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and how I learned to cook thanks to Guille & Pablo
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Our goal

a := 1.
condition ifTrue: [
   a := a + 6.
].
^ a + 2.
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Running a program is like cooking a welsh…
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Running a program is like cooking a welsh…
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Running a program is like cooking a welsh…
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Fry 2 slices
of ham

Running a program is like cooking a welsh…
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Boil some beer 
in the same 

pan 

Running a program is like cooking a welsh…
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Add grated 
cheese

Running a program is like cooking a welsh…
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Stir until the 
cheese mixes 
with the beer

Running a program is like cooking a welsh…
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etc.

Running a program is like cooking a welsh…
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Running a program is like cooking a welsh…
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Running a program is like cooking a welsh…
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- Fry 2 slices of 
ham
- Boil 300ml of 
beer in the same 
pan
- Add grated 
cheese
- Etc.

Running a program is like cooking a welsh…
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Running a program is like cooking a welsh…

- Fry 2 slices of 
ham
- Boil 300ml of 
beer in the same 
pan
- Add grated 
cheese
- Etc.



Two different strategies

Interpreter Compiler
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- Fry 2 slices of 
ham
- Boil 300ml of 
beer in the same 
pan
- Add grated 
cheese
- Etc.

- Fry 2 slices of 
ham
- Boil 300ml of 
beer in the same 
pan
- Add grated 
cheese
- Etc.

Source code CPU

Machine code



Interpreter

Interpreter
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Source code CPU



Parsing

(3 / (a + b)) ceiling
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Interpreting the AST
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Interpreting the AST



3
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Interpreting the AST



3

17 (a)
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Interpreting the AST
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17 (a)

42 (b)
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Interpreting the AST
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59
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Interpreting the AST



0.05…
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Interpreting the AST



1
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Interpreting the AST



Are we done?

a := 1.
for (condition) {
   a := a + 6.
}
^ a + 2.

28



Compilation

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET
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Why don’t we just compile?

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

ADDSD xmm0, xmm1
MOVSD xmm1, #3
DIVSD xmm1, xmm0
(...)

FADD.D ft1, fa0, fa1
FDIV.D fa0, ft0, ft1
CALL ceil@plt
(...)
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Interpreter vs compiler

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

(3 / (a + b)) ceiling

1
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Can we combine both 
strategies?



Bytecode

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET
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Bytecode

push 3

push a

push b

send +

send /

send ceiling

(17)

(32)

(33)

(55)

(56)

(48)
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Bytecode
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Bytecode as compilation target

JVM
Bytecode
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Can we go even further? => JIT compilationCan we go even further?

arraySum: anArray

   sum := 0.

   a := 5

   1 to: anArray size do:

      [ :b | sum := sum + someOperationBetween: a and: b   ].

   ^ sum
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someOperationBetween: a and: b

   ^ (3 / (a + b)) ceiling

push 3

push a

push b

send +

send /

send ceiling

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

Code cache



Just In Time compilers
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Baseline compiler

Optimizing compiler



Just In Time compilers
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executions per second
(higher is better)



Just In Time compilers
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Baseline compiler

Optimizing compiler

a := 30.
b := a * 4.

(a > 10) ifTrue: [
   b := b - 10.
].
^ b * (60 / a)



a := 30.
b := 30 * 4.

(30 > 10) ifTrue: [
   b := b - 10.
].
^ b * (60 / 30)

Just In Time compilers
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Baseline compiler

Optimizing compiler Constant propagation



Just In Time compilers
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Baseline compiler

Optimizing compiler

a := 30.
b := 120.

(true) ifTrue: [
   b := b - 10.
].
^ b * 2

Constant folding



Just In Time compilers
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Baseline compiler

Optimizing compiler

a := 30.
b := 120.

(true) ifTrue: [
   b := b - 10.
].
^ b * 2

Dead code elimination



Just In Time compilers
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Baseline compiler

Optimizing compiler

b := 120.

(true) ifTrue: [
   b := b - 10.
].
^ b * 2

Method inlining



Just In Time compilers
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Baseline compiler

Optimizing compiler
b := 110.

^ b * 2
Constant propagation 
+ folding



Just In Time compilers
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Baseline compiler

Optimizing compiler ^ 220 Constant propagation 
+ folding



Just In Time compilers
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Baseline compiler

Optimizing compiler

push 3

push a

push b

send +

send /

send ceiling

FADD d0, d0, d1
FMOV d1, #3
FDIV d0, d1, d0
FRINTP d0, d0
RET

Speculative optimizations
if (a or b are not Float)

   ^ deoptimize()



Just In Time compilers
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Baseline compiler Optimizing compilerIntérprete



Final architecture
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Recap
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Interpreters

Compilers

AST interpreter

Bytecode interpreter

Compiling to machine code (ahead-of-time)

Compiling to bytecode

Compiling to machine code (just-in-time)

Baseline compilers

Optimizing compilers

- Fry 2 slices of 
ham
- Boil 300ml of 
beer in the same 
pan
- Add grated 
cheese
- Etc.

- Fry 2 slices of 
ham
- Boil 300ml of 
beer in the same 
pan
- Add grated 
cheese
- Etc.



Bonus:
What have I been doing?



Loops are always a problem…
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Vector instructions
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Vector instructions



SIMD Design Space

● VM Primitives

● Vectorized Bytecode
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How are vector instructions generated in Pharo?

Source Code Primitive / 
Bytecode Hot?

Interpreter

JIT compiler

No

Yes

Machine code

Machine code

Vector

Vector

Scalar



SIMD Design Space
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● VM Primitives
○ Specialized
○ Faster, less checks

● Vectorized Bytecode



SIMD Design Space
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● VM Primitives
○ Specialized
○ Faster, less checks

● Vectorized Bytecode
○ Composable
○ Safe at the expense of 

speed



SIMD Design Space
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● VM Primitives
○ Specialized
○ Faster, less checks

● Vectorized Bytecode
○ Composable
○ Safe at the expense of 

speed



Open research

Can we have the best of both worlds?

○ Composability
○ Performance

Performant vectorized bytecode

Arithmetic operations on arrays          testbed for primitives vs 
bytecodes

What do we have today?

Optimized primitives for specific operations

○ Object initialization          2x faster with vector instructions



Thanks!

Nico Rainhart
RMoD - September 2022


