
Scoped Selectors
About local extension methods and method visibility

Camille Teruel

Extension methods

Extension methods
ThirdPartyPackage MyPackage

AClass
method

AClass
extMethod

Add methods to classes you don’t own
!

Sometimes a good alternative to subclassing
(no conversion needed)

extends

Extension methods
ThirdPartyPackage MyPackage

AClass
method

AClass
newMethod1

Add new functionalities to classes you don’t own

extends

newMethod2
newMethod3
…

Extension methods
ThirdPartyPackage1 MyPackage

AClass AClass
dispatch

extends

To dispatch on classes you don’t own

AnotherClass

AnotherClass
dispatchextends

…

…

ThirdPartyPackage2

Extension methods
ThirdPartyPackage MyPackage

AClass AClass
myMethod

extends

To make classes you don’t own polymorph to yours
(alternativ to Adapter Pattern)

MyClass
myMethod

…

Extension methods
ThirdPartyPackage MyPackage

AClass AClass
asMyClass

extends

As syntactic sugar
(Smalltalk specific: unary>binary>keyword)

MyClass

…

… (MyClass from: AClass new) …
… AClass new asMyClass …

…

Extension methods:
Problems

Problems

Extension methods are globally visible

ThirdPartyPackage MyPackage

AClass
method

AClass
extMethod

extends

Problems
ThirdPartyPackage MyPackage

AClass
method
extMethod

Extension methods are globally visible

extends

Problems
ThirdPartyPackage MyPackage

AClass
method
extMethod

Clash!! Who wins?

extends

AnotherPackageextends

Problems
ThirdPartyPackage

AClass
method
extMethod

Sneaky dependencies

extends

MyPackage

AnotherPackage

MyClass
foo

depends

foo
 AClass new extMethod

Local Extension
methods

Local extension
methods

ThirdPartyPackage MyPackage

AClass
method

AClass
extMethod

extends

MyPackage2

imports

Visible only from packages that declare or import it

Local extension
methods

If extension methods are local,
can I override a method locally?

What does that mean?

Local Rebinding

Local Rebinding
ThirdPartyPackage MyPackage

AClass
foo

AClass
bar

extends

bar

bar
 ^ ‘in MyPackage’

bar
 ^ ‘in ThirdPartyPackage’

foo
 ^ self bar

In a class of MyPackage:
!
 AClass new foo

?

Local Rebinding
ThirdPartyPackage MyPackage

AClass
foo

AClass
bar

extends

bar

bar
 ^ ‘in MyPackage’

bar
 ^ ‘in ThirdPartyPackage’

foo
 ^ self bar

In a class of MyPackage:
!
 AClass new foo

‘in MyPackage’
Local rebinding

Local Rebinding
ThirdPartyPackage MyPackage

AClass
foo

AClass
bar

extends

bar

bar
 ^ ‘in MyPackage’

bar
 ^ ‘in ThirdPartyPackage’

foo
 ^ self bar

In a class of MyPackage:
!
 AClass new foo

‘in ThirdPartyPackage’
No Local rebinding

Local Rebinding
ThirdPartyPackage MyPackage

AClass
foo

AClass
bar

extends

bar

bar
 ^ ‘in MyPackage’

bar
 ^ ‘in ThirdPartyPackage’

foo
 ^ self bar

In the context of MyPackage:
!
 AClass new foo

Which one’s your favorite?

Local Rebinding:
Problems

Problems:
Class Encapsulation

ThirdPartyPackage MyPackage

AClass
foo

AClass
bar

extends

bar

You can corrupt a class behavior
(accidentally or not)

Maintain some
class invariant

Break the
class invariant !

Problems:
Package Conflicts
ThirdPartyPackage MyPackage

AClass
foo

AClass
bar

extends

bar

Clients have precedence!
A client can override accidentally

the behavior you expect

ClientPackage

AClass
bar

extends

Problems:
Package Conflicts
ThirdPartyPackage Package1

AClass
foo

AClass
bar

extends

bar

Who wins?

Package2

AClass
bar

extends

Problems:
Package Conflicts
ThirdPartyPackage Package1

AClass
foo

AClass
bar

extends

bar

Oldest caller always wins
(depends on the state of the whole call stack)

Package2

AClass
bar

extends

Problems:
Package Conflicts
ThirdPartyPackage Package1

AClass
foo

AClass
bar

extends

bar

You must know the implementation of the packages
you transitively depends on

Package2

AClass
bar

extends

Problems:
Package Conflicts

Local rebinding breaks the purpose of local
extension methods…
!
Solutions?

• Look back just one context.Weird…
• Newest caller wins. Just invert the problem
• Let the programmer decides up to where to look

back. How to specify that? Do you want that?

Problems:
Performances

To enable local rebinding you must
introspect (thus reify) the whole call stack…

Local Rebinding:
Conclusion

I do not want it, !
do you?

!
• Seems more “natural”
• Breaks encapsulation
• Leads to conflicts

(that local extension methods are supposed to solve)
• Performances

Scoped selectors

Scoped Selectors
• A mechanisms to make extension methods local

• Without local rebinding

• Without performance cost

• Like Selector Namespaces?

• Also permits to set visibility on methods
(private, protected, other kind)

Scoped Selectors:
Design Survey

How to Import?
What’s the granularity…

• …of importee?

• Extension method (tedious)

• Class extension (extension methods for the same class)

• Extension, i.e any set of extension methods
(subsumes others)

How to Import?

What’s the granularity…

• …of importer?

• Package

• Class

• Method

Overriding

With subclassing, when you override a method, you
can still call the overridden method thanks to super.!

What about extension methods?

What keyword? (super or another)

Extend an extension?

Use case:

• A probability package provides an Extension

• A statistics package extends that extension to add
new methods.

• Importing this new extension makes both set of
methods available

Scoped Selectors:
Implementation

Implementation:
Idea

• A selector is two-fold:

• A verb that you type down in source code and
that denotes a message name

• A key object used to look up methods in method
dictionaries

Implementation:
Idea

Any object can be used during the lookup!

Lets split the concepts of:

• the name I give to a message (a verb)

• the object used during the lookup (a key)

Implementation

C1

#myMethod
(myMethod key in P2)

cm

cm

C2

(myMethod key in P2) cm#myMethod

C1

myMethod

C2

myMethod

P3

P1

C1
myMethod

extends

model implementation

P2

methodDictionary

methodDictionary

myMethod -> aKey

Translation table:

Want More Details?

Polymorphism

Dammit… I just broke polymorphism…

! obj message

Cannot know the class of obj statically…

Polymorphism

Solution 1: retry the lookup with original selector

-> Slow, doesn’t leverage the method lookup cache

!

Polymorphism

Solution 2: make aliases in method dictionaries

!

!

Polymorphism

C1

#myMethod
(myMethod key in P2)

cm

cm

C2

(myMethod key in P2) cm#myMethod

C1

myMethod

C2

myMethod

P3

P1

C1
myMethod

extends

model implementation

P2

methodDictionary

methodDictionary

myMethod -> aKey

Translation table:

alias

Polymorphism

When do we install aliases?

• Solution 2.1: Eagerly in all classes
(but maybe some aliases will never be used)

• Solution 2.2: Lazily when a lookup fails

Want More Details?

Implementation:
Merging

Package1

AClass
extensionMethod

MyPackage imports two different extension methods with the
same name

Package2

MyPackageimports

imports

AnotherClass
extensionMethod

Implementation:
Merging

Package1

AClass
extensionMethod

What the key associated with the verb extensionMethod in
MyPackage?

Package2

MyPackageimports

imports

AnotherClass
extensionMethod

Implementation:
Merging

Package1

AClass
extensionMethod

Package2

MyPackageimports

imports

AnotherClass
extensionMethod

extensionMethod ->

extensionMethod -> P1

extensionMethod -> P2

P1

P2

MP

When the lookup fails with , it ask the receiver if it
understands or (no alias)

MP

P1 P2

Method Visibility

Method Visibility

Splitting the concept of selector into verb and key
also permits to implement support method visibility:

• private

• protected

• others

Method Visibility:
Implementation

The implementation is way simpler than with local
extension methods (no aliases, no merging)

Distinction between object-sends and self-sends:

obj privateMethod will always fail, even if obj == self

self privateMethod will succeed, self-sends have more authority

That’s all folks!!

