
Pharo VM Runtime

1

What we
know
so far…

2

What we
know
so far…

3

What we
know
so far…

4

What we
know
so far…

5

What we
know
so far…

6

What we
know
so far…

7

What we
know
so far…

8

Compiled Ahead of Time
Slang -> C -> Native code

VM C Runtime

What we
know
so far…

9

Compiled Ahead of Time
Slang -> C -> Native code

Compiled at Run Time
Bytecode -> Native code

VM C Runtime

VM Generated
Runtime

How they interact at run time

10

How they interact at run time

11

How they interact at run time

12

How they interact at run time

13

How they interact at run time

14

How they interact at run time

15

How they interact at run time

16

How they interact at run time

17

How they interact at run time

18

VM C Runtime vs Generated Runtime
• The JITted methods do not include code for all cases

• Slow paths, complex cases (such as the GC) are NOT compiled

• Instead => delegate to the VM C code … But…

19

How they interact at run time

20

How they interact at run time

21

Trampolines

Trampolines vs Reverse Trampolines

• Trampolines:

• Generated native code —> C code

• Reverse trampolines:

• C code —> Generated native code

22

Two kinds of trampolines

What are trampolines used for?
Mostly, slow execution paths

• Send a message to a non-JITted method

• PICs

• Call the GC

• Slow allocations

• Immutability checks

• Managing GC invariants (e.g., remembered set)

• Must be boolean

• …

23

What are reverse trampolines used for?

• Call JITted methods

• Low level Routines (e.g., get the state of the machine)

• That’s most of it

24

Why do we need trampolines?
Communication Problems

• The C functions where compiled by **some** C compiler

• We don’t know: Are they optimised? What registers do they use?

• We know: they have a standard calling convention

• We have to be conservative and consider C functions could do anything!

• Our generated native code

• Does not follow the C calling convention

• Runs in a separate stack!

25

Trampolines
Calling the VM C runtime from the Generated Runtime

• Native code routines that make the transition

• Jitted methods call a trampoline

• The trampoline sets-up the conditions to call C code

• Then calls the C code

26

Two Execution Stacks
One for the Pharo execution, one for the VM C runtime execution

• The Pharo execution is persistent 
(e.g., when you save the image)

• And has green threads!

• The C execution is single-threaded 
non-persistent

=> Two stacks to separate concerns

27

Trampolines in the Pharo VM
Switching to the C stack

28

Current Stack Pointer

Trampolines in the Pharo VM
Switching to the C stack

29

Current Stack Pointer

Reverse Trampolines (enilopmarts)
Calling the generated runtime from C runtime

• Native code routines that make the transition

• The VM C runtime calls a reverse trampoline

• The reverse trampoline sets-up the conditions 
to call the generated runtime

• Then calls the generated code

30

Reverse Trampolines in the Pharo VM
Switching to the Pharo Stack

31

Current Stack Pointer

Reverse Trampolines in the Pharo VM
Switching to the Pharo Stack

32

Current Stack Pointer

Where are the trampolines?
The Native Code Zone

33

• It has Intrinsics + Jitted Methods

• Intrinsics: routines that are pre-
defined by the compiler

• Intrinsics are generated at VM
startup and stay there

• Trampolines are not the only
intrinsics (e.g., marrying a
machine code frame to a
context object)

Other details about trampolines

• Reverse trampolines do not actually call, they return to generated code, to
avoid having the reverse trampoline in the stack

• Reverse trampolines do not receive arguments, arguments are passed
through the smalltalk stack

• They then pop the arguments and puts them in the right place before
returning to the generated method

• Pharo Trampolines do not ensure that registers are properly saved-restored.
It’s the caller method that ensures that. This is specially problematic since the
called C function could do virtually **anything**, even smashing our registers!

34

Conclusion

35

