
Tracking of
dependencies
between code

changes
Lucas Godoy

1. Epicea
2. Ring
3. Change Dependency Tracking
4. Implementation
5. Usage scenarios
6. Challenges
7. Q&A

Agenda

● Change model based on events made by
Martin

● Supports structural changes, refactorings,
system changes (i.e: expression
evaluations), undo / redo

● Writes changes automatically to Ombu
files using announcements

Epicea

● Uses core Ring classes as snapshots of
involved code units (package, class, etc)

● Cannot do dependency analysis between
changes

Epicea (cont.)

● Among other issues, in the Smalltalk
metamodel instance variables are not first-
class objects

● Ring is an extensible solution for this
problem, providing a common API with the
Smalltalk Runtime Model

Ring

● Modelled in Ring as the RingC extension
● A RGChangeDependency is a

dependency between two RGChange
objects

● RGChange objects are extracted from the
history representation of the system
(RingH extension)

Change Dependencies Tracking

● RingC don’t model refactorings as Epicea
does (only CUD operations)

● Adding RingH to the recipe only to use
RingC would increase the complexity of
Epicea

● We need a simple way to model
dependencies between changes

However...

An Ombu entry has two components:
● A content: can be any object
● Tags
In the particular case of Epicea, the content
is an event and the tags can be the author,
the event timestamp and a reference to the
previous entry (called “prior” tag)

How to do that?

● We can link the entries by adding more
prior tags by the affected entity type
(class, method, etc) or entity name

● So the entries are linked as in a persistent
skip list

Skip pointers

● In order to update fast the skip pointers on
each event announcement, we can keep a
cache with the latest changes related to
each skip pointer

● Cache by type: few items
● Cache by name: several items

Latest Changes Cache

● Assisted cherry-picking: The user won’t
need to collect dependencies manually

● We can implement some filters in the Log
Browser more efficiently, since we won’t
need to iterate all the entries in the log

● UI: visualization of dependencies in the
Log Browser

Usage scenarios

● References to events vs. references to
Ombu entries

● Efficient cache implementation, specially
when caching by entity name

● Combined filters implementation

Some challenges

Questions?

That’s all

