
Interpreters, compilers

Nico Rainhart
RMoD - September 2022

and how I learned to cook thanks to Guille & Pablo

2

Our goal

a := 1.
condition ifTrue: [
 a := a + 6.
].
^ a + 2.

9

3

4

Running a program is like cooking a welsh…

5

6

Running a program is like cooking a welsh…

7

Running a program is like cooking a welsh…

8

Fry 2 slices
of ham

Running a program is like cooking a welsh…

9

Boil some beer
in the same

pan

Running a program is like cooking a welsh…

10

Add grated
cheese

Running a program is like cooking a welsh…

11

Stir until the
cheese mixes
with the beer

Running a program is like cooking a welsh…

12

etc.

Running a program is like cooking a welsh…

13

Running a program is like cooking a welsh…

14

Running a program is like cooking a welsh…

15

- Fry 2 slices of
ham
- Boil 300ml of
beer in the same
pan
- Add grated
cheese
- Etc.

Running a program is like cooking a welsh…

16

Running a program is like cooking a welsh…

- Fry 2 slices of
ham
- Boil 300ml of
beer in the same
pan
- Add grated
cheese
- Etc.

Two different strategies

Interpreter Compiler

17

- Fry 2 slices of
ham
- Boil 300ml of
beer in the same
pan
- Add grated
cheese
- Etc.

- Fry 2 slices of
ham
- Boil 300ml of
beer in the same
pan
- Add grated
cheese
- Etc.

Source code CPU

Machine code

Interpreter

Interpreter

18

Source code CPU

Parsing

(3 / (a + b)) ceiling

19

Interpreting the AST

20

21

Interpreting the AST

3

22

Interpreting the AST

3

17 (a)

23

Interpreting the AST

3

17 (a)

42 (b)

24

Interpreting the AST

3

59

25

Interpreting the AST

0.05…

26

Interpreting the AST

1

27

Interpreting the AST

Are we done?

a := 1.
for (condition) {
 a := a + 6.
}
^ a + 2.

28

Compilation

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

29

Why don’t we just compile?

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

ADDSD xmm0, xmm1
MOVSD xmm1, #3
DIVSD xmm1, xmm0
(...)

FADD.D ft1, fa0, fa1
FDIV.D fa0, ft0, ft1
CALL ceil@plt
(...)

30

Interpreter vs compiler

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

(3 / (a + b)) ceiling

1
31

Can we combine both
strategies?

Bytecode

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

33

Bytecode

push 3

push a

push b

send +

send /

send ceiling

(17)

(32)

(33)

(55)

(56)

(48)

34

Bytecode

35

Bytecode as compilation target

JVM
Bytecode

36

Can we go even further? => JIT compilationCan we go even further?

arraySum: anArray

 sum := 0.

 a := 5

 1 to: anArray size do:

 [:b | sum := sum + someOperationBetween: a and: b].

 ^ sum

37

someOperationBetween: a and: b

 ^ (3 / (a + b)) ceiling

push 3

push a

push b

send +

send /

send ceiling

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

Code cache

Just In Time compilers

38

Baseline compiler

Optimizing compiler

Just In Time compilers

39

executions per second
(higher is better)

Just In Time compilers

40

Baseline compiler

Optimizing compiler

a := 30.
b := a * 4.

(a > 10) ifTrue: [
 b := b - 10.
].
^ b * (60 / a)

a := 30.
b := 30 * 4.

(30 > 10) ifTrue: [
 b := b - 10.
].
^ b * (60 / 30)

Just In Time compilers

41

Baseline compiler

Optimizing compiler Constant propagation

Just In Time compilers

42

Baseline compiler

Optimizing compiler

a := 30.
b := 120.

(true) ifTrue: [
 b := b - 10.
].
^ b * 2

Constant folding

Just In Time compilers

43

Baseline compiler

Optimizing compiler

a := 30.
b := 120.

(true) ifTrue: [
 b := b - 10.
].
^ b * 2

Dead code elimination

Just In Time compilers

44

Baseline compiler

Optimizing compiler

b := 120.

(true) ifTrue: [
 b := b - 10.
].
^ b * 2

Method inlining

Just In Time compilers

45

Baseline compiler

Optimizing compiler
b := 110.

^ b * 2
Constant propagation
+ folding

Just In Time compilers

46

Baseline compiler

Optimizing compiler ^ 220 Constant propagation
+ folding

Just In Time compilers

47

Baseline compiler

Optimizing compiler

push 3

push a

push b

send +

send /

send ceiling

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

Speculative optimizations
if (a or b are not Float)

 ^ deoptimize()

Just In Time compilers

48

Baseline compiler Optimizing compilerIntérprete

Final architecture

49

Recap

50

Interpreters

Compilers

AST interpreter

Bytecode interpreter

Compiling to machine code (ahead-of-time)

Compiling to bytecode

Compiling to machine code (just-in-time)

Baseline compilers

Optimizing compilers

- Fry 2 slices of
ham
- Boil 300ml of
beer in the same
pan
- Add grated
cheese
- Etc.

- Fry 2 slices of
ham
- Boil 300ml of
beer in the same
pan
- Add grated
cheese
- Etc.

Bonus:
What have I been doing?

Loops are always a problem…

52

Vector instructions

53

54

Vector instructions

SIMD Design Space

● VM Primitives

● Vectorized Bytecode

55

How are vector instructions generated in Pharo?

Source Code Primitive /
Bytecode Hot?

Interpreter

JIT compiler

No

Yes

Machine code

Machine code

Vector

Vector

Scalar

SIMD Design Space

57

● VM Primitives
○ Specialized
○ Faster, less checks

● Vectorized Bytecode

SIMD Design Space

58

● VM Primitives
○ Specialized
○ Faster, less checks

● Vectorized Bytecode
○ Composable
○ Safe at the expense of

speed

SIMD Design Space

59

● VM Primitives
○ Specialized
○ Faster, less checks

● Vectorized Bytecode
○ Composable
○ Safe at the expense of

speed

Open research

Can we have the best of both worlds?

○ Composability
○ Performance

Performant vectorized bytecode

Arithmetic operations on arrays testbed for primitives vs
bytecodes

What do we have today?

Optimized primitives for specific operations

○ Object initialization 2x faster with vector instructions

Thanks!

Nico Rainhart
RMoD - September 2022

