
Guille Polito

Engineering a Compiler
Writing an ARMv8 backend for a JIT compiler in 2 days per week

1

Context
The Pharo VM

2

Context
The Pharo VM

3

Pharo VM JIT Compiler
Overview

bytecode
CogRTL - IR

Machine Code

IR Generation

“gen*” Machine Code Generation 

“Concretize”

<76>	push	1

<20>	push	17

<B0>	send	#+

<7C>	returnTop

move	r1	#1

move	r2	#17

checkSmallInt	r1

checkSmallInt	r2

add	r3	r1	r2

checkSmallInt	r3

move	r1	r3

ret

move	X5	#1

move	X3	#17

test	X5	#0x1

je	0x40

test	X3	#0x1

je	0x32

add	X0	X3	X5

test	X0	#0x1

je	0x24

move	X5	X0

ret

4

Implementing an ARMv8 Backend

• ARMV8 is now pervasive:

• New Apple Silicon

• Raspberry Pi 4

• Microsoft Surface Pro X

• PineBook Pro

• … Machine Code Generation 
“Concretize”

move	r1	#1

move	r2	#17

checkSmallInt	r1

checkSmallInt	r2

add	r3	r1	r2

checkSmallInt	r3

move	r1	r3

ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

5

Some other numbers to contextualise

• 255 bytecode (77 different) + ~340 primitives

• 146 different IR instructions

• Instruction patching (+runtime disassemble)

• optimizations such as inline caches

• unused generated machine code is garbage collected

• (thus moved, and its callers need to be re-linked)

6

Lots of combinations!

Engineering a Compiler

7

Engineering a Compiler
Good books, but centered on the underlying algorithms

8

Engineering a Compiler

Testable Easy Debugging

Software Engineering

Incremental

9

Engineering a Compiler

Testable Easy Debugging

Software Engineering

Incremental

10

Testing a Compiler
Insights: Black box testing

Black box testing

=> depend only on observable behaviour

=> reusable in different backends

=> more resistant to changes in the implementation

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

11

Testing a Compiler
Insights: Cross-compile / Cross-execute

Use a machine simulator

=> hardware independent: test and debug in any machine any backend

=> parametrizable tests run the same test with multiple backends

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

http://www.unicorn-engine.org

12

http://www.unicorn-engine.org/
http://www.unicorn-engine.org/

Intermezzo: Generating machine code
To LLVM or not to LLVM

• LLVM is a compiler infrastructure: its own IR, its assemblers and
disassemblers

• It even has a JIT module

• But

• Not observable: not straightforward to extract the generated code to test it 
=> not testable!

• Lock-in: it leaves no control on how machine code is generated, executed
and managed 
=> not compatible with the rest of our infrastructure

13

Intermezzo: Generating machine code
The backend **is** an assembler

Generates machine code from the intermediate representation

(is64Bits	bitAnd:	1)	<<	31	

bitOr:	((substractionFlag	bitAnd:	1)	<<	30	

bitOr:	((setFlagsFlag	bitAnd:	1)	<<	29	

bitOr:	(2r01011	<<	24	

bitOr:	((shiftType	bitAnd:	2r11)	<<	22	

bitOr:	((rightRegister	bitAnd:	2r11111)	<<	16	

bitOr:	((immediate6bitValue	bitAnd:	2r111111)	<<	10	

bitOr:	((leftRegister	bitAnd:	2r11111)	<<	5	

bitOr:	(destinationRegister	bitAnd:	2r11111))))))))

Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile 14

Engineering a Compiler

Testable Easy Debugging

Software Engineering

Incremental

15

Incremental Compiler Engineering
Insights: Start Small

• First: The simplest test you can write for the simplest functionality

• Second: The next simplest test you can write for the next simplest
functionality

=> The first focus is in understanding how to better write the tests

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

16

Incremental Compiler Engineering
Insights: Invest in infrastructure

• Refactor

• Clean

• Create Reusable Components

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

17

Incremental Compiler Engineering
Insights: Don’t hesitate to step back

• If a test cannot be tamed with the current infrastructure

• The infrastructure is not good!

• Step back as soon as possible => lose minutes, not weeks

• Choose a simpler test that could help you develop missing points

18

Engineering a Compiler

Testable Easy Debugging

Software Engineering

Incremental

19

Debugging a compiler
Insights: prototype your own tools

• Prototype fast

• Prototype based 
on needs, not 
desires

Examples:

• Machine debugger

• Bytecode-IR visualization

• Disassembler DSL

20

Debugging a compiler
Insights: Get real execution feedback

• Simulators are cheap, but not 100% trustworthy

• Full execution (simulated and real HW)

• more expensive to run

• cannot unit-test it (less controllable)

• Turn failures into tests

• If you can reproduce it in a test, you understand the bug

• Fix with the aid of the test: 
=> the test is faster to run 
=> and easier to debug than the real execution

21

Engineering a Compiler

Testable Easy Debugging

Software Engineering

Incremental

22

Software Engineering a Compiler
Our final workflow

• Test as much as you can

• Enhance your infrastructure as much too

• Simulate the execution, less than you run tests

• Run the real app, less than you simulate

• Turn failures into tests

23

Software Engineering a Compiler
Some Final Ideas/Insights

Tests are code

• Design your tests

• Refactor your tests

• Make them modular and reusable

24

