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VM C Runtime vs Generated Runtime
• The JITted methods do not include code for all cases


• Slow paths, complex cases (such as the GC) are NOT compiled


• Instead => delegate to the VM C code …  But…
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Trampolines



Trampolines vs Reverse Trampolines

• Trampolines:


• Generated native code —> C code


• Reverse trampolines:


• C code  —> Generated native code
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Two kinds of trampolines



What are trampolines used for?
Mostly, slow execution paths

• Send a message to a non-JITted method


• PICs


• Call the GC


• Slow allocations


• Immutability checks


• Managing GC invariants (e.g., remembered set)


• Must be boolean


• …
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What are reverse trampolines used for?

• Call JITted methods


• Low level Routines (e.g., get the state of the machine)


• That’s most of it
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Why do we need trampolines?
Communication Problems

• The C functions where compiled by **some** C compiler


• We don’t know: Are they optimised? What registers do they use?


• We know: they have a standard calling convention 

• We have to be conservative and consider C functions could do anything!


• Our generated native code


• Does not follow the C calling convention


• Runs in a separate stack!
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Trampolines
Calling the VM C runtime from the Generated Runtime

• Native code routines that make the transition


• Jitted methods call a trampoline


• The trampoline sets-up the conditions to call C code


• Then calls the C code
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Two Execution Stacks
One for the Pharo execution, one for the VM C runtime execution

• The Pharo execution is persistent 
(e.g., when you save the image)


• And has green threads!


• The C execution is single-threaded 
non-persistent


=> Two stacks to separate concerns
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Trampolines in the Pharo VM
Switching to the C stack
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Current Stack Pointer
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Current Stack Pointer



Reverse Trampolines (enilopmarts)
Calling the generated runtime from C runtime

• Native code routines that make the transition


• The VM C runtime calls a reverse trampoline


• The reverse trampoline sets-up the conditions 
to call the generated runtime


• Then calls the generated code
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Reverse Trampolines in the Pharo VM
Switching to the Pharo Stack
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Current Stack Pointer



Reverse Trampolines in the Pharo VM
Switching to the Pharo Stack
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Current Stack Pointer



Where are the trampolines?
The Native Code Zone
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• It has Intrinsics + Jitted Methods


• Intrinsics: routines that are pre-
defined by the compiler


• Intrinsics are generated at VM 
startup and stay there


• Trampolines are not the only 
intrinsics (e.g., marrying a 
machine code frame to a 
context object)



Other details about trampolines

• Reverse trampolines do not actually call, they return to generated code, to 
avoid having the reverse trampoline in the stack


• Reverse trampolines do not receive arguments, arguments are passed 
through the smalltalk stack


• They then pop the arguments and puts them in the right place before 
returning to the generated method


• Pharo Trampolines do not ensure that registers are properly saved-restored. 
It’s the caller method that ensures that. This is specially problematic since the 
called C function could do virtually **anything**, even smashing our registers!
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Conclusion
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