
Compilers 101: intermediate
representations, machine code,
assembler
(a prelude to the JIT presentation)

What is a compiler

MyClass	>>	foo	
		^	1	+	17

push	1	
push	17	
send	+	
returnTop

Compilation

A program that translates a program in a source language to a target language

Overview of a compiler internals
An example with bytecode

MyClass	>>	foo	
		^	1	+	17

1 17

+

^

foo

Parse generate

Source code

Intermediate Representation

Target Code

16r76	
16r20	
16rB0	
16r7C

16r76	
16r20
16rB0

Example 1: The old Pharo Compiler
AST as intermediate representation

MyClass	>>	foo	
		^	1	+	17

1 17

+

^

foo

Parse generate

Source code

Intermediate Representation

Target Code

16r76	
16r20	
16rB0	
16r7C

16r76	
16r20
16rB0

Example 2: The Opal Compiler
Introducing linear representations

MyClass	>>	foo	
		^	1	+	17

1 17

+

^

foo

Parse generate

Source code

Intermediate Representation 1: ASTs

Target Code

push 1

push 7

send #+

returnTop

generate

Intermediate Representation 2

Linear Bytecode-like IR

16r76	
16r20	
16rB0	
16r7C

16r76	
16r20
16rB0

What is the target code?

• Another programming language => we talk about transpilation 
 e.g., Pharo to C translation

• Some binary code for a virtual machine 
 e.g., the Pharo bytecode

• Some binary code for a real machine 
 e.g., machine code for x86, or ARMv8

Target code: bytecode as virtual "machine code”

• The virtual machine simulates a machine

• The instructions are called bytecodes

• Independent of the real machine

• Stack based: operands are exchanged through a stack

• Compact: Stack is implicit

push 1

push 7

send #+

returnTop

16r76	
16r20	
16rB0	
16r7C

16r76	
16r20
16rB0

Target code: machine code

• The real binary code executed by the machine

• Bytes encode instructions

• The set of instructions + CPU is called instruction set architecture (ISA)

• Each machine/CPU has its own ISA and binary encoding of it

• Typically register machines:  
operands are exchanged through registers and memory

#[31	32	3	213	76	1	0	88]
some arm v8 instructions

Before going deep: Machine code VS Assembly code

• Assembly is a programming language

• (not machine code)

• That is translated to machine code using a compiler (aka an assembler)

#[31	32	3	213	76	1	0	88]nop	
ldr	x12,	#40

ldr	x12,	#40nop

For simplicity: we will use assembly examples to represent machine code

• Basic instructions:

• Write data to memory

• Read data from memory

• Arithmetic (+ , - , * …)

• Bit instructions (shift, bitAnd …)

• Control flow (jump, jump if)

e.g.,	
load	r1	[r1,	#40]	
add	r3	r2	r1	
store	[r1,	#40]	r3

mnemonic	op1	op2	op3	…

Machine code instructions

Basic operand types

• Immediate numbers: encoded directly in the instruction bytes 
 
 e.g.,

• Registers: small memories in the CPU 
 
 e.g.,

• Memory addresses: calculated from registers and/or immediates 
 
 e.g.,

load	r2	[r1,	#40]	
add	r3	r2	r1	
store	[r1,	#40]	r3

Machine code: Instruction Operands

[r1,	#40]

#40

r1	r2	r3	

• Small memories in the CPU

• Some are for general use

• Some are specific (e.g., Floating point numbers)

• Some are for the CPU (and not for us)

=> And there are very few!!!

e.g.,	
load	r1	[r1,	#40]	
add	r3	r2	r1	
store	[r1,	#40]	r3

Machine code: Registers

Machine code: binary encoding
Each ISA has its manual

Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile

Conclusion

MyClass	>>	foo	
		^	1	+	iv

1 iv

+

^

foo

Parse generate

Source code Tree IR

Source-code like

Target Code

Binary bytecode or machine code

move	r1	#1

move	r2	[r5,#8]

add	r3	r1	r2

ret

generate

Linear IR

Bytecode, Assembly like

16r76	
16r20	
16rB0	
16r7C

16r76	
16r20
16rB0
16rB0

