
A Pragramatic Approch to Mine Aspects in Procedural Object-Oriented Code

Muhammad Usman BHATTI1 Stéphane DUCASSE2 Awais RASHID3

1CRI, Université de Paris 1 Sorbonne, France
2INRIA - Lille Nord Europe, France

3Computing Department, Lancaster University, UK
muhammad.bhatti@malix.univ-paris1.fr, stephane.ducasse@inria.fr, awais@comp.lancs.ac.uk

Abstract

Although object-oriented programming promotes
reusable and well factored entity decomposition, industrial
software often shows traces of lack of object-oriented
design and procedural thinking. This results in scattered
and tangled code related to domain entities because their
data and the associated behavior do not share the same
abstraction.

Aspect mining techniques search for various patterns of
scattered and tangled code pertaining to crosscutting con-
cerns and associated them with aspects. However, in the
presence of non-abstracted domain logic, the crosscutting
concerns identified are inaccurately related to aspects even
when they are indicating lack of OO abstraction.

This paper identifies the difficulty to mine aspects in
object-oriented software systems suffering from procedural
thinking. It presents an approach based on FAN-in analy-
sis and aspect related software metrics to distinguish real
aspects from simple lack of object-oriented decomposition.
We present a metric-based evaluation of the crosscutting
concerns and a new metric called Spread-out to calculate
the spread of crosscutting concerns. The approach pre-
sented in the paper has been implemented and validated on
industrial case studies.

1 Introduction

Software reusability is highly desirable and can directly
be associated to modular continuity [18], which suggests
that a small change in a problem specification triggers a
change of just one module, or a small number of modules.
Yet it happens that software developed, even using object-
oriented paradigm, is full of scattered code across various
classes, hindering software reuse and incurring high main-
tenance costs. The problem of scattered code has princi-
pally been treated in the domain of aspect mining [13, 17].
The underlying assumption in most of the existing work in

this domain is that scattered and tangled code in object-
oriented systems origins only from the tyranny of domi-
nant decomposition [14], while other system artifacts have
been adequately encapsulated in their associated abstrac-
tions (namely classes) resulting from an object-oriented
analysis. Unfortunately, this is not always the case in ex-
isting industrial software systems as most of them are de-
veloped under budget limitation and time to market, there-
fore the design quality is often deteriorated [7]. Often there
are missing object-oriented abstractions for domain entities,
which end up as crosscutting concerns scattered and tan-
gled in other classes of the system. Therefore, aspect min-
ing techniques to discover crosscutting concerns present in
a software system are inadequate in the presence of non-
abstracted domain logic as they wrongly associate the lack
of object-oriented structure with aspects. This occurs be-
cause scattered code is often not a sign of missing aspects
but missing object-oriented abstractions. Thus this situation
introduces noise during aspect mining. Therefore, there is
a need to complement the existing works on aspect mining
with approaches identifying abstractions in object-oriented
code.

We coined the term procedural object-oriented code for
the code which lacks an overall object-oriented design but
nonetheless has been developed using state of the art object-
oriented languages. Class hierarchy reengineering, object
identification and software refactoring do not target the oc-
currence of scattered and tangled code phenomenon due to
missing abstractions. Secondly, they do not take into ac-
count those concerns that can benefit from the usage of AOP
mechanisms. Aspect mining techniques, as aforementioned
do not distinguish amongst various crosscutting concerns
those resulting from the absent OO abstractions.

Most of the existing publications in the domain of soft-
ware restructuring for object-oriented software target can be
divided into four categories:

• Class hierarchy reengineering through the usage of at-
tributes and methods of classes making up the system
and grouping those which are used together [19, 4, 8,

23, 1].

• Software refactoring through the manual identification
of small design problems within class hierarchies and
provides various heuristics for their rectification [10,
7].

• Identification of classes and objects in legacy code
through the identification of common usage of data by
various methods [22].

• Aspect mining to refactor crosscutting concerns in as-
pects [13, 17, 5].

Henceforth, we introduce an approach for the identifica-
tion of diverse crosscutting concerns present in the system.
The approach presented in this paper identifies and groups
crosscutting concerns present in a software system: aspects
as well as non-abstracted domain logic. Crosscutting con-
cerns pertaining to non-abstracted domain entities are iden-
tified and extracted from through their usage of application
data. We also present a metrics-based evaluation of all the
crosscutting concerns identified in our case study software,
in order to quantify and study their scattering in software
classes. A new metric called spread-out is introduced to
quantify the divulgence of diverse crosscutting concerns.

The contribution of the paper are

• the identification of aspect mining limits in presence of
industrial object-oriented code showing strong signs of
procedural thinking,

• the use of FAN-in to distinguish real aspects from lack
of object-oriented design,

• the definition of a new metric to qualify the scattering
of cross-cutting concerns.

This paper is organized as follow: Section 2 describes
the context and overview of our case study software. Sec-
tion 3 discusses the results of the aspect mining technique
we used to mine crosscutting concerns and the occurrence
of domain entities in the list of crosscutting concerns. Sec-
tion 4 presents our approach for the identification and clas-
sification of concerns and the results that are obtained with
the application of the approach to our case study software.
Section 5 presents the scattering of concerns through the
light of concern scattering metrics proposed in the literature
and one new metric to quantify concern spread. Section 6
discusses the results obtained from our approach and that of
concern scattering metrics. Section 7 talks about the related
work and Section 8 concludes the paper.

2 A Case Study: a Blood Analysis Applica-
tion

The case study software is used to drive the machines
for the analysis of patients for blood diseases. The ma-
chine is loaded with a sample of patient plasma and reagents
(products) for chemical reactions. The machine performs
the analysis and raw results are calculated and converted to
interpreted results for their easier interpretation by doctors
and medical staff.

For the sake of precision and clarity, we shall only be
talking about the software subsystem that manages the func-
tional entities and processes, and operates with the database
layer to manage the relevant data. This is one of the soft-
ware subsystems that is replicated on each new machine
and it is thus beneficial to analyze and improve its design.
Certain core functionalities, such as blood analysis data,
reagents used by the machines, results and patient data are
the key features implemented at this layer. Every test is per-
formed on patient data and the results of the tests are then
stored in persistent storage system. The persistent storage
system is extensively used to record all the business objects,
machines activities, test traceability information, machine
products, and machine maintenance information. Quality
control is performed on the machines with plasma samples
for which the results are known beforehand, to determine
the reliability of machine components. In addition to qual-
ity control, a machine is calibrated with the predetermined
plasma samples so that raw results can be interpreted in dif-
ferent units according to the needs of the biologist or doctor
for easy interpretation.

Table 1 below shows some of the software quality met-
rics for our case study business entity subsystem. Lines
Of Code (LOC) tallies all lines of executable code in the
system. Number Of Methods (NOM) and number Of At-
tributes (NOA) metrics indicate respectively the total level
of functionality supported and the amount of data main-
tained by the class. Depth Of Inheritance (DIT) indicates
the level of inheritance a class has. And finally, Lack of Co-
hesion Of Methods (LCOM) indicates the cohesion of class
constituents by examining the number of disjoint sets of the
methods accessing similar instance variables; lower values
indicates better cohesiveness [12].

Table 1. Case Study Metrics
Component Name LOC NOM NOA DIT LCOM

CPatient 11,462 260 9 1 0.85
CTest 2792 81 13 1 0.72

CProduct 2552 77 6 1 0.72
CResults 1652 52 13 1 0.85

CPersistency 1325 67 29 2 0.97
CGlossary 1010 121 5 1 0.80

2

Table 1 communicates some facts about the business en-
tity layer: There is a clear lack of hierarchical structure and
presence of huge service component classes lacking cohe-
sion, with large number of methods. It can also be remarked
that certain domain entities such as quality control, cali-
bration, and raw results do not have associated classes in
the code (CResult class in the table contains the function-
ality to calculate interpreted results). We term this type of
code as procedural object-oriented code. Procedural object-
oriented code consists of so called half-balked objects: ob-
jects encompassing other objects. For example, the class
CPatient, in addition to its core functionality, contains logic
for raw result calculation and calibration related function-
ality. Procedural object-oriented code results in crosscut-
ting concerns both due to absence of domain abstractions
and limitation of OOP mechanisms to encapsulate certain
concerns cleanly. The presence of such procedural object-
oriented code raises the problem of the qualification of as-
pects which are identified by aspect mining. In the follow-
ing we employ one aspect mining technique to examine the
crosscutting concerns identified in procedural OO code.

3 Evaluating FAN-in Aspect Mining Tech-
nique

Aspect mining techniques automate the task of the iden-
tification of scattered code in software systems by enlisting
a set of corresponding crosscutting concern “candidates”.
These can be identifiers and redundant lines of code, code
clones, metrics, etc. [13]. We employed FAN-in technique
for mining crosscutting concerns in our case study soft-
ware [17]. The principle of the use of FAN-in as support
for concern identification is to discover all methods which
are called frequently because crosscutting concerns may re-
side in calls to methods that address a different concern than
that of the caller [5].

Since there were no tools computing FAN-in in C#, we
developed our own tool based on the bytecode analysis.
This tool looks for method calls to all the methods defined
in the application classes and lists those with values higher
than the filtering threshold given by the user for the degree
of their scattering i.e., FAN-in metric. Table 2 shows the
crosscutting candidate methods for FAN-in≥ 10 (threshold
for crosscutting candidates as described in [5]).

Although, crosscutting concerns indicated the presence
of scattered code, a good amount of the results pertained
to the methods pointing to domain entities because of the
non-abstracted domain logic (See Table 2).

Hence, it shows that the FAN-in metric can identify dif-
ferent types of crosscutting concerns (pertaining to the ab-
sence of aspects and non-abstracted domain entities) but
without distinguishing them. This is because there is no
inherent way while analyzing method calls to ascertain the

Table 2. Application methods and associated
FAN-in values

Method FAN-in
UpdatePhysicalMeasures 10
CreateResultCalibration 10
NewMeasureCalibration 10

SearchProductIndex 10
SearchCalib 13

SearchPatient 17
PublishException 19
ReadMesureCalib 22

Trace 24
SearchProduct 26
SearchTestData 29

DecryptData 35
ReadRawResults 41

PublishEvent 96
ValidateTransaction 89
GetGlossaryValue 127

GetInstance 101

origin of crosscutting concerns. The FAN-in metric pro-
vides us a hint about scattering and tangling but this infor-
mation needs to be complemented with the usage of the ap-
plication data to distinguish the type of the behavior being
invoked and the type of logic the invoked method provides
to its caller.

In the following section, we present an approach for the
classification of diverse crosscutting concerns by incorpo-
rating information extracted from the use of variables rep-
resenting domain entities.

4 Concern Classification

It is important to identify and distinguish the various
kinds of crosscutting concerns to propose an adequate rem-
edy. For this purpose, we propose an identification for
those crosscutting concerns appearing due to lack of ab-
straction for domain entities. This section describes the
approach illustrated in Figure 1, and is organized as fol-
lows: Section 4.1 describes data and behavioral scattering
and Section 4.2 defines a model for our concern classifi-
cation approach. Section 4.3 describes the assignment of
various methods to domain entities related concerns, and
Section 4.4 describes the algorithm for the classification of
concerns.

4.1 Data and Behavioral Scattering

We make the hypothesis that data is placed far from its
corresponding behavior due absence of associated domain
classes resulting in crosscutting concerns. This means that

3

Figure 1. Concern Classification Approach

in order to extricate the subset of crosscutting concerns ap-
pearing due to absence of abstraction for domain entities,
we need to identify the data and its associated behavior.
This once disentangled from the overall set of crosscutting
concerns removes the noise from aspect mining candidates.

Data Scattering. The absence of domain entity abstrac-
tions in our application caused two types of data com-
ponents to appear in a subsystem: objects representing
database tables and global enumerated types. The access
to this data is performed through their accessors from the
methods implementing their behavior (See the pattern Move
Behavior close to Data [7]). This dissociation of data and
associated behavior is manifested in Figure 2. Hence, code
related to following causes crosscutting concerns to appear:

• Global enumerated type accesses. Dispersed ac-
cesses to global enumerated types representing the
states and object types of various entities (such as pa-
tient, test, tube types, etc.) in diverse methods of
classes present in the system.

• Direct access to persistent data. Reading and writ-
ing of persistent storage entities stored in the database
without any particular classes associated to them. For
example, there is no class encapsulating the operations
performed on patient tubes.

Behavioral Scattering. Behavioral scattering means that
two distinct behaviors are composed together in a single ab-
straction. This happened very frequently in our subsystem.
In our component classes, this usually happens in the form
of method calls, hence indicated by abnormal high FAN-
in. Following are the scenarios for behavioral scattering to
occur:

• Since the required data is away from its behavior,
therefore one behavior perpetually calls the other one

Figure 2. Separation of Data and Behavior

to get its particular data. This results in high FAN-in
value for data providers.

• Lack of a proper encapsulation for a behavior related
to an entity and the behavior is divulged into sev-
eral client classes of the entity. This causes the client
classes to perpetually call the provider-logic, causing a
high FAN-in value for logic-provider methods.

• A method may provide key or central information. For
example, a method always passes through the patient
data to get associated results and since result logic used
is quite often, this results in access to patient informa-
tion from all the client locations.

• Lastly, behavioral scattering occurs because a partic-
ular concern is impossible to be encapsulated in a
particular abstraction using traditional OO techniques
hence resulting in scattered behavioral composition of
the crosscutting calls in the client locations such as
caching and logging operations in our software system.

4.2 Model for Concern Classification

To identify crosscutting concerns appearing due to miss-
ing domain entity abstractions, we define a model based on
application data usage and resolution of associated behav-
ior. This model takes into account all the methods and data
components present in the application’s subsystem. We de-
fine M as a set of all methods in component being analyzed.
T is defined as a set of all objects representing persistent
storage units, in our case database tables, and V is defined
as a set of all global state variables representing the states
and various types associated to domain entities in T .

Domain Entity Model. As previously mentioned, the
data in our case study mainly consists of the representa-
tion of various domain entities in the form of persistent stor-
age (i.e., a database) and global state and type variables. In
our case, database tables have clear one-to-one association

4

with the domain entities. Secondly, the system states and
entity types represented by global enumerated types also
have a clear one-to-one association with the domain enti-
ties . The one-to-one association between the domain en-
tities and the above-mentioned data components i.e., vari-
ables and database tables, is utilized to determine the meth-
ods related to each domain entity. This is done by resolving
the data accessed by each method.

We define E as the set of all domain entities that are im-
plemented by the application subsystem. Entity e ∈ E con-
sists of table t(e) and variable v(e) related to the associated
domain entity e i.e., entity(e) = t(e) ∨ v(e).

Hence, all methods in M accessing directly or indirectly
domain entity-related data e are classified as implementing
the concern related to the domain entity it accesses. In the
example of Figure 3, methods of class A and class B ac-
cess data “D” of class C either directly or through accessors
hence they are identified as implementing concern relating
to the entity “D”.

Figure 3. Domain Entity Concern Identifica-
tion

Aspect Model. As defined earlier, it is assumed that
crosscutting concerns also appear due to the absence of ap-
propriate OOP mechanisms to interleave two intersecting
behaviors in a non-recurrent way. It is noted for our subsys-
tem that interleaving and composition of distinct behavior
has been performed through method calls because of the ap-
plication of refactorings proposed to encapsulate clone code
in methods [10]. Hence, we base our crosscutting identifi-
cation model on the FAN-in metric [17] (i.e., the higher the
number of calls to a method, the more the chances are for it
being a crosscutting concern). It seems reasonable because
of the fact that a comprehensive amount of aspect mining
techniques search for the occurrence of scattered and tan-
gled method calls to detect crosscutting behavior [13]. But
we only consider those methods which do not directly or
indirectly relate to domain entities. In general, such meth-
ods are invoked by those methods which are associated to

domain entities as depicted in Figure 4. In the following,
a model is introduced to ascertain methods implementing
domain entity related concerns are identified

Figure 4. Aspect Identification

4.3 Domain Entity Concern Assignment

To classify methods related to domain entities, we define
following primary properties:

• m reads t means that m directly reads from the object
representation of table t ∈ T

• m writes t means that m directly writes to the object
representation of table t ∈ T

• m reads v means that m directly reads from the vari-
able v ∈ V

• m calls n means that m calls another method n

• m accesses t means that m directly reads from or
writes to the object representation of table t ∈ T (i.e.,
accesses = reads ∪ writes)

From these properties, we define the following derived
properties for a concern c:

• m implements c related to domain entity e if m ac-
cesses t(e) or m reads v(e) i.e.,

implements(m, c) = {m ⊆ M |∀e ∈ E : m accesses
t(e) ∨m reads v(e)}

• Method n implements a concern c if n calls another
method m and m implements c pertaining to domain
entity e

implement(n, c) = {n ⊆ M |∀m ∈ M : n calls
m ∧ implements(m, c)}

We do not consider the classes during the concern identi-
fication because they do not mean much in term of coherent
abstraction: As stated earlier, these are half-baked objects
without any sharp focus.

5

4.4 Algorithm for Concern Classification

We now define a simple algorithm to distinguish vari-
ous crosscutting concerns discovered in the subsystem by
the FAN-in tool. The algorithm works as follow: All the
crosscutting methods having a threshold value higher than
f are added to the set crosscutting seeds. Each method is
then examined to implement concerns related to the domain
entities. Once the domain entity related methods have been
marked, all the methods which are marked as crosscutting
seeds and have not been marked as related to domain enti-
ties are crosscutting concerns.

{M} ← ∀Methods
Test all m in {M} for a FAN-in metric f
if fanin(m) > f
{CCSeeds} ← m
∀m ∈ {M} = Iterate over Instructions of m
if implements(m, c)

concern← m
M ←M/m {Remove m from M}

if n ∈ {M ∩ CCSeeds}
{CC} ← n

4.5 Results for Classification Approach

Table 3. Algorithm Results
Method FAN-in Classification

UpdatePhysicalMeasures 10 Domain Entity
CreateResultCalibration 10 Domain Entity
NewMeasureCalibration 10 Domain Entity

SearchProductIndex 10 Domain Entity
SearchCalib 13 Domain Entity

SearchPatient 17 Domain Entity
PublishException 19 Aspect
ReadMesureCalib 22 Domain Entity

Trace 24 Aspect
SearchProduct 26 Domain Entity
SearchTestData 29 Domain Entity

DecryptData 35 Aspect
ReadRawResults 41 Domain Entity

PublishEvent 96 Aspect
ValidateTransaction 89 Aspect
GetGlossaryValue 127 Domain Entity

GetInstance 101 Aspect

The results for the crosscutting concern classification are
presented in Table 3. First two columns are those methods
discovered as crosscutting candidates by the FAN-in tool
and their corresponding FAN-in metric. In addition, the last
column indicates concern classification.

We checked manually the results in the code and we
found that the results produced are close to the classification
that we have produced manually. In addition it corresponds

well with the established aspect candidates described in lit-
erature such as tracing, exception handling and transactions.
Therefore, use of domain data is useful for the classification
of crosscutting concerns.

At first, huge number of “GetGlossaryValue” method
calls to the glossary concern may indicate that its classifica-
tion as domain entity is a false positive of the approach and
that aspects may provide a better encapsulation for such a
scattered concern. But a more profound look at this concern
reveals that the glossary actually replaces the absence of
various classes (types) representing domain entities. Glos-
sary takes enumerated types and their associated values for
domain entity types as input and stores them as concate-
nated string in database tables that corresponds to the do-
main entity type indicated by the value. This happens be-
cause their is no provision to store enumerated types di-
rectly into the database. Glossary can easily be removed by
introducing the appropriate classes (types) and sub-classes
(sub-types) for each domain entity and using typeof opera-
tions to store their type into the database.

Now that we show that the use of domain data was a
good indicator for classifying concerns, we want to go a
step further: the concern classification tags all methods re-
lated to domain entities and hence helps distinguishing dif-
ferent crosscutting concerns. It is interesting to understand
and examine the concerns identified so far using scattering
metrics proposed in the literature. This activity may pro-
vide useful information such as the scattering patterns and
extent of scattering of crosscutting concerns. We want to
see if this is possible to verify the results from the classi-
fication approach defined earlier. This would also help un-
derstand the alignment of non-abstracted domain logic and
aspects with respect to the class boundaries as they are de-
fined in our subsystem. In the next section, various cross-
cutting concerns of our subsystem are studied through the
light of concern scattering metrics.

5 Scattering Metrics of Crosscutting Con-
cerns

To understand the scattering of the different crosscutting
concerns, we examine them using concern scattering quan-
tification metrics [15, 9]. Since these metrics were not de-
fined in the context of procedural object-oriented code we
adapted them using the model we presented in Section 4.3

Three metrics quantify the dispersion of various arti-
facts of a program in application classes: Concern Diffu-
sion over Components (CDC), Concern Diffusion over Op-
erations (CDO) and concern diffusion over Lines of Code
(CDLOC) [15]. Since we tag methods with concerns for
our approach, hence we employ the CDO metric to under-
stand the scattering of crosscutting concerns in our subsys-
tem. Concerns diffusion over operations counts the number

6

of methods whose main purpose is to contribute to the im-
plementation of a concern and the number of other methods.
Hence CDO for a concern c is:

CDO(c) = number of implements(m,c)
Eaddy et al. argued that CDO and other metrics from

the same suite only discern the presence of scattering but
not their extent [9]. Concern extent is defined by two met-
rics: Degree of Scattering (DOS) and Degree of Focus
(DOF) [9]. However, these metrics are calculated by manu-
ally marking each line of code for a particular concern. The
manual concern calculation is a laborious task for large soft-
ware systems. We redefine the Concentration (CONC) and
DOS metrics defined in [9] to include only methods, instead
of lines of code, to calculate these metrics for the crosscut-
ting concerns of our subsystem. We relate the concentration
to our model in the way described below.

CONC(c, t) = Number of implement(m, c) in class t
Total implement(m, c)

DOS(c) = 1−
|T |

∑T

t
(CONC(c,t)−1/T)2

|T |−1

Hence, CONC calculates the ratio of the number of
methods implementing a particular concern in a class to the
total number of methods contributing to the implementa-
tion of the concern: higher the concentration, the more a
concern is concentrated in a component. DOS is a measure
of the variance of the concentration of a concern over all
components with respect to the worst case (i.e.,, when the
concern is equally scattered across all classes). DOS values
can lie between 0 and 1: 0 indicates that a concern is com-
pletely localized whereas 1 indicates uniform distribution of
a concern over all classes.

To show the spread of each concern over other classes,
we introduce a metric called Spread-Out. It represents the
ratio of the operations, associated or contributing to a given
concern, located outside the main component implementing
the logic for the concern. For example, Spread-Out for the
Patient Records concern identifies the ratio of the methods
implementing Patient Records outside the class CPatient.
This helps us discern the dispersion for that concern over
other subsystem classes. Note that there are some concerns
which do not have a dedicated class associated with them;
in such a case we consider the class containing the largest
number of operations associated to that concern as its home
location. We define spread-out(c) of a concern c as follow:

spread-out(c) = implement(m, c) outside principal class
Total implement(m, c)

The values for the scattering metrics (CDO, DOS and
spread-out) for various concerns of our case study are pro-
vided in Table 4 (ded. class indicates if there is a dedicated
class for the given concern).

Figure 5 shows the distribution for the Concern Diffusion

Table 4. Concern Scattering Results
Concern Ded. Class CDO DOS Spread-out

Raw Results No 147 0.31 0.12
Patient Records Yes 99 0.50 0.25
Quality Control No 39 0.55 0.21

Calibration No 234 0.52 0.25
Analysis No 129 0.26 0.09

Interpreted Results Yes 228 0.68 0.43
Patient Tube No 54 0.78 0.57

Glossary Yes 254 0.73 0.50
Transactions Yes 94 0.58 0.94

Tracing Yes 26 0.47 0.93
Singleton Yes 108 0.54 0.94

Events Yes 110 0.57 0.88

Figure 5. Concern Diffusion over Operations
for Concerns

over Operations metrics (CDO). We can spot that the enti-
ties which do not have a dedicated class have higher CDO
such as Calibration and Raw Results. On the contrary, Pa-
tient Tube, even in the absence of a dedicated class, has
a lower CDO because it represents a smaller concern with
small number of associated operations and interpreted re-
sults have higher CDO even in the presence of a dedicated
class. Consequently, we deduce from the graph that CDO
is a relative metric which is useful to compare concerns
of the same size and with the same number of associated
operations. Patient Tube data and Tracing are relatively
small concerns and hence, in the presence of large concerns,
such as Calibration and Transactions, they tend to present
smaller CDO, and hence, it is an error to infer that they are
well-encapsulated. Secondly, it doesn’t indicate the extent
of encapsulation for a concerns i.e., whether the number of
operations contributing to a concern are located inside the
class implementing the concern or outside it.

Figure 6 shows the comparison between the DOS and
Spread-out metrics; we see that all the concerns are scat-

7

tered with varying degrees. Spread-out and DOS met-
rics also better depict the degree of scattering of the Pa-
tient Tube vis-à-vis Raw Results than CDO metric be-
cause the size of the concerns is normalized. DOS, in gen-
eral demonstrates the average scattering of various concerns
over classes, and all concerns have ∼ 0.50 DOS. This de-
picts the terrible state of encapsulation for various concerns
and hence provides a measure of scattering of concerns and
their tangling with other concerns. Spread-out demonstrates
that although some of the concerns do not have an associ-
ated class, they still are concentrated in one of the subsys-
tem classes, for example Analysis and Raw Results.

Figure 6. Comparison of DOS and Spread-out

Regarding the Spread-out values in Figure 6, it demon-
strates that first that there are two kinds of Spreading-out:
one part of the crosscutting concerns such as Raw Results,
Patient Records, Analysis presents a low Spreading-out
value. The other part of the crosscutting concerns has a
high spreading-out value such as Transactions, Tracing,
Singleton. This indicates two kinds of different situations
which correspond well with our classification of domain
entities and aspects: domain entities have lower Spread-
out. On the other hand, Tracing, Singleton instances,
Events and Transactions represent typical examples of as-
pects and their Spread-out value is much higher. Conse-
quently, Spread-out helps better identify the cause of cross-
cutting concerns than DOS and CDO: concerns exhibiting
Spread-out values of more than 0.8 over the other compo-
nents can be considered as aspects. And it is this anoma-
lously extensive spread of such crosscutting concerns over
other classes that one wants to capture in aspects for their
improved modularity.

6 Discussion

It turns out that our hypothesis about the data and be-
havior scattering in procedural object-oriented system and
crosscutting concerns in general turns out to be quite sub-
stantiative because of the precision of the resulting methods
that appeared in the two categories. That is, most of the
domain entity-related methods that were marked as cross-
cutting concerns have been distinguished as occurring due
to lack of elementary OO design.

It is striking to see the Spread-out of Singleton in-
stances which is nearly equals to 94%. This high value of
spread-out occurs because the code represents a procedu-
ral thinking therefore huge classes are written and accessed
in a procedural manner. Secondly, since most of the class
mostly implement unrelated concerns, the scattered con-
cerns are composed recurrently through singleton instances,
causing their spread in client classes.

.

About the information used. For the concern extrac-
tion activity, we do not consider it necessary to include
statement-level local information because there may be cer-
tain elements such as temporary variable assignments which
may not be required: A higher level abstraction of the pro-
gram is more useful [21]. However, in our case classes are
non-cohesive units that do not represent useful information
for concern extraction. Thus, we include only methods and
global variables.

One of the limitation of our work is the fact that it
bases on the model of method invocation and FAN-in met-
ric which assumes that there is a minimum of behavioral
encapsulation in the form of methods and these methods
represent a well-defined, crisp functionality. In situations
where there is a haphazard, extensive scattering i.e., meth-
ods do not have sharp focus and data components do not
have accessors, in such cases this approach will not pro-
duce any meaningful crosscutting candidates. Crosscutting
can also occur in the form of code idioms to give rise to code
clones [3], which FAN-in wouldn’t detect and hence possi-
ble combination of clones classes and domain entity data
has to be combined to adapt the approach. We also suppose
that programs generally represent domain entities through
well defined, succinct global variables, which help to re-
late methods with concerns. In the absence of such vari-
ables, a manual effort is required to associate methods with
concerns. In general, automatically identifying and classi-
fying crosscutting concerns out of completely unstructured
code is near to impossible, if not impossible because in such
cases there is no anchor point to start the automatic search
for possible candidates. In such scenarios, Dynamic Analy-
sis techniques can be helpful to locate crosscutting features
and concerns.

8

7 Related Work

Aspect mining techniques automate the process of aspect
discovery and propose their user one or more aspect candi-
dates based on lexical information of the code, and static
or dynamic analysis of an application [13]. FAN-in analy-
sis determines the scattering of a concerns in program code
by identifying methods that are called too frequently within
program code [17]. Lexical analysis provides a hint about
crosscutting concerns by the analysis of program tokens –
either through aggregation of tokens, types or through For-
mal Concept Analysis of the tokens [11, 5]. Clone detection
technique has been applied to an industrial C application
in order to evaluate their effectiveness in finding the cross-
cutting concerns present in legacy software [3]. An aspect
mining technique named DynAMiT (Dynamic Aspect Min-
ing Tool) [2] has been proposed which analyzes program
traces reflecting the run-time behavior of a system in search
of recurring execution patterns. Tonella and Ceccato apply
concept analysis [5] to analyze how execution traces are
related to class methods and identify related methods as a
crosscutting concerns. All of the above mentioned aspect
mining techniques do not take into account the crosscut-
ting concerns originating from the absence of OO design.
Hence, our algorithm can be used to augment the existing
techniques for distinguishing diverse crosscutting concerns.

Concern identification and interaction through manual
feature selection tool and a first set of metrics for feature
scattering have been presented in [16]. Primitive metrics
spread, tangle, and density are provided for feature concen-
tration in diverse program files. Wang et. al. undertook a
study similar to ours to compute, using dynamic analysis
of code, various features implemented in code and calcu-
late the relationship of these features with program compo-
nents through disparity, concentration and dedication met-
rics [24]. Eaddy et. al. have presented a manual ap-
proach for concern identification and concern assignment
and presents two concerns quantification metrics derived
from [24]: degree of scattering and degree of focus [9].
The proposed approach promotes manual identification of
concerns and doesn’t mention crosscutting concerns arising
due to non-abstracted domain entities. Garcia et. al have
also provided a set of metrics to measure the scattering of
crosscutting concerns: CDC, CDO, and CDLoc [15]. The
assignment of code artifacts to concerns is manual. An ex-
perience of marking concerns in two programs with a tool
SPOTLight has been presented in [20]. This tool serves
to associated code snippets with various concerns and con-
cern markings of the two developers have been compared
by analyzing the overlap of the lines of code of their re-
spective concerns. The work identifies useful guidelines for
concern identification, nonetheless manually. Features are
located in procedural code by interactively searching for ar-

tifacts contributing to the implementation of a feature [6].
A search graph for a feature is constructed and consists of
global variables and functions related to the feature. Fea-
ture Analysis and Exploration Tool (FEAT) allows the user
to interactively build Concern Graphs for object oriented
programs. Concern Graphs consist of object oriented arti-
facts such as classes, methods, attributes and method calls
implementing a concern [21]. Search Graphs and Concern
Graphs help in program comprehension through exploration
of code, and mining of concerns and features requires user
input.

8 Conclusion and Future Work

Software reuse is hindered by the presence of scattered
code resulting due to the lack of knowledge of object-
oriented techniques and owing to the absence of appropri-
ate decomposition mechanisms. Crosscutting concerns may
appear due to non-abstracted domain logic as well as due
to the shortcomings of OO mechanisms to capture inherent
crosscutting of concerns. Aspect mining techniques are ca-
pable of identifying diverse crosscutting concerns but are
not capable to distinguish between them. In this paper,
crosscutting concerns are originating from non-abstracted
domain logic are identified according to their association
to domain entities. The outcome of the approach is quite
promising for automatic concern identification and their
classification. We have also evaluated the existing met-
rics to quantify the concern scattering and introduced a
new metric called Spread-out metric to support results from
the classification approach. The metric helps discern the
amount of behavior of a concern that has been divulged in
client classes. To the best of our knowledge, the approach
presented in the paper is the first one towards the distinc-
tion of diverse crosscutting concerns present in a software
subsystem originating from the lack of elementary OO de-
sign and absence of aspects. We validated our approach
on an industrial application, still this approach needs to be
tested with further case studies in order to better evaluate the
results and Spread-out metric. Secondly, finding domain-
related aspects remains to be seen with this approach and
its verification with metrics.

References

[1] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discovering unantici-
pated dependency schemas in class hierarchies. In Proceedings of 9th
European Conference on Software Maintenance and Reengineering
(CSMR’05), pages 62–71. IEEE Computer Society, Mar. 2005.

[2] S. Breu and J. Krinke. Aspect mining using event traces. In ASE ’04:
Proceedings of the 19th IEEE international conference on Automated
software engineering, pages 310–315, Washington, DC, USA, 2004.
IEEE Computer Society.

[3] M. Bruntink, A. van Deursen, T. Tourwe, and R. van Engelen. An
evaluation of clone detection techniques for identifying crosscutting
concerns. In ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 200–209, Washington,
DC, USA, 2004. IEEE Computer Society.

[4] E. Casais. Automatic reorganization of object-oriented hierarchies:
A case study. Object-Oriented Systems, 1(2):95–115, Dec. 1994.

9

[5] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe. A qualitative comparison of three aspect mining tech-
niques. In 13th International Workshop on Program Comprehension
(IWPC), pages 13–22. IEEE CS, 2005.

[6] K. Chen and V. Rajlich. Case study of feature location using de-
pendence graph. In Proceedings IEEE International Conference on
Software Maintenance (ICSM), pages 241–249. IEEE Computer So-
ciety Press, 2000.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[8] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On Automatic
Class Insertion with Overloading. In Proceedings of OOPSLA ’96
(11th ACM SIGPLAN conference on Object-oriented Programming,
Systems, Languages, and Applications), pages 251–267. ACM Press,
1996.

[9] M. Eaddy, A. Aho, and G. C. Murphy. Identifying, assigning, and
quantifying crosscutting concerns. In ACoM ’07: Proceedings of the
First International Workshop on Assessment of Contemporary Mod-
ularization Techniques, page 2, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[11] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspectbrowser: Tool
support for managing dispersed aspects. Technical Report CS1999-
0640, 3, 2000.

[12] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Com-
plexity. Prentice-Hall, 1996.

[13] A. Kellens and K. Mens. A survey of aspect mining tools and tech-
niques. Technical report, UCL, Belgium, June 2005.

[14] G. Kiczales. Aspect-oriented programming. ACM Computing Sur-
vey, 28(4es):154, 1996.

[15] U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho, A. von Staa, and
C. Lucena. Quantifying the effects of aspect-oriented programming:
A maintenance study. In ICSM ’06: Proceedings of the 22nd IEEE
International Conference on Software Maintenance, pages 223–233,
Washington, DC, USA, 2006. IEEE Computer Society.

[16] A. Lai and G. Murphy. The structure of features in java code: An
exploratory investigation, 1999.

[17] M. Marin, L. Moonen, and A. van Deursen. Fint: Tool support for as-
pect mining. In WCRE ’06: Proceedings of the 13th Working Confer-
ence on Reverse Engineering (WCRE 2006), pages 299–300, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[18] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
second edition, 1997.

[19] I. Moore. Automatic Inheritance Hierarchy Restructuring and
Method Refactoring. In Proceedings of OOPSLA ’96 (11th Annual
Conference on Object-Oriented Programming Systems, Languages,
and Applications), pages 235–250. ACM Press, 1996.

[20] M. Revelle, T. Broadbent, and D. Coppit. Understanding concerns
in software: Insights gained from two case studies. In IWPC ’05:
Proceedings of the 13th International Workshop on Program Com-
prehension, pages 23–32, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[21] M. P. Robillard and G. C. Murphy. Concern graphs: finding and
describing concerns using structural program dependencies. In
ICSE’02: Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 406–416, New York, NY, USA, 2002. ACM
Press.

[22] H. A. Sahraoui, W. Melo, H. Lounis, and F. Dumont. Applying Con-
cept Formation Methods to Object Identification in Procedural Code.
In Proceedings of ASE ’97 (12th International Conference on Au-
tomated Software Engineering), pages 210–218. IEEE, IEEE Com-
puter Society Press, Nov. 1997.

[23] M. Streckenbach and G. Snelting. Refactoring class hierarchies with
KABA. In OOPSLA ’04: Proceedings of the 19th annual ACM SIG-
PLAN Conference on Object-oriented programming, systems, lan-
guages, and applications, pages 315–330, New York, NY, USA,
2004. ACM Press.

[24] E. Wong, S. Gokhale, and J. Horgan. Quantifying the closeness be-
tween program components and features. Journal of Systems and
Software, 54(2):87–98, 2000.

10

