
Guille Polito, Stéphane Ducasse, Pablo Tesone, 
Théo Rogliano, Pierre Misse-Chanabier, Carolina Hernandez, Luc Fabresse

RMoD Team — Inria Lille Nord Europe — UMR9189 CRIStAL — CNRS

Cross-ISA Testing of the Pharo
VM
Lessons learned while porting to ARMv8 64bits
Tool Paper — MPLR’21

1

����

Context
The Pharo VM

2

Some Numbers

• 255 bytecodes (77 different) + ~340 primitives/native methods

• 146 different IR instructions

• polymorphic inline caches

• threaded code interpreter

• generational scavenger GC

3

Lots of combinations!

Objective: Implementing an ARM64 Backend

• ARM64 is now pervasive:

• New Apple M1

• Raspberry Pi 4

• Microsoft Surface Pro X

• PineBook Pro

• …

move	r1	#1

move	r2	#17

checkSmallInt	r1

checkSmallInt	r2

add	r3	r1	r2

checkSmallInt	r3

move	r1	r3

ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

4

JIT compiler IR

Targeting Real Hardware
Challenges

5

• How to do a partial implementation, in an iterative way?

• Hardware availability: did not have access to an Apple M1 yet

• Slow Change-Compile-Test cycle

• Bug reproduction is a demanding task

Execution Mode Comparison

6

Real Hardware 
Execution

Feedback-cycle
speed Very low

Availability Low

Reproducibility Low

Precision High

Debuggability Low

Simulation Environment

7

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing

infrastructure

Miranda	et	al.	

Two	decades	of	smalltalk	vm	development:	live	vm	development	through	
simula:on	tools.	  

VMIL’18	

Simulation Environment Comparison

8

Real Hardware 
Execution

Full-System 
Simulation

Feedback-cycle
speed Very low Low

Availability Low High

Reproducibility Low Low

Precision High Low

Debuggability Low High

Unit Testing Infrastructure
Extending the simulation environment

9

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing

infrastructure

Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

10

Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

11

 Reusable test fixtures covering e.g.,
 - trampoline and stub compilation
 - heap initialization

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

 Reusable test fixtures covering e.g.,
 - trampoline and stub compilation
 - heap initialization

Our testing infrastructure by example

12

 Compiler internal DSL

Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

13

 Reusable test fixtures covering e.g.,
 - trampoline and stub compilation
 - heap initialization

 Compiler internal DSL

 JIT Execution helpers such as e.g.,
 - run all code between two addresses
 - run until the PC hits an address

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

14

VM Unit Testing Lessons
Insights: Black box testing

Depend only on
observable
behaviour

Reusable on different
backends /

architectures

Resistant to changes
in the implementation

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

15

VM Unit Testing Lessons
Insights: Cross-compile / Cross-execute

Hardware
independent Parametrizable tests

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	
self	compile:	[compiler	genPushConstantZeroBytecode].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

16

VM Unit Testing Lessons
Insights: Start Small

First: The simplest
test, the simplest

feature

Second: the next
simplest test

Focus on enhancing
the testing

infrastructure

Unit Testing Infrastructure Comparison

17

Real Hardware 
Execution

Full-System 
Simulation Unit-Testing

Feedback-cycle
speed Very low Low High

Availability Low High High

Reproducibility Low Low High

Precision High Low Low

Debuggability Low High High

There is no silver bullet
• Simulators are cheap, but not 100% trustworthy

• Full execution (simulated or on real HW)

• more expensive to run

• cannot unit-test it (less controllable)

• Unit tests only exercise specific scenarios

• Full executions exercise not yet covered scenarios

18

• Simulate the execution, less than you run tests

• Run the real app, less than you simulate

• Go back and forth:

• Turn full execution failures into tests

• Fix with the aid of the test: 
=> unit test are faster to run 
=> easier to debug 
=> detect regressions

19

Our testing Workflow

Case Study 1

Porting the Cogit JIT Compiler to ARM64

• Started with no tests and no hardware (main target Apple M1)

• Incremental test development: bytecode, native methods, PICs, code
patching

• All tests run from the beginning on our four targets: 
 x86, x86-64, ARM32 and ARM64

• Test allowed safe modifications in the IR to support  
e.g., ARM64 Multiplication overflow

• ARM64 specific tests covered stack alignment, W+X …

20

Case Study 2

Ongoing Port to RISCV64

• Currently under development

• Is our harness test suite enough to develop a new backend?

• Are our tests general enough?

• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA Bretagne

• Future work on: Hardware-based security enforcement

21

Case Study 3

Debugging and Testing Memory Corruptions

• Bug report using Ephemerons 
 https://github.com/pharo-project/pharo/issues/8153

• Starting the other way around

• First reproducing the bug in real-hardware 
 => long to execute (even longer in simulation) 
 => required manual developer intervention

• Then building a unit test from observations

• Test becomes a part of the regression test suite

22

Future Perspectives

23

Automatic VM Validation

• Automatic (Unit?) Test Case Generation

• Interpreter vs Compiler Differential Testing

• VM Tailored Multi-level Debugging

24

Real Hardware 
Execution

Full-System 
Simulation Unit-Testing

Feedback-cycle
speed Very low Low High

Availability Low High High

Reproducibility Low Low High

Precision High Low Low

Debuggability Low High High

Lessons learned while porting to ARMv8 64bits

Cross-ISA Testing of the Pharo
VM

����

Debugging a compiler
Insights: build your own tools, based on needs, not desires

Examples:

• Machine code

debugger

• Bytecode-IR

visualization

• Disassembler DSL

25

