
Package Dependencies
Analysis in Pharo

Baptiste Quidé, Polytech Lille

vendredi 20 juin 14

Problematics

• Modularity of code in Pharo

• Packages have many dependencies among
them

• No tool to visualize package dependencies
and detect the cycles in Pharo

vendredi 20 juin 14

Main goals

• Avoid cycles among the packages

• Analyze automatically your code

• Provide feedback to users on which
packages their code depends on

• Detect wrong project description (declared
dependencies) or simply visualize the
dependencies

vendredi 20 juin 14

Several kinds

• Reference : explicit reference to a class of
another package in a method

• Inheritance : class with a super class hosted
in another package

• Trait : use of trait hosted in another package

• Extension : definition of an extension
method for a class from another package

vendredi 20 juin 14

Visualize the dependencies
among your packages

• Based on Lukas Renggli project (Pharo 1.4),
port to Pharo 4, write tests, add doc.

• Analyze and find all static dependencies

• Showing the results in a UI (using Spec
Framework)

vendredi 20 juin 14

Demo with the packages
“Collections” on Pharo

vendredi 20 juin 14

Detect cycles among
your packages

• From a package dependency graph, use of the
Tarjan algorithm to find all the strongly connected
components

• In a SCC each node can be reach by other node
(there is a path)

• Cycles exists only among the nodes (packages) on
the same SCC

• For each SCC, run the detect cycle algorithm and
find all the cycles

vendredi 20 juin 14

The algorithm

• Published in JOT 2011 (written by J. Laval,
JM. Fellary, P. Vismara, and S. Ducasse)

• Complexity acceptable to be applied at
development-time (500 packages as a fair
upper-bound)

• Retrieves a set of short cycles that covers
all dependencies

vendredi 20 juin 14

Intuition

• Retrieve only a polynomial number of the
cycles, reducing time and complexity.

• Selecting only a subset of elementary cycles

• Select for each dependency one on the
shortest cycles going through the
dependency

vendredi 20 juin 14

Details

• Idea is to gather the parents A of a node x

• Perform a breadth-first search from x until
all its parents y are found

• BFS find the shortest path from x to y

• One BFS is performed for each node

• Apply this for each node of the SCC

vendredi 20 juin 14

Example of application
on a SCC

• For the node PB. Parents : PA and PD.

• BFS started from PB will find PA by (PB, PA). PA -> PB is a cycle.

• BFS started from PB will find PD by (PB, PD). PB -> PD is a cycle.

• For the node PC. Parents : PB.

• BFS started from PC will find PB by (PC, PD, PB). PC -> PD -> PB is a cycle.

• repeat this step for each node of the graph...

vendredi 20 juin 14

Demo with the packages
“Collections” on Pharo

vendredi 20 juin 14

Future improvements

• Visualization with Roassal2 and Telescope

• Integration in Nautilus

• Use packages meta-information to store
“normal-cycles”

• Metric for ranking the cycles?

• Live feedback?

• Factorization with Moose?

vendredi 20 juin 14

Available on
SmalltalkHub

• We need feedback !

• SmalltalkHub

• http://smalltalkhub.com/#!/~BaptisteQuide/
PackageDependenciesAnalysis

vendredi 20 juin 14

Questions?

vendredi 20 juin 14

