Scoped Selectors

About local extension methods and method visibility

Camille Teruel

Extension methods

Extension methods

ThirdPartyPackage MyPackage
AClass extends i . ACI aSS !
me’[hod 4 "'Eex’[l\/lethod

Add methods to classes you don't own

Sometimes a good alternative to subclassing
(no conversion needed)

Extension methods

ThirdPartyPackage MyPackage
AClass extends i - ACIaSS __________

me’[hod 4E newMethod1

 newMethod?2

' newMethod3

Add new functionalities to classes you don't own

Extension methods

ThirdPartyPackage1 MyPackage
AClass extends | 1 AClass
4 "'Ed|3pa’[ch
ThirdPartyPackage? . AnotherClass :
extends,..+ dispatch
AnotherClass| b= |
‘

To dispatch on classes you don't own

Extension methods

ThirdPartyPackage MyPackage
AClass extends i . AC I ass
B E myl\/lethod
MyClass
myMethod

To make classes you don't own polymorph to yours
(alternativ to Adapter Pattern)

Extension methods

ThirdPartyPackage MyPackage
AClass extends i . AC I ass
B "EaSI\/IyCIaSS
MyClass

As syntactic sugar
(Smalltalk specific: unary>binary>keyword)

(MyClass from: AClass new)
.. AClass new asMyClass ..

Extension methods:
Propblems

Problems

ThirdPartyPackage MyPackage
AClass extends S . AC' aSS !
me’[hod 4 "'Eex’[l\/lethod

Extension methods are globally visible

Problems

ThirdPartyPackage MyPackage

AClass

method | | e

Extension methods are globally visible

Problems

ThirdPartyPackage

AClass

method

:extMethod 4~

.*
.
.
.
.
.
.*
.

.*
.
.
.
.
.
.
.
.
.
.
.
.*
.*

",
L]
7
.
.
.
]
.
.
.
L]
.
.
.
.
]
.
.
,
o,

MyPackage

AnotherPackage

Clash!! Who wins?

Problems

ThirdPartyPackage

AClass

method

.*
.
.
.
.
.
Pe
.*

AnotherPackage

.
.
.
.
.
.
.
.
.
.
.
.
“
“

MyPackage

MyClass Afoo

foo AClass new extMethod

|

Sneaky dependencies

| ocal extension
methods

L ocal extension
methods

ThirdPartyPackage MyPackage
AClass extends i. - AC' aSS -
method 4 ":extl\/lethod
o R
/m,ogorts
MyPackage?

Visible only from packages that declare or import it

L ocal extension
methods

It extens
can | ove

lon methods are local,

ride a method locally”

Wha

' does that mean”?

|_ocal Rebinding

| ocal Rebinding

ThirdPartyPackage

foo AClass
A self bar DR
foo
bar
bar
[NN ThirdPartyPaokage’J/

extends

MyPackage

In a class of MyPackage:

AClass new foo

—> ?

| ocal Rebinding

ThirdPartyPackage MyPackage

fo?\ AClass extends | . ACl ass I bar
self bar S R A et : .
foo . bar A 'in MyPackage’

bar
bar
[NN ThirdPartyPaokage’J/

In a class of MyPackage:

AClass new foo

- ‘in MyPackage’
Local rebinding

| ocal Rebinding

ThirdPartyPackage MyPackage

fo?\ AClass extends | . ACl ass I bar
self bar S R A et 4 .]
foo . bar A 'in MyPackage’

bar |\ | | TTThThTmTmTmmee
bar
[NN ThirdPartyPaokage’J/

In a class of MyPackage:

AClass new foo

- ‘in ThirdPartyPackage’
No Local rebinding

| ocal Rebinding

ThirdPartyPackage

foo AClass
N self bar oo

bar
bar
[NN ThirdPartyPaokage’J/

extends

MyPackage

In the context of MyPackage:

AClass new foo

—P Which one’s your favorite?

|_ocal Rebinding;
Problems

Problems:
Class Encapsulation

ThirdPartyPackage MyPackage

AClass extends

foo

Maintain some bar
class invariant

You can corrupt a class behavior
(accidentally or not)

Problems:
Package Conflicts

ThirdPartyPackage

AClass

foo
bar

‘e
0
‘e
.

extends

‘e
‘e
*

MyPackage

Clients have precedence!
A client can override accidentally
the behavior you expect

Problems:
Package Contlicts

ThirdPartyPackage Package1
AClass extends . AClass
fOO s : bar
bar | | | e
\
"""" Package?
é}?tepds
......... . AClass
W lmmmmmmmaeaaaay
. bar

Who wins?

Problems:
Package Conflicts

ThirdPartyPackage Package1
AClass extends | | AClass
00 B R bar
oar | | TTTTThTTmTTmTTT
\
"""" Package?
é}?tepds
......... AClass
bar

Oldest caller always wins
(depends on the state of the whole call stack)

Problems:
Package Conflicts

ThirdPartyPackage Package1
AClass extends | | AClass
00 B P P bar
oar | | TTTTThTTmTTmTTT
\
"""" Package?
é’kt@pds
......... AClass
bar

You must know the implementation of the packages
you transitively depends on

Problems:
Package Conflicts

Local rebinding breaks the purpose of local
extension methods...

Solutions?
* Look back just one context.
* Newest caller wins.
* Letthe programmer decides up to where to look
back.

Problems:
Performances

To enable local rebinding you must
introspect (thus reity) the whole call stack...

L ocal Rebinding:
Conclusion

e Seems more “natural”
* Breaks encapsulation

* [eads to contlicts
(that local extension methods are supposed to solve)

e Performances

| do not want I,
do you?

Scoped selectors

Scoped Selectors

A mechanisms to make extension methods local
Without local rebinding

Without performance cost

Like Selector Namespaces?

Also permits to set visibility on methods
(private, protected, other kind)

Scoped Selectors:
Design Survey

How to Import”?

What's the granularity...
e ...0f Importee?
e Extension method (tedious)
e (Class extension (extension methods for the same class)

e Extension, /.e any set of extension methods
(subsumes others)

How to Import”?

What's the granularity...
e ...Of Importer?
 Package
e Class

e Method

Overriding

With subclassing, when you override a method, you
can still call the overridden method thanks to super.

What about extension methods?

What keyword” (super or another)

Extend an extension?

Use case:

* A probability package provides an Extension

e A statistics package extends that extension to add
new methods.

* |Importing this new extension makes both set of
methods available

Scoped Selectors:
Implementation

Implementation:
|[dea

e A selector is two-fold:

* A verb that you type down in source code and
that denotes a message name

* A key object used to look up methods in method
dictionaries

Implementation:
|[dea

Any object can be used during the lookup!

Lets split the concepts of:

e the name | give to a message (a verb)

e the object used during the lookup (a key)

Implementation

model ' implementation

|
|
|
|
|
|
|
|
P1 !
|
|
c1 | c1
|
myMethod : ,
y : methodDictionary

|

: : \L @
|

extends ! #myMethod 7
; ' ! Method key in P2

Translation table: ——. | L(myMethod key in)s@
J |
I I
myMethod -> aKey......... T !
! I
|
|
|
|
|
|

Want More Detalls”?

Polymorpnism

Dammit... | just broke polymorphism...

ob] message

Cannot know the class of obj statically...

Polymorpnism

Solution 1: retry the lookup with original selector

-> Slow, doesn't leverage the method lookup cache

Polymorpnism

Solution 2: make aliases in method dictionaries

Polymorpnism

K

allas

model E implementation
|
|
|
P |
|
|
|
C1 ! C1
|
myMethod : |
R : methodDictionary
|
’ ‘ ' (o)
|
extends ! #myMethod |7
Translation table: i | [(myMethod key in P2) s@
' P2 || !
I I
myMethod -> aKey,.......] e Rt i
' myMethod | E C2
_ o ___ |
’ |
|
|
' methodDictionary
P3 !
' !
|
c2 i #myMethod —
myMethod ! (myMethod key in P2)
|
|
|
|
|
|

Polymorpnism

When do we install aliases?

e Solution 2.1: Eagerly in all classes
(but maybe some aliases will never be used)

» Solution 2.2: Lazily when a lookup fails

Want More Detalls”?

Implementation:
Merging

Package1
AClass

. extensionMethod | ¥---..i1ports MyPackage
Package2 | 7
imports™
AnotherClass -
extensionMethod

MyPackage imports two different extension methods with the
same name

Implementation:
Merging

Package1
AClass

. extensionMethod : ¥-.imports MyPackage
Package2 | 7
imports™
AnotherClass a
extensionMethod

What the key associated with the verb extensionMethod In
MyPackage”

Implementation:
Merging

extensionMethod -> ‘ Packager

. extensionMethod : ¥+..imports MyPackage

Nea
]
“u
“a
......
]
u
“u
.

R extensionMethod ->
-" fA_‘[‘_QW_e_EQ lass i
extensionMethod -> . extensionMethod @

When the lookup fails with @), it ask the receiver if it
understands @ or) (no alias)

Method Visiblility

Method Visiblility

Splitting the concept of selector into verb and key
also permits to iImplement support method visibility:

* private
e protected

e Others

Method Visibility:
Implementation

The implementation is way simpler than with local
extension methods (no aliases, no merging)

Distinction between object-sends and self-sends:
obj privateMethod| will always fail, even it obj == self

self privateMethod| will succeed, selt-sends have more authority

That's all folks!!

