-19868.

Variability: Figure 3.24 and 3.25 show how kiviat diagram can be use to compare
different versions (from two to seven versions [PGFLO05]) as well as good and bad
example of using kiviat.

Summary Pro/Cons:

35

http://www.sdmetrics.com/manual/BrowseEl.html
http://it.toolbox.com/blogs/enterprise-solutions/better-kiviat-diagrams-19868
http://it.toolbox.com/blogs/enterprise-solutions/better-kiviat-diagrams-19868

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

M3 M2

B release 1-2
[release 2-3

M4 M1

moduleA

M5 M6

Figure 3.24: Kiviat diagram with two versions (taken from [PGFLO05]).

DoM

Figure 3.25: Kiviat diagram with 20 source code and evolution metrics of 7 subsequent
releases of Mozilla’s DOM module. (taken from [PGFLO05]).

Kiviat diagrams are well-known and work well to see how multiple properties of a
phenomenon happened together. For software metrics, the idea that the more surface,
the better is the entity, cannot be applied since some metrics are good when they have
small values. Then the scale of the axes may have an impact on the resulting surface.
Finally the correlation between one axis and its siblings may produce undesirable visual
side effects (creating surface while it should not).

36

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

3.7 DOTPLOT AND CORRELATION MATRIXES

3.7.1 Identification

Name and reference: Dotplot [Hel95] and correlation matrixes [Hel95, BEW9S5, GFC04]
are two different concepts that exhibit the same power.

Goal: Often we need to understand how entities are in relations with a certain number
of other entities. The dotplot or correlation matrixes are simple visualizations based
on matrixes that stresses relations between entries. They are extremely simple, very
powerful and versatile. They were used in a lot of context to understand the dynamic
behavior of applications [DPKV94], dependencies between packages [Ste81, SJSJO5],
hidden dependencies between bugs.

Principle: Figure 3.26 illustrates the principle. A dotplot or a correlation matrix share
the same principle: it is a matrix where the entities (classes, packages) are associated
with the rows and columns and where a cell represents a function of both entries.

00000000000
00000000000
I o
0[] o |
00000000000
00000000000
00000000000
00000000000
00o0000000m
00000000000
I

entities

sannue

Figure 3.26: Dotplot Principle: the matching between entities is displayed.

3.7.2 Example

Dotplot was developed more specifically to detect duplicated code [Hel95, DRD99,
Rie05]. A dotplot is a correlation matrix where the entries are canonized lines of code
and where the cell represents a match. Figure 3.27 shows how two files are compared
and how their code is duplicated.

Correlation matrixes are used for example to build tools to show communication
between classes or memory consumption. Figure 3.28 shows such an example taken
from the work of W. De Pauw [DPHKV93].

37

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Figure 3.27: Dotplot Example: two files compared.

3.7.3 Metrics

From a software point of view, we can use the packages or classes as row entries
and the metrics as column entries and assign a color to the value. However, other
visualizations presented in this document are more efficient for displaying multiple
metrics.

The matrix can still be useful for showing quality marks such as practice marks.
The small and uniform range of marks ([0; 3]) can be mapped to a small set of distinc-
tive colors (black, red, yellow, green) and makes it easy to interpret as an overview.

3.7.4 Analysis

While correlation matrix are powerful to show hidden relationships and are the
basis of Dependency Structural Matrix [Ste81, SISJO5] or dynamic analysis results,
they focus on showing relationships between entities.

Navigation: Correlation matrix allows one to navigate to the entities displayed as
columns and rows.

Applicability: In the context of software metrics, the applicability of correlation matrix
is low. However, it can be useful to display an overview of quality model.

Algorithm cost/Implementation cost: building a correlation matrix is trivial.

Variability: While the matrix is used to display all sort of information, it focuses on
stressing entity connection.

Summary Pro/Cons: Correlation matrixes are really powerful. Nevertheless they are
clearly less efficient than other visualizations to display software metrics and to be used
for static map of software systems. They can still be useful for an overview of system
with respect to quality marks.

38

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

y y
= Inter—Class Calls Lo
Refiode)

ConstraintRepsiferator

DualConstraints - n - - L] -
QuadoptprobRep u un

Cindex

TabConstraintsiterator

Consfraintfeps L]
Uindex

Tabarsiferator

Assignments

I /

AnraOfTabuars
TabConstraints

a
EquilifysystemRen
Conshrintsystem

Solufion
Constraintsoluer [}
ObjechveRep

Temsiferator
Terms

Factor

Factors

Term
Objective u |
Constraint 1] nw
CompoundExpRep [
CompoundC Expression !
Cuarkep 1]

Cuariable

ConstantEnp Rep um
ExpRep

RefCountedObject

cConstant)

C Expression
-main

N
L]
[

<@
@0@

9 %2

ConstraintRepstterator

constaintRep

TabConstraintsiterator
Refode

CompoundCExpre ion
CompoundExpRep M
EqualitySystemRep.
Cindex

ConstraintSolver M
Tableau

smain
CExpression
CConstant
RefCountedobject
ExpRep
ConstntExpRep M

[cuarisble
CUarRep
Termsiferator
Factorsiterator
ObjectiveRep
Solufion
Conshaintsystem
TabConshaints
AnmaOfiabuars
InuTableau
QOCARep
Assianments
Tabvarsiterator
Vindex
ConstraintReps
QuadOBIProbRep
DualConshaints

T T T T T T T T T T e e e

Figure 3.28: One example of Correlation Matrix (taken from [DPHKV93]). Here the
interclass calls are stressed.

39

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

3.8 EVOLUTION MATRIX
3.8.1 Identification

Name and reference: EVOLUTION MATRIX [LanO1]

Goal: the evolution of a software introduces the dimension of software versions in
the visualization. This dimension is important to understand how the software grew
following different stages of development and how it evolved over the course of main-
tenance, with some subsystems being created, deleted, or refactored while others are
kept untouched. The goal of EVOLUTION MATRIX is to show such evolution in a
software through a given type of elements (typically class or package).

Ojooooo oo oo« LAST VEmsaoa
OO0 .a IE| i;;:;()\‘hl) CLASSES {
DjoDO00O0 00000000000

] o o e s o R e o R R
/ 000000000000 O000O00
/ e e e O e e e R e o s s R
OF THE SYSTEM o e e e e e e R e e R
o) e e e A s e e s o o o M s R |
o) e e e e o e e e R o R R |
Nk —— O0 00 0000000000 Oon
o) e e e e e R s e O B e W e
) o e e e e e o R R e o o R R |
_______________ Doooooooooooon]

1 \
' GROWTH PHASE ' STAGNATION PHASE 1
TIME (VERSIONS)

Figure 3.29: Evolution matrix in action.

Principle: EVOLUTION MATRIX uses a matrix to display elements of the software
system along the vertical axis and versions of the software system along the horizontal
axis. Each cell represents a version of the element in the target row. For uniformity
purpose, only one type of element (class, package. ..) should be displayed in a matrix
(Figure 3.29).

Elements are ordered vertically following their order of creation (first elements
appear at the top while last ones appear at the bottom). An empty cell indicates an
element which has not been created yet or which has been deleted (depending on the

40

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

selected version).
POLYMETRIC VIEWS principles can be used to display additional metrics for each
version of each element.

3.8.2 Example

e Views Seiection Tighbahting _Transfonmalion Colors _Extras _Evolstion _fielp
Htem: Class MSEMooseFinderUl [<(NOM: 50)(-: 0)> <(-: 0)> <(-: 0)(~: 0)> | belongs to model MooseFinder! 093a.xmi

FIRST VERSION

LEAP 1

e e

STAGNATION DAYFLIES i HE

RENAMED PULSAR

LEAP 2
o ! R -
3252 Nodes, 0 Edges

Figure 3.30: Basic evolution matrix.

3.8.3 Metrics

With evolution matrix we can visualize for example classes and use the metrics
number of methods (NOM) for the width and number of instance variables (NIV) for
the height, although different metrics may be chosen.

An interesting variability is to use evolution metrics instead of normal metrics (see
[GLDOS5]). Any metric can be transformed in an evolution metric, which computes the
cumulative change of the metric over multiple versions.

3.8.4 Analysis

Navigation: Basic navigation is possible since each row correspond to a software ele-
ment. However, an evolution matrix cannot display relationships between elements.

Applicability: Evolution Matrix is an excellent tool to categorize evolution of classes.
A class evolve following one or several types. Common types includes pulsar class

41

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

that grows and shrinks repeatedly during its lifetime; supernova is a class that suddenly
exploded in size.

Algorithm cost/Implementation cost: Evolution Matrix follows POLYMETRIC VIEWS
principles with simple metrics. It is therefore cheap in terms of computations and nec-
essary resource when rendering. From our experience, the complexity comes from
retrieving historical data on which metrics will be computed on.

Variability: The matrix in itself focuses solely on historical evolution of each enti-
ties, however we showed that one can add other metrics using POLYMETRIC VIEWS
principles.

Summary Pro/Cons: It offers a synthetic and compact view of the evolution of the en-
tities. On the other hand, it relies on structural elements only (e.g., methods, attributes)

42

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

3.9 VERSO
3.9.1 Identification

Name and reference: VERSO [LSP05]

Goal: VERSO is a generic framework for visualizing software organization and met-
rics. It mixes 2D space and 3D objects to provide efficient large-scale overview of
software.

Principle: VERSO uses a 3D perspective to allow rendering a full system in a limited
space. The user can then interactively navigate through the visualization to detect
interesting patterns and focus on the concerned subparts. VERSO uses a 3D box to
represent software entities such as classes. Metrics to be visualized are mapped to
visual attributes of the 3D box (Figure 3.31: height, twist, and color). Such attributes
are chosen so that they can easily be distinguished from any point of view in the 3D
perspective.

Figure 3.31: 3D box representation of an element in VERSO, showing three measures
(height, twist, color).

VERSO does not use the full 3D space to represent a system. Instead, it displays
all entities on the same 2D plane to avoid too much occlusion between the boxes. The
system is spatially laid-out in the plane following its structure, such as a hierarchical
organization in package and classes. VERSO uses region-based spatial layout such as
Treemap and Sunburst [SCGMOO0] (Figure 3.32).

3.9.2 Example

Figure 3.33 explains the localization of classes in a hierarchical package organi-
zation: with Treemap and Sunburst layouts. Figure 3.34 shows a system, using the
Treemap layout where each class is represented by a box while the CBO, LCOMS,

43

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

A
© 000 O
®» @0000 0 L0
© 000000 |

Package

e Class

(A) ®) <)

= [@[0[C0 |[e[oee |[eoee

£ 0000 ||eeCcCl|ec0oee®

2l cool|] |eto 000
Oloo || e HE

Sunburst

Figure 3.32: Tree as viewed with Treemap and Sunburst layouts.

and WMC metrics have been respectively mapped to the color, twist, and height visual
attributes. In this last figure, blue boxes have low CBO while red ones have high CBO;
vertical boxes (North-South) have low LCOMS5 while horizontal ones (East-West) have
high LCOMS; and small boxes have low WMC while tall boxes have high WMC. Fi-
nally, Figure 3.34 gives an example of the Sunburst layout.

The above mapping of metrics against visual attributes allows one to quickly distin-
guish complex classes in the system: they are red, tall classes (high CBO and WMC)
and more or less twisted. there is a handful of such classes distributed across a few
packages. They all look the same and no outliers with unusual attributes appear, so we
can say that the responsibilities seem shared between classes.

3.9.3 Metrics

Up to three metrics can be mapped on the visual attributes of a box. However,
attributes differ in the way they render a value. Height allows one to compare relative

44

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Figure 3.33: VERSO Treemap visualization of classes organized by package.

values but is also able to mirror absolute values. Twist allows one to compare relative
values but can not account for absolute values because of its limited range: it is best
for normalized values. Color takes its value in the hue range between blue and red. It
can either use a linear range (from blue to red) or discrete values. Discrete colors are
best mapped to symbolic values but are limited to five colors for readability.

3.9.4 Analysis

Navigation: Compared to the original Treemap layout, VERSO only displays the over-
all structure as regions and uses regular boxes for leaf elements. This makes the navi-
gation simpler at it is easier to distinguish, count, and point to elements. VERSO relies
heavily on interactive navigation by the user, which must be able to navigate in the
3D space to avoid occlusion and focus on interesting elements. Optional features in-
clude interactive features, which can highlight some elements based on metric values
or relationships between elements.

Applicability: The framework is tailored towards a hierarchical organization of a sys-
tem. It can accept any metrics. Some features such as relationship-based filter require
a meta-model of the system.

Algorithm cost/Implementation cost: A 3D engine with interaction capabilities is
required but only standard shapes and camera moves are necessary. The main cost
comes from the modified Treemap and Sunburst layouts. Such layouts must take into
account box sizes as well as the number of elements. Existing implementations are
efficient although they do not always give an optimal layout.

Variability: The mapping from metrics to visual attributes can be adapted to the task
at hand. Custom layouts can be used to show the evolution of a system with animation

45

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

YN W

/A‘{;{\}X \

Y.]

Figure 3.34: VERSO Sunburst visualization of classes organized by package.

or side by side versions. Codecity developed by Wettel and Lanza [WLO07a, WLO08,
WLO7c] extend the metaphor of Verso to represent software as cities. Then using this
city metaphor they highlight parts having certain threshold and offer large 3D software
map as shown by Figure 3.35.

Summary Pro/Cons: VERSO is a versatile framework for software analysis which
have been used for program understanding, detection of anti-patterns, evolution analy-
sis, inheritance analysis. However, it is targeted towards experts in reverse engineering
and its implementation requires a 3D engine with custom layouts, which makes its
learning curve go slower.

46

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Legend:
- org.argouml.model. Facede

- org.argouml.model.mdr. FecadeMDRImpl

- org.argouml.uml.reveng. jeva JavaTokenTypes

- org.argouml.uml.reveng.jeva_JavaRecognizer

- arg.argoumluml.cognithive_critics. Init

- org.argouml.language.cpp.reveng. STOC TokenTypas

- org.argouml.language.cpp.reveng. CFFParser

- org.argouml.language java.generator.JevaTokenTypes
- org.argouml.language jave.generator.JevaRecognizer
- org.argoumlumi.diagram.ui.Fighode*odelElement

@ s e —

=]

Figure 3.35: CodeCity.

47

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Chapter4. Conclusion

There is a plethora of software visualizations. To order and classify the visualizations
supporting software metrics and practices understanding, we define a set of criteria and
evaluate them on a set of simple but powerful visualizations. We analyze the scala-
bility, support for understanding navigation, possibility of variation as well as ease of
implementation and possible limits. We selected DISTRIBUTION MAP, KIVIAT Di-
AGRAM, TREE MAP, ICICLE PLOT, TREE RING, POLYMETRIC VIEWS, FILE DoOT,
DOTPLOT AND CORRELATION MATRIXES, and VERSO. The next steps is to provide
some visualizations adapted to the Squale project.

48

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Bibliography

[AADT08]

[AH98]

[BDLO3]

[BDLO5]

[Ber74]
[BEW95]

[BNO1]

[DDL99]

[DGKO06]

[DLB04]

Hani Abdeen, Ilham Alloui, Stéphane Ducasse, Damien Pollet, and
Mathieu Suen. Package reference fingerprint: a rich and compact visu-
alization to understand package relationships. In European Conference
on Software Maintenance and Reengineering (CSMR), pages 213-222.
IEEE Computer Society Press, 2008.

K. Andrews and H. Heidegger. Information slices: Visualizing and ex-
ploring large hierarchies using cascading, semi-circular discs. In IEEE
Information Visualization Symposium 1998 Late Breaking Hot Topics,
pages 9—12, 1998.

Roland Bertuli, Stéphane Ducasse, and Michele Lanza. Run-time in-
formation visualization for understanding object-oriented systems. In
Proceedings of WOOR 2003 (4th International Workshop on Object-
Oriented Reengineering), pages 10—-19. University of Antwerp, 2003.

Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps
for the visualization of software metrics. In SoftVis "05: Proceedings of
the 2005 ACM symposium on Software visualization, pages 165-172,
New York, NY, USA, 2005. ACM.

Jacques Bertin. Graphische Semiologie. Walter de Gruyter, 1974.

Richard A. Becker, Stephen G. Eick, and Allan R. Wilks. Visualizing
network data. IEEE Transaction on Visualization and Computer Graph-
ics, 1(1):16-21, March 1995.

Todd Barlow and Padraic Neville. A comparison of 2-d visulization of
hierarchies. In Proceedings of the IEEE Symposium on Information Vi-
sualization 2001 (INFOVIS’01), 2001.

Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse
engineering platform combining metrics and program visualization. In
Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors, Proceed-
ings of 6th Working Conference on Reverse Engineering (WCRE ’99).
IEEE Computer Society, October 1999.

Stéphane Ducasse, Tudor Girba, and Adrian Kuhn. Distribution map. In
Proceedings of 22nd IEEE International Conference on Software Main-
tenance (ICSM °06), pages 203-212, Los Alamitos CA, 2006. IEEE
Computer Society.

Stéphane Ducasse, Michele Lanza, and Roland Bertuli. High-level poly-
metric views of condensed run-time information. In Proceedings of
8th European Conference on Software Maintenance and Reengineering

49

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

[DPHK V93]

[DPKV94]

[DPLVWO8]

[DPS107]

[DRD99]

[EGK+02]

[FJ98]

[FM86]

[Fyo97]

[GFC04]

(CSMR’04), pages 309-318, Los Alamitos CA, 2004. IEEE Computer
Society Press.

Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Vi-
sualizing the behavior of object-oriented systems. In Proceedings of In-
ternational Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’93), pages 326-337, October 1993.

Wim De Pauw, Doug Kimelman, and John Vlissides. Modeling object-
oriented program execution. In M. Tokoro and R. Pareschi, editors, Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP’94), volume 821 of LNCS, pages 163—182, Bologna, Italy, July
1994. Springer-Verlag.

Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Ex-
ecution patterns in object-oriented visualization. In Proceedings of
Conference on Object-Oriented Technologies and Systems (COOTS’98),
pages 219-234. USENIX, 1998.

Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen, and II-
ham Alloui. Package surface blueprints: Visually supporting the un-
derstanding of package relationships. In ICSM "07: Proceedings of the
IEEE International Conference on Software Maintenance, pages 94-103,
2007.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language
independent approach for detecting duplicated code. In Hongji Yang and
Lee White, editors, Proceedings of 15th IEEE International Conference
on Software Maintenance (ICSM’99), pages 109-118. IEEE Computer
Society, September 1999.

Stephen Eick, Todd Graves, Alan Karr, Audris Mockus, and Paul Schus-
ter. Visualizing software changes. IEEE Transactions on Software Engi-
neering, 28(4):396-412, 2002.

Loe Feijs and Roel De Jong. 3d visualization of software architectures.
Communication of the ACM, 41(12):73-78, 1998.

James D. Foley and C.F. McMath. Dynamic process visualization. I[EEE
Computer Graphics and Applications, 6(2):16-25, March 1986.

Daniel E. Fyock. Using visualization to maintain large computer sys-
tems. IEEE Computer Graphics and Applications, 17(14):73-75, 1997.

Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola. A
comparison of the readability of graphs using node-link and matrix-based
representations. In Proceedings of the 10th IEEE Symposium on In-
formation Visualization (InfoVis’04), pages 17-24, Austin, TX, October
2004. IEEE Press.

50

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

[GHMO3]

[GLDO5]

[Hea92]

[Hel95]

[HGHO8]

[HVvWO5]

[JSO1]

[KHS1]

[KMO7]

[Kos03]

[LanO1]

Keith Gallagher, Andrew Hatch, and Malcolm Munro. A framework for
software architecture visualization assessment. In VISSOFT, pages 76—
81. IEEE CS, September 2005.

Tudor Girba, Michele Lanza, and Stéphane Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings of 9th European Con-
ference on Software Maintenance and Reengineering (CSMR’05), pages
2-11, Los Alamitos CA, 2005. IEEE Computer Society.

C. G. Healey. Visualization of multivariate data using preattentive pro-
cessing. Master’s thesis, Department of Computer Science, University
of Bristish Columbia, 1992.

Jonathan I. Helfman. Dotplot patterns: a literal look at pattern languages.
TAPOS, 2(1):31-41, 1995.

Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Reading be-
side the lines: Indentation as a proxy for complexity metrics. In ICPC
'08: Proceedings of the 2008 The 16th IEEE International Conference
on Program Comprehension, pages 133—-142, Washington, DC, USA,
2008. IEEE Computer Society.

Danny Holten, Roel Vliegen, and Jarke J. van Wijk. Visual realism for
the visualization of software metrics. In VISSOFT, pages 27-32, 2005.

Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling ap-
proach to the visualization of hierarchical information structures. In VIS
"91: Proceedings of the 2nd conference on Visualization *91, pages 284—
291, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

B. K. Kleiner and J. A. Hartigan. Representing points in many dimen-
sions by trees and castles. Journal of the American Statistical Associa-
tion, pages 260-272, jun 1981.

Holger M. Kienle and Hausi A. Muller. Requirements of software visu-
alization tools: A literature survey. VISSOFT 2007. 4th IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analy-
sis, pages 2-9, 2007.

Rainer Koschke. Software visualization in software maintenance, re-
verse engineering, and re-engineering: a research survey. Journal of
Software Maintenance and Evolution: Research and Practice, 15(2):87—
109, 2003.

Michele Lanza. The evolution matrix: Recovering software evolution
using software visualization techniques. In Proceedings of IWPSE 2001
(International Workshop on Principles of Software Evolution), pages 37—
42,2001.

51

inria-00533618, version 1 - 8 Nov 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

[LDO02]

[LDO3]

[LSPO5]

[MFMO03]

[Mor74]

[PBS93]

[PGFLO5]

[PRWO3]

[Rie05]

[SCGMO00]

[SDBP98]

[SJSJO5]

Michele Lanza and Stéphane Ducasse. Understanding software evolution
using a combination of software visualization and software metrics. In
Proceedings of Langages et Modeles a Objets (LMO’02), pages 135—
149, Paris, 2002. Lavoisier.

Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on Software Engi-
neering (TSE), 29(9):782-795, September 2003.

Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Visualization-
based analysis of quality for large-scale software systems. In ASE "05:
Proceedings of the 20th IEEE/ACM international Conference on Auto-
mated software engineering, pages 214-223, New York, NY, USA, 2005.
ACM.

Andrian Marcus, Louis Feng, and Jonathan 1. Maletic. 3d representations
for software visualization. In Proceedings of the ACM Symposium on
Software Visualization, pages 27-ff. IEEE, 2003.

Michael F. Morris. Kiviat graphs: conventions and "figure of merit".
ACM SIGMetrics Performance Evaluation review, 3(3):2-8, 1974.

Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled
taxonomy of software visualization. Journal of Visual Languages and
Computing, 4(3):211-266, 1993.

Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visu-
alizing multiple evolution metrics. In Proceedings of SoftVis 2005 (2nd
ACM Symposium on Software Visualization), pages 67-75, St. Louis,
Missouri, USA, May 2005.

Michael Pacione, Marc Roper, and Murray Wood. A Comparative Eval-
uation of Dynamic Visualization Tools. In Proceedings of WCRE ’03,
pages 80-89. IEEE Computer Society, November 2003.

Matthias Rieger. Effective Clone Detection Without Language Barriers.
PhD thesis, University of Bern, June 2005.

John T. Stasko, Richard Catrambone, Mark Guzdial, and Kevin Mcdon-
ald. An evaluation of space-filling information visualizations for de-
picting hierarchical structures. International Journal Humain-Computer
Studies, 53(5):663-694, 2000.

John T. Stasko, John Domingue, Marc H. Brown, and Blaine A. Price,
editors. Software Visualization — Programming as a Multimedia Expe-
rience. The MIT Press, 1998.

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using de-
pendency models to manage complex software architecture. In Proceed-
ings of OOPSLA’05, pages 167-176, 2005.

52

inria-00533618, version 1 - 8 Nov 2010

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

[SK98]

[Spe01]
[Ste81]

[SvGO5]

[TMO02]

[War00]
[WLO07a]

[WLO7b]

[WLO07c]

[WLO8]

R. Schauer and R. Keller. Pattern visualization for software comprehen-
sion. In 6th International Workshop on Program Comprehension (Ischia,
Italy), pages 4—12, 1998.

Robert Spence. Information Visualization. Adisson-Wesley, 2001.

D. Steward. The design structure matrix: A method for managing the
design of complex systems. IEEE Transactions on Engineering Man-
agement, 28(3):71-74, 1981.

Margaret-Anne D. Storey, Davor Cubranié, and Daniel M. German. On
the use of visualization to support awareness of human activities in soft-
ware development: a survey and a framework. In SoftVis’05: Proceed-
ings of the 2005 ACM symposium on software visualization, pages 193—
202. ACM Press, 2005.

Melanie Tory and Torsten Moller. A model-based visualization taxon-
omy. Technical Report CMPT-TR2002-06, Computing Science Dept.,
Simon Fraser University, 2002.

Colin Ware. Information Visualization. Morgan Kaufmann, 2000.

Richard Wettel and Michele Lanza. Program comprehension through
software habitability. In Proceedings of ICPC 2007 (15th Interna-
tional Conference on Program Comprehension), pages 231-240. IEEE
CS Press, 2007.

Richard Wettel and Michele Lanza. Visualizing software systems as
cities. In Proceedings of VISSOFT 2007 (4th IEEE International Work-
shop on Visualizing Software For Understanding and Analysis), pages
92-99, 2007.

Richard Wettel and Michele Lanza. Visually localizing design problems
with disharmony maps. In Proceedings of ICPC 2007 (15th Interna-
tional Conference on Program Comprehension), pages 231-240. IEEE
CS Press, 2007.

Richard Wettel and Michele Lanza. Visual exploration of large-scale
system evolution. In Proceedings of Softvis 2008 (4th International ACM
Symposium on Software Visualization), pages 155 — 164. IEEE CS Press,
2008.

53

	Context and Challenges for adapted Metric Visualizations
	Overview of existing approaches
	Technological Challenges

	Selection Criteria and Template
	Visualization Template
	An Example: Distribution Map

	A selection of Visualizations
	Tree Map
	Tree Ring
	ICicle Plot
	Polymetric Views
	File Dot
	Kiviat Diagram
	Dotplot and Correlation Matrixes
	Evolution Matrix
	Verso

	Conclusion

