Compilers 101: intermediate
representations, machine code,
assembler

(a prelude to the JIT presentation)

What is a compiler

push 1

MyClass >> foo o push 17

Aoy 17 Compilation cend +
returnTop

A program that translates a program in a source language to a target language

Overview of a compiler internals

An example with bytecode

Source code

Target Code

MyClass >> foo
N1+ 17

—

Parse

—

generate 1 6 r'7C

Intermediate Representation

Example 1: The old Pharo Compiler

AST as intermediate representation

Source code

Target Code

MyClass >> foo
N1+ 17

—

Parse

—

generate 1 6 r'7C

Intermediate Representation

Example 2: The Opal Compiler

Introducing linear representations

Source code

MyClass >> foo
N1+ 17

Parse

send #+

generate generate

returnTop

Intermediate Representation 2

Intermediate Representation 1: ASTs Linear Bytecode-like IR

Target Code

16r/C

What is the target code?

* Another programming language => we talk about transpilation
e.d., Pharo to C translation

 Some binary code for a virtual machine
e.d., the Pharo bytecode

« Some binary code for a real machine
e.g., machine code for x86, or ARMv8

Target code: bytecode as virtual "machine code”

* The virtual machine simulates a machine
* The Iinstructions are called bytecodes

* |ndependent of the real machine

16r/6

1620

o Stack based: operands are exchanged through a stack

16r/C

 Compact: Stack is implicit

returnTop

Target code: machine code

* [he real binary code executed by the machine

* Bytes encode instructions

* The set of instructions + CPU is called instruction set architecture (ISA)
 Each machine/CPU has its own ISA and binary encoding of it

* [ypically register machines:
operands are exchanged through registers and memory

[31 32 3213 76 1 © 88]

some arm v8 instructions

Before going deep: Machine code VS Assembly code

 Assembly Is a programming language
* (not machine code)

* That is translated to machine code using a compiler (aka an assembler)

nop
ldr x12, #40

(31,323 213 76 1 @ 88 |

nop ldr x12, #40

For simplicity: we will use assembly examples to represent machine code

Machine code instructions

* Basic instructions: :
mnemonlic opl op2 op3 ..

* Write data to memory

 Read data from memory

e Arithmetic(+,-,7"...)

e Bit instructions (shift, bitAnd ...) e.g.,
| | | load rl [rl, #40]
* Control flow (jump, jump if) add r3 r2 r1

store [rl, #40] r3

Machine code: Instruction Operands

Basic operand types

* Immediate numbers: encoded directly in the instruction bytes

€.9., #40 load r2 [rl, #40]
add r3 r2 rl

* Registers: small memories in the CPU store [rl, #40] r3

eg., rl r2 r3
 Memory addresses: calculated from registers and/or immediates

e.g., [rl, #40]

Machine code: Registers

 Small memories in the CPU
« Some are for general use
 Some are specific (e.g., Floating point numbers)

« Some are for the CPU (and not for us)

e.g.,
load rl [rl, #40]
=> And there are very few!!! add r3 r2 ril

store [rl, #40] r3

Machine code: binary encoding

Each ISA has its manual

C6.2.5 ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

31 30 29 28|27 26 25 24{23 22 21 20 16115 109 | 5 4 0

sffoJofo 1 0 1 1]shift[0 Rm imm6 RN Rd
op S

32-bit variant
Applies when sf == 0.

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant
Applies when sf == 1. Arm’ Architecture Reference Manual

ADD <Xd>, <Xn>. <Xm>{. <shift> #<amount>} Armv8, for Armv8-A architecture profile

Conclusion

move r2 [r5,#8]

MyClass >> foo
N1 o+ 1v

Parse

-

generate

-

generate

add r3 rl r2

Tree IR Linear IR Target Code

Source code Source-code like Bytecode, Assembly like Binary bytecode or machine code

