Transactions on Software Engineering

Understanding Packages: The Package Blueprint

Journal:

Transactions on Software Engineering

Manuscript ID:

TSE-2009-08-0202

Manuscript Type:

Regular

Keywords:

Software Maintenance, Software Visualization, Program
Understanding, Package, Software Evolution

& scholarone*

Manuscript Central

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering

Understanding Packages:
The Package Blueprint

Damien Pollet

Mathieu Suen Ilham Alloui

RMoD INRIA Lille Nord Europe — LIFL — CNRS UMR 8022 Université de Savoie, France

Page 1 of 25
1
2
3
4
5
6
; Stéphane Ducasse Hani Abdeen
9
10
11
12
13 Abstract—Large object-oriented applications are structured
14 over large number of packages. Packages are important but com-
15 plex structural entities that may be difficult to understand since
16 they play different development roles (i.e., class containers, code
17 ownership basic structure, architectural elements...). Maintainers
18 of large applications fac'e the problem of understanding how
packages are structured in general and how they relate to each
19 others. In this paper, we present a compact visualization, named
20 Package Blueprint, that characterizes the relationships a package
21 has with its neighbors. A package blueprint represents a package
22 with the notion of package surfaces: groups of relationships
23 according to the].)acka.ge references to/.from other packages. We
o4 present two specific views: one str.essmg t.he rf.:ferences made
by/from a package and another showing the inheritance structure
25 of a package. We applied the visualization on two large case
26 studies: ArgoUML and Squeak and performed a user study.
g; szis paper makes heavy use of colors. Plefzse read a colored
29 version of this paper to better understand the ideas presented in.
30
31 I. INTRODUCTION
gg To cope with the complexity of large software systems,
34 applications are structured in subsystems or packages. It
35 is now frequent to have large object-oriented applications
36 structured over large number of packages. Ideally, packages
37 should keep as less coupling and as much cohesion as
38 possible [26]], [6]], but as systems inevitably become more
39 complex, their modular structure must be maintained. It is thus
40 important to understand the concrete organization of packages
41 and their relationships. Packages are important but complex
42 structural entities that can be difficult to understand since they
43 play different development roles (i.e., class containers, code
44 ownership basic structure, architectural elements...). Packages
45 provide or require services. They can play core roles or contain
46 accessory code features. Maintainers of large applications face
47 the problem of understanding how packages are structured
48 in general and how they are in relation with each others
49 in their provider/client roles. In addition, approaches that
50 support application remodularization [2[], [21]], [23] succeed
51 in producing alternative views for system refactorings, but
52 proposed changes remain difficult to understand and assess.
53 Hence even if there is a good support for the algorithmic parts,
54 much work remains to help users understand, compare and
55 assess proposed solutions.
56 Several previous works provide information on packages and
57 their relationships, by visualizing software artifacts, metrics,
58 their structure or their evolution [7], [8l], [11], [20], [24],
gg [29]. However, while these approaches are valuable, they fall

short of providing a fine-grained view of packages that would

help understanding the package characteristics (the number
of classes it defines, the inheritance relationships among its
classes, how the package classes inherit from and interact with
classes packaged into other packages...) and help identifying
their roles and impact within an application.

In this paper, we propose the Package Blueprint, a compact
visualization revealing package structure and relationships.
A package blueprint is structured around the concept of
a surface, which represents the relationships between the
observed package and its provider and client packages. Package
Blueprint reveals the overall size and complexity of a package,
as well as its relations with other packages, by showing
the distribution of references to classes within and outside
the observed package. Package complexity is defined by the
quantity of relationships among the package classes (i.e.,
internal complexity) and the quantity of relationships between
the package classes and other classes (i.e., external complexity).
There is a direct relationship from a class A to another one B
if A references B (e.g., A uses B as type of some variable or A
methods invoke methods of B), or if A inherits from B. Package
Blueprint provides an overview of a system but without losing
key details related to package relationships. We applied the
Package Blueprint to several large case studies namely Squeak
the open-source Smalltalk comprising more than 2000 classes,
ArgoUML and Azureus. We performed a limited user study
with advanced developers.

The work presented in this article extends our previous paper
[12] in the following points: (a) visualization improvements
based on the feedback and conclusion of a first user study,
(b) addition and complementary visualization for incoming
references (in addition to outgoing references), and (c) a
detailed presentation of a case study as well as a user study.

Sections [[T] & [T present the challenges in supporting package
understanding, and summarize the properties expected for
effective visualizations. Section presents the structuring
principles of a package blueprint, which are then declined to
support an outgoing reference view, an incoming reference
view and an inheritance view in Section [V] Sections [VI] & [VII|
present the distinct views of package blueprint at work. The
next section presents the results of a limited case study. In
sections and |X| we discuss our visualizations and position
them w.r.t. related work before concluding.

II. CHALLENGES IN UNDERSTANDING PACKAGES

Although languages such as Java offer a mechanism for
modelling the dependencies between packages (i.e., via the

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

import statement), this mechanism does not really support
all the information that is important to understand a package.
We present a coarse list of useful information to understand
packages. Our goal here is to identify the challenges that
maintainers are facing and not to define an exhaustive list of
the problems that a particular solution should tackle (note that
our solution does not solve all those problems).

Size: What is the general size of a package in terms
of classes, inheritance definition, internal and external class
references, imports, exports to other packages? This is useful
to answer questions like "do we have only a few classes
communicating with the rest of the system?"

Cohesion and coupling: Transforming or evolving an
application follows natural boundaries defined by coupling and
cohesion [6], [3]]. The question is then to see the impact (if
any) of the transformation on package cohesion and coupling.
Assessing these properties is then important.

Central vs. Peripheral: Two correlated pieces of informa-
tion are important: (1) does a package belong to the core of
an application or is it more peripheral? and (2) does a package
provide or use functionality?

Developers vs. Team: Knowing who are the developers
and maintainers of the application and packages helps in
understanding the architecture of the application and in
qualifying package roles [15], [25]. Approaches such as the
distribution map are useful in this task [[10].

Actually, packages reflect several organizations: they are
units of code deployment or units of code ownership; they can
also encode team structure, architecture and stratification. Good
packages should be self-contained, or only have a few clear
dependencies to other packages [6]], [3]], [19]. A package can
interact with other ones in several ways: either as a provider,
or as a consumer or both. In addition some packages may have
either a lot of references to other packages or only a couple of
them. If a package defines subclasses, those can form either a
flat or deep subclass hierarchy. It can contain subpackages.

Figure [T shows different situations involving the same group
of classes. For illustrating purpose, Figure [I] only shows
references; the same idea holds for inheritance between classes
contained in different packages. In both cases |(a)| and there
are only two packages but in case [(a) most of the classes of P4
reference a class in P1, while in case @] most classes of P4
reference internally B2. Revealing this difference is important to
the maintainer who wants to understand if s/he can change the
relationships between P1 and P4 during a refactoring process.
In cases [(a)] and we have exactly the same relationships
between classes but the package structure is different. As
mentioned by R. Martin importing a class equals importing the
complete package [22], therefore importing two classes from
the same package is quite different from importing them from
two different packages since in the latter case we import all
the classes of the two packages.

Note that understanding packages is also important in the
context of remodularization approaches [2]], [21], [23]. There it
is important to understand how the proposed remodularisation
compares with the existing code. This problem is particularly
stressed in presence of legacy applications that consist of
thousands of classes and hundreds of packages.

III. VISUALIZATION CHALLENGES

In addition to the challenges mentioned above related to the
difficulties of understanding packages, the visualization itself
raised challenges. Several work identified the characteristics
that an efficient visualization should hold [4], [31], [33]. As
our focus is on providing a first impression of a package and
its context, we would like to exploit the gestalt principles of
visualization and preattentive processing'| as much as possible
to help spotting important information [30], [16], [17], [33].

We stress that our visualization should take into account the
following properties:

Good mapping to reality: The visualization should offer
a good representation of the situation that the maintainer can
trust and from which s/he can draw and validate hypotheses.

We expect from the visualization to highlight the general
tendency of a package in terms of its internal size, internal
and external references. In particular we want to spot classes
or dependencies that stand out in a given package.

Scalability and simple navigation: The maintainer should
easily access the information. The visualization should scale
i.e., we should be able to have system overview as well as
focusing on a particular package. We target a visualization that
scales well with the number of packages and of dependencies,
unlike those using graph representations [9].

Low visual complexity: By being regular and well struc-
tured, i.e., reusing the same conventions of color and position,
the visualization should help the maintainer to learn it and
understand it. In addition, while the visualization should offer
a lot of information, it should not be complex to analyze.

IV. PACKAGE BLUEPRINT BASIC PRINCIPLES

To meet most the requirements cited so far, we propose our
compact visualization: package blueprint. A package blueprint
represents either how the package under analysis references
other packages, or how it is referenced by them. Figure [2]
presents the key principles of a package blueprint; these
principles are realized slightly differently according to the kind
(references or inheritance) and the orientation of the considered
relationships (incoming or outgoing class references).

The package blueprint visualization is structured around the
“contact areas” between packages, that we name surfaces. A
surface represents conceptually the relationships between the
observed package and another package. In Figure [2(a)] the
package P1 is in relation with three packages P2, P3, and
P4, via different relationships between its own classes and the
classes present in the other packages; so P1 has three surfaces.

A package blueprint shows the observed package as a
rectangle, vertically subdivided into parts representing its

IResearchers in psychology and vision have discovered a number of visual
properties that are preattentively processed. They are detected immediately by
the visual system: viewers do not have to focus their attention on a specific
region in an image to determine whether elements with the given property
are present or absent. An example of a preattentive task is detecting a filled
circle in a group of empty circles. Commonly used preattentive features
include hue, curvature, size, intensity, orientation, length, motion, and depth
of field. However, combining them can destroy their preattentive power (in
a context of filled squares and empty circles, a filled circle is usually not
detected preattentively). Some of the features are not adapted to our needs.
For example, we do not consider motion as applicable.

http://mc.manuscriptcentral.com/tse-cs

Page 2 of 25

Page 3 of 25
1
2 — —
[A1] [B1] [D1] [A1] [B1] [D1]
3 9 BT By B
4 T 1 r 7 3
5 P1 | P1
6 AZ] [B2 C2 D2
: SNl
8 [A3]
9 L]
10 Pa
11 @ ()
12
13 Figure 1. Different package configurations over the same number of classes.
14
15
16
17 surfaces. Each surface between the observed package and
18 a referenced package is more or less tall, according to the
19 strength of the relationships between them. In Figure 2(b)] as
20 P1 references three other packages, its blueprint is formed from
21 three stacked boxes. The box of the surface between P1 and
20 P4 is taller than the others because P1 references more classes
23 in P4 than in P2 and in P3.
24 In each subdivision, we also show the classes involved in
o5 the corresponding surface. By convention, we always show the
26 classes in the referenced packages on the leftmost gray-colored
27 column of each surface, and the classes of the observed package
28 on the right. In Figure the topmost surface shows that
29 classes D1 and E1 reference class B4, and that C1 references
30 A4. If many classes reference the same external class, we
31 show them all on a horizontal row; we can thus assess the
32 importance of a class by looking at the number of classes on
33 the corresponding row: in Figure [2] (c), the row of B4 stands
34 out because the two referencing classes D1 and E1 make it
35 wider.
36 To display incoming references and inheritance, we define
37 variants of the layout: to distinguish incoming from outgoing
38 references we rotate the layout (see Figure [} Section[V-B]), and
39 to display inheritance we arrange hierarchies as trees instead
40 of rows (see Figure [6] Section [V-C).
41
42
I
43 i B — “npr
44 [B4]
45]
A A
46 P2 IPS / / P4] = ™
47 .
© HEHEEH | | e
1 T N
49 a surface between P1 Lexrernal P
50 P1: analyzed package P1 and P4 classes
g; (a) Analyzed package (b) Stacked surfaces (c) With classes
53 Figure 2. Consider P1 that references four classes in three other packages
54 A blueprint shows the surfaces of the observed package as stacked subdivisions
@ Small boxes represent classes, either in the observed package (right white
55 part) or in referenced packages (left gray part)
56
57
58 V. PACKAGE BLUEPRINT DETAILED VISUALIZATIONS
gg To convey more information, we refine the basic layout

Transactions on Software Engineering

[
g

A

A

P1

=
T
N

BB

alala = B
[A3] [A3]
L]]
P4 P4
(©) (d)

A. Outgoing Reference Blueprints

internal classes
peay
saouaJlayal [euldjul

P3 surface

g
2
<

P2 surface

external
referenced classes
S80UBIBJ. [BUIBIXD

P4 surface

most—Ileast
internal referencing classes

Figure 3.
for P1).

Surface package blueprint detailed view (Outgoing Reference view

previously described as illustrated in Figure [3]

Internal References: To support the understanding of
references between classes inside the observed package, we
add a particular surface with a thick border at the top of the
blueprint. This surface is the head of the blueprint, and the rest
its body. In the head, the first column represents the internal
classes of the package under consideration. Thus among these
classes we see those that are referenced from within the package
itself: for the package P1 in Figure [3] the class A1 is referenced
by B1 and C1; C1 is referenced by E1; D1 by C1 and E1; E1
by D1 and G1 is referenced by H1 and I1. The height of the
head surface indicates the number of classes defined within
the package.

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

Position: Internal referencing classes are arranged by
columns: each column (after the leftmost one) is reserved to
the same internal class for all the surfaces. The width of the
blueprint indicates the number of referencing classes of the
package. Figure [3] shows that class E1 internally references C1
and D1, and externally references B3, C3, A3 and A4.

We order classes of the concerned package in both horizontal
and vertical directions to present important elements according
to the (occidental) reading direction. Horizontally, we sort
classes from left to right according to the number of classes
they reference. Hence classes referencing the most occupy the
nearest columns from the left gray column. Figure (3| shows
that class E1 occupies the nearest column from the left gray
column since it references six classes (D1, C1, A3, B3, C3 and
A4) while D1 references three classes and C1 two classes; each
of the remaining internal classes references only one class.

We apply the same principle to the vertical ordering, for
both surfaces within a blueprint and rows (i.e., external classes)
within a body surface. Within a package, we position surfaces
that present the most external classes the highest. Within a body
surface, we order external classes from the most referenced at
the top, to the least referenced at the bottom. This is why in
Figure |3| the surface in relation with P3 is the highest and why
the surface with P2 is above P4: there are more referenced
classes into P2 than into P4.

Within the head surface, the vertical ordering of the internal
classes is identical to their horizontal ordering. Figure [3] shows
that internal classes (E1, D1, ... and 1) are ordered the same
way vertically and horizontally. Bordered squares, that are
diagonally placed from the top-left to the bottom-right within
the head, help the users to clearly see the symmetry between
the horizontal and vertical orderings. This diagonal helps also
to detect direct cyclic references within the concerned package:
within the head of P1 blueprint (Figure [3), we see that there is
a direct cyclic-reference between D1 and E1 — since there are
a node of D1 and a node of E1 that have symmetrical positions
relatively to the head diagonal; which means that E1 refers to
D1 and D1 refers to Ef.

Internal classes with no reference to others are placed at the
bottom of the left most column in the head (e.g., G1 and F1
do no reference).

The head surface therefore conveys the package size as
well as the ratio between defined classes and their internal
relationships. Both referencing classes and unreferencing ones
together with internal references among them are shown (e.g.,
the unreferencing G1 is referenced by H1 and 11).

Color: Color intensity assigned to a node representing a
class conveys the number of references it is doing: the darker
the more references it does. Both intensity and horizontal
position represent the number of references, but position is
computed relatively to the whole package blueprint, while
intensity is relative to each surface. Thus, while classes on
the left of surfaces will generally tend to be dark, a class that
has many references but few in a particular surface will stand
up in this surface since it will be light gray. For example,
in a blueprint of P1 (Figure [3), within the head surface, the
nodes of C1 and E1 should have the same color intensity and
both should be darker than the nodes of D1 — since C1 and

Jhead
body l

¥
body head

Outgoing references map Incoming references map

Figure 4. To distinguish it from the outgoing reference blueprint (left), we
rotate the incoming reference blueprint (right) by 90°, so that the important
details are still read first; in the incoming view, the references are made by
the external classes, at the top, to the internal classes below them.

E1 each references two internal classes (i.e., within the head
surface), while D1 references only one class in the same surface.
Within P3 surface, E1 should be slightly darker than D1 since
the former references three classes within P3 while the latter
references only one class.

In the first column and within the head surface, we distin-
guish unreferencing internal classes from others by making
their fill lighter than the one of internal referencing classes
(e.g., G1 and F1 fill color is lighter than the fill color of 11..E1).

Finally, we want to distinguish referenced classes depending
on whether they belong to a framework or the base system,
or are within the scope of the application under study. When
a referenced class (in the first column and in the external
referenced part - see Figure [3) is not part of the application
we are currently analyzing, the fill of its node is cyan.

B. Incoming Reference Blueprints

We use a view similar to the outgoing reference blueprint for
exploring incoming references. However we visually distinguish
the incoming reference blueprint from the former as follows: as
shown in Figure [] the global view is rotated counter-clockwise
by 90°; the external referencing classes are placed at the top
while the package internal classes are placed below them. The
blueprint surfaces are ordered from right to left: the head is at
the most right and surfaces of client packages are ordered by
the number of referencing classes they enclose. The referencing
classes are thus displayed on the top row, and we sort internal
referenced classes from the most referenced on the second row,
to the least referenced on the bottom row.

Figure [5] shows the incoming reference blueprint of P3
(Figure [3). The blueprint body has two surfaces: P1 surface
and P4 surface — since P3 clients are P1 and P4. P1 surface
is at the right of P4 surface, since the former involves more
referencing classes (two classes: E1 and D1) than the latter
(one class: A4). C3 is the most referenced class within P3: C3
is referenced from three classes (A3, B3 and E1), while A3
is referenced from two classes (E1 and D1) and B3 is also
referenced from two classes E1 and A4.

In a first version of the package blueprint, views were visually
too close and it was difficult to distinguish them in a glance.
Finding a view that was really distinct from the previous while
sharing the same visual effect was important to avoid confusion.

http://mc.manuscriptcentral.com/tse-cs

Page 4 of 25

Page 5 of 25

1

2 external

3 referencing internal

4 classes classes

5 3

7 2837

: s &

10 internal

11 references

12

13

14 references

15

16 Figure é}) Package blueprint detailed view (Incoming Reference view for P3
17 Figure [3).

18

1 9 Internal classes

20 3

21

22

23 % Ef

24 Iz

oF = F1

26 G1

27 Package under analysis P1

gg Fﬁgure 6. Inheritance package blueprint. Orange bordered classes inherit
30 directly from external classes.

31

32

gi C. The Case of Inheritance

35 Up to now, we only discussed references, but inheritance
36 is a really important structural relationship in object-oriented
37 programming. We then offer a specific view which structures
38 the inheritance relationship within the package according to
39 the client packages, as shown in Figure [

40 We consider only single inheritance so we can display all
41 classes and subclasses transitively inheriting from external
42 classes on the same row. We distinguish the direct subclasses
43 of external classes by showing them with an orange border;
44 indirect subclasses are black-bordered and arranged in trees
45 under their superclass. Figure [6] shows the inheritance blueprint
46 of P1. P1 classes inherit from classes packaged in distinct
47 packages (P2, P3 and P4): A1 inherits from A2 defined in
48 package P2, while B1, C1, and D1 inherit from A1; Ef
49 inherits from A3 defined in package P3; F1 and G1 inherit
50 respectively from A4 and B4, both defined in package P4. This
51 view highlights internal inheritance roots as well as external
52 inheritance usage.

53 As explained subsequently, to distinguish root classes such
54 as Object and classes that do not belong to the application
55 under-analysis we use cyan as fill color. Similarly, we use
56 blue as a fill color to distinguish abstract classes. The fill
57 color of other classes in the inheritance view still represent the
58 number of references made by the class, but relatively to the
gg package and not to the surface like in the reference views. This

enables maintainers to correlate inheritance and reference views.

Transactions on Software Engineering

For instance, in Figure [7] (c), the inheritance blueprint of the
package Network::Kernel shows that most references come from
the classes OldSimpleClientSocket and SocksSocket — since they
have the darker fill color — which are respectively subclasses
of the abstract classes OldSocket and Socket. Blueprint width
represents the maximum number of subclasses at one level and
its height the depth of inheritance.

VI. AN EXAMPLE: THE NETWORK::KERNEL PACKAGE

We are now ready to have a deeper look at an example.
The Squeak Network subsystem contains 178 classes and 26
packages — making up a library and a set of applications
such as a complete mail reader. Figure [7] shows the blueprints
(outgoing reference, incoming reference and inheritance) of
the Network::Kernel package in Squeak.

Glancing at the package outgoing reference, Figure /| (a),
we see that it has a lot of gray squares inside its head surface,
which indicates that there is a lot of interactions among the
internal classes of the analyzed package Network::Kernel. This
blueprint shows also that there are more gray squares inside the
body surfaces than inside the head, indicating that the package
classes have more interaction with classes of other packages
than internally in the package. This conveys a first impression
of the package cohesion even if it is not really precise [6].

The number of the body surfaces indicates that Net-
work::Kernel is in relation with 14 other packages. Most of
the referenced classes are cyan, which means that they are
not part of the Network subsystem. Indeed they belong to
the core libraries (e.g., Collections::Streams, Collections::Arrayed
and Collections::Strings) on top of which Network::Kernel is
defined. What is striking is that all except one of the referenced
classes are outside the application (HTTPSocket in Figure [/| (a)).
However, since the package is named Network::Kernel, it is
strange that it refers to other classes from the same application,
and especially to only one. This is clearly a layering bug.

The outgoing reference blueprint shows clearly which
provider packages are important for the analyzed one Net-
work::Kernel and which are less important: some of the
referenced packages, such as Collections::Streams and Ker-
nel::Processes, are strongly referenced by Network::Kernel —
since there are a lot of gray squares inside the corresponding
surfaces; other referenced packages, such as Collections::Strings,
are referenced by only one class or a couple of referencing
classes.

Analyzing the blueprints and inspecting the class and
package names, we found via the outgoing reference blueprint,
Figure [/| (a), another improper layering: the Tools::Menus
surface shows that Network::Kernel is referencing UI classes
(FillinTheBlank and PopUpMenu) via the package Tools::Menus
which seems inappropriate.

On another hand, we learn that the class making the most
internal references is named Socket: this class is represented
in the outgoing reference blueprint by the second column; this
latter includes, within the blueprint head, the biggest number of
gray squares (4) that are darker than the remaining ones within
the head. This means that Socket is referencing 4 classes within
the analyzed package Network::Kernel and it is the class which
does the biggest number of references within Network::Kernel.

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering
6
——> NamelookupFailure €«———— SocketStream €«———
—— 3 Password «) Socket
——> InternetConfiguration < SocketStreamTest ProtocolClient OCKel €——
——> ConnectionQueue =~ <€——— NetNameResolver
—> OldSocket mEm
—> SocksSocket €———— alel="E"
NetNameResolver <€—— "
SocketStream <————— refers to
Socket .
’)OIdSimpleCIientSocket <
3k
9&‘5 Q
8 S L
ey o
g8t @
< OF
QX §
§ 3
o ~
Network::Kernel
NetworkError —>ee—es , Incoming Reference Blueprint
ﬁ- s Collections::Streams
. (b)
[11 " En
El |
CI L] ..
EillinTheBlank E: .n.- . Kernel::Processes
PopUpheny —3B u Tools::Menus Socket OldSocket
n
|
ByteArray —>_mmmmm __m _ Collections::Arrayed Object —>f \\ 7
- |] aEn e
HTTPSocket ~ ~ O —__m SocksSocket <\——8 W——t> OldSimpleClientSocket
o L] Error |
Om T U pa N
E. NetworkError m] DE oo InvalidSocketStatusException
ByteString —>@__® Collections::Strings PositionableStream —> T > SocketStream
refers to

Network::Kernel
Outgoing Reference Blueprint

(@

Figure 7. Analyzing the Network::Kernel Package.

We also learn that the class OldSimpleClientSocket, repre-
sented by the first column in the outgoing reference blueprint,
makes the most external references — the class column
includes, within the blueprint body, nine gray squares that
are distributed over seven distinct surfaces, which means
that this class refers to nine classes into seven packages.
However OldSimpleClientSocket refers to only 2 classes within
Network::Kernel as shown in the head.

The incoming reference blueprint (Figure [/ (b)) shows that
the most internally referenced class is NetNameResolver, since
the class row includes the biggest number of squares within the
blueprint head and those squares are darker than the other ones.
Similarly, we see that the second most referenced is Socket. So
this is a sign of good design since important domain classes,
namely NetNameResolver and Socket are well used within the
package.

On the another hand, the incoming reference blueprint
(Figure [7| (b)) shows that Network::Kernel is referenced by only
4 client packages and all belong to the Network system. One of
those referencing package is Kernel::Tests which includes test
classes. The corresponding surface of Kernel::Tests shows that
there is one referencing class (SocketStreamTest) that refers
to two classes within the analyzed package Network::Kernel
(Socket and SocketStream). We learn that most Network::Kernel

Network::Kernel
Inheritance Blueprint

(c)

classes are not tested and this is a bad sign about the quality
of the Network system.

The inheritance package blueprint (Figure [/| (c)) shows
that the Network::Kernel package is bound to three external
packages containing the three superclasses Object, Error, and
PositionableStream. In addition the package, while inheriting
a lot from external packages, is inheriting mostly from the
same class, here Object. The difference between the two main
surfaces is interesting to discuss: the topmost surface shows
that most of the classes are directly inheriting from one external
superclass (Object), while the second one shows that errors are
specialized internally to the package. All in all, this makes
sense and provides a good characterization of the package.

VII. PACKAGES WITHIN THEIR APPLICATION

Understanding a package in isolation is interesting but lacks
information about the overall context of classes and packages
in relation with it. As shown in the following subsections, our
approach also supports the understanding of the usage of a
class/package within the context of a complete application.
Relevant questions are for instance: Which other packages use
a given class? Are two classes always co-used by others? Are
two packages used with a same importance by others? and so
on.

http://mc.manuscriptcentral.com/tse-cs

Page 6 of 25

Page 7 of 25

1

2 Network::Kernel

3

4

5

6

7

8

9

10

11

12

13

14 3 S

15 HTTPSocket --REFERED BY: [SocksSocket InternetConfiguration |

16 =g -

17 O =

18

19 Figure 8. Interacting with package blueprint: using the mouse and pointing

20 at the box shows, through a fly-by-help, the class and package names. In

21 this view, the mouse is pointing to the box representing HTTPSocket and the

29 fly-by-help shows, in addition to the class name, the name of Network::Kernel
classes that refer to HTTPSocket.

23

24

25

26 To help maintainers navigate among packages and classes

27 and to quickly collect information, we introduced a fly-by-help

28 mechanism to the Package Blueprint. In addition to the fly-by-

29 help (see Figure [8)), maintainers can select a class (i.e., any

30 box representing the concerned class), or a package (i.e., any

31 surface representing the concerned package), and mark it with

32 a particular color: the fill of boxes/surfaces representing the

33 selected class/package will all have the selected color. Similarly,

34 maintainers can mark several classes and packages with distinct

35 colors (see Figure [9).

36

37 ; ; .

38 A. Outgoing Reference Package Blueprint Analysis

39 Figure [9] shows the blueprints of all the packages referencing

40 and defining the class HTTPSocket of the Network application.

41 Hub classes. It is striking to see that HTTPSocket, highlighted

42 in red, is a central class of the package Protocols as it refers to

43 most of the classes referenced by that package. We can deduce

44 the same thing for the class ServerDirectory in RemoteDirectory

45 package. In addition, we can easily see that almost all

46 referencing packages to the package Protocols, whose surface

47 is highlighted in yellow, use the class HTTPSocket of Protocols.

48 Only RemoteDirectory refers, in addition to HTTPSocket, to two

49 classes in Protocols. Note that HTTPSocket has no incoming

50 references nor outgoing references inside its package Protocols

51 — since in the head of Protocols blueprint the column and the

52 row of HTTPSocket contain no gray squares.

53 Figure [9] also shows how the package Kernel, whose surface

54 is highlighted in orange, is used within the Network application.

55 Core Packages. Apparently, Kernel is less important than

56 Protocols, i.e., Kernel is referenced by 3 packages (Protocols,

57 RemoteDirectory and TelNetWordNet), while Protocols is refer-

58 enced by all other packages in Figure [9] (5 packages including

gg Kernel). However, looking to the orange surface in the body of

Protocols package blueprint, we find that 4 classes of Protocols

Transactions on Software Engineering

reference 3 classes of Kernel, while the yellow surface in the
body of Kernel package blueprint shows that only 2 classes of
the latter reference a single class (HTTPSocket) of Protocols.
In addition, Kernel does not refer to any other package in
Network application (classes colored in cyan do not belong to the
subsystem under analysis). Looking more closely at Protocols
referenced packages, we can see that Kernel (the orange surface
in the body of Protocols package blueprint) is placed above
Url and RFC822, the three only packages referencing classes
belonging to the Network application. This reinforces the idea
that Kernel is the basic package of the Network application core.

Cyclic References. On another side, the cyclic reference
between Kernel and Protocols raises the known problem about
the order of deploying or loading the Network application. One
possible way to remove this cyclic reference consists in moving
class HTTPSocket to Kernel package. However, HTTPSocket also
refers to URL package. Therefore moving HTTPSocket to Kernel
will result in adding one referenced package to the latter, thus
disturbing its status as a core package. To keep Kernel without
references to any other Network package, a better solution is
to move the referencing classes SocksSocket, colored in blue,
and InternetConfiguration, colored in green, to Protocols package.
InternetConfiguration has no incoming nor outgoing references
inside Kernel package (see in the head of the blueprint, the
column and the row for this class), but InternetConfiguration
references the HTTPSocket class in Protocols package . So,
moving InternetConfiguration to Protocols package will increase
the cohesion of both packages ; SocksSocket refers to 3
classes inside Kernel but is not referenced inside it. So moving
SocksSocket to Protocols will increase a bit the coupling between
Protocols and Kernel but will increase the Protocols package
cohesion —since SocksSocket refers to HTTPSocket in Protocols
package . This way Kernel becomes a proper core package for
Network application.

Potentially misplaced classes. Again in Kernel package,
we found that the class Password, colored in fuchsia, has no
outgoing nor incoming references inside Kernel package — see
in the head of Kernel package blueprint the column and the
row of this class. Looking closely at Password, we see that
it is referenced by only one package: RemoteDirectory refers
to Password class in Kernel — see the orange surface and the
fuchsia referenced class in the body of RemoteDirectory package
blueprint. Thus we think that moving Password class to this last
package will increase the cohesion of both packages, Kernel
and RemoteDirectory.

Internally loosely connected packages. Figure [9] shows
that HTML::ParserEntities and TelNetWordNet packages are not
cohesive from the point of view of inter-class references — since
the heads of HTML::ParserEntities and TelNetWordNet blueprints
contain respectively only two and one gray boxes.

Internal Interconnected Packages. In addition we see in
Figure [0] that Kernel and Url packages contain classes that
are tightly inter-referenced — since there are a lot of gray
boxes within the head of Kernel and Url package blueprints. For
example, within Url package, the class Url refers to almost all
classes of its package and it does not refer to any class outside
the Url package (see the column of Url class in the blueprint
body).

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

Protocols
Kernel HTTPSocket
Password
E:
L]
]
]

" EEm II
B & '
Elnu [T El

] u E [] []
E [T] []

L] - . E-
El LI] -. E.l
E : Il
O smmsm = u
o "—> InternetConfiguration E:
E.l .- E'

o L] D:l n
Om= O= n
O= Os =
[m] L] m (]
O = o=
g
SocksSocket Os
o
O=
m} []
O=
url TelNetWordNet
Om O
i in
0
L] D[j ﬁ 1]
L] a L
- - DD []
L[] DCI I=
-
. Ha:z
E HY E'.
] E:
L]
g: F
E L] Ounm
COum__um O mmm
[u] (1] [] Om=
O = (] 0 ==
m LI] Os =
o [] | BLL!
o (] On
=[] O=
O= o []
O= o [
o L] E :

= Url

--> RFC822

RemoteDirectory HTML::ParserEntities

ServerDirectory ﬁ

-
:
:
:
:
:
:
:
E
:
i
B
:

B
:
g
-
q
H
-
-
g
g
g

Figure 9. Outgoing reference blueprints of some packages of the Network application. In this view, the Kernel package was selected in orange, surfaces with
Protocols package are highlighted in yellow, class HTTPSocket in red, class SocksSocket in blue, class InternetConfiguration in green, and class Password in

fuchsia.

Similarly, we can see that RemoteDirectory and Protocols
packages are less cohesive than Kernel and Url packages but
more cohesive than HTML::ParserEntities and TelNetWordNet
packages. It is worth to note that in the Protocols package, all
internally referenced classes are classes that do not reference
other classes — since all gray boxes within the head of the
Protocols blueprint are under the head diagonal.

B. Incoming Reference Package Blueprint Analysis

Incoming reference package blueprint is similar to outgoing
reference package blueprint we described in previous sections.
The difference between them is that the incoming reference
package blueprint shows the package’s relationships with its
users while outgoing reference package blueprint shows the
package’s relationships with the packages it uses.

Figure [I0] shows the incoming reference blueprints for
Network’s packages where only references within the Network
application are taken in account (i.e., references from packages
outside Network are not shown). In this figure, surfaces of
RemoteDirectory package are highlighted in green and those of
TelNetWordNet in orange.

Figure [T0] shows that the most referenced packages within
Network application are Protocols and Url — since they have the
biggest number of surfaces within the body of their blueprints:
both are referenced from 7 packages within Network. Thus we
deduce that these packages are the core of Network.

The package Kernel is referenced by only four packages
within Network: Protocols, TelNetWordNet, Kernel::Test and
RemoteDirectory. Protocols package heavily refers to Kernel
package: the Kernel package incoming reference blueprint
shows that the surface denoted to Protocols represents 4 external
referencing classes. This means that there are 4 classes of
Protocols package that refer to Kernel classes. .

Since Kernel package is heavily referenced by the core pack-
age Protocols (and that as already explained in Section
Kernel does not refer to packages within Network), Kernel
represents the basic package within Network.

Most referenced package class. Within this package, Kernel,
the most referenced classes (i.e., dominant referenced classes)
are NetNameResolver and Socket (see the number of gray boxes
within the classes rows of Kernel blueprint). Since the nodes
of Socket class, within the body surfaces of Kernel blueprint,

http://mc.manuscriptcentral.com/tse-cs

Page 8 of 25

Page 9 of 25 Transactions on Software Engineering
9
1
2 SuperSwikiServer uuID SqueakPage
3 WordNet ServerDirectory !@ E
4 ServerDirectory TelnetMachine PortugueseLexiconé&l RFC822 L
5 V\-../_v atluld] NetNameResolver EEEEEEE Protocols !!E MailAddressParser
6 B ==:=|FDH-;VSOCket a TI T T HTTPSocket N
7 E 227 1A P s LoginFailedException
O TimeOut SMTPClient FTPClient .
8 T ' MailReader
= e » Password ommm
9 BN Protocols::Tests .
10 o
Kernel::Test Protocols
11 SuperSwikiServer TelNetWordNet
S Direct
12 ‘ WordNet erverDirectory
13 PortugueseLexiconServer HTML::Forms HTML::Tokenizer HTML::Formatter HTML::Parser
14 o — s -
15 !!!::: Bz 8 MIMEDocument ﬁ " E l
16 =|-{=! FileUrl
HtmlParser
17 \ HTML::ParserEntities
18 v
19 Url::Tests HTML::Parser«-- ° &
20 MailReader::Filters . =
21 = MallReader::AddressEok MaiIReader::Categ%rlzer Kernel::Test
22 MailReader <« " %% E ' C 'E SMTPClientTest =5->MockSocketStream
23
24 Figure 10. Incoming Reference global view in Network application. In this view, the TelNetWordNet package was selected in orange, surfaces with RemoteDirectory
25 package are highlighted in green.
26
27 Password InternetConfiguration WordNet
8 M/MEDOCU’"er I Portuguesel exiconServer RFC822
Socket Kernel Protocols Qun Y RemoteDirectory TelNetWordNet
29 ST " ‘. l" o
30 SocksSocket|—>m ﬁ\ §0o o -"""q oo > SqueakPage
31 oo Ao B l= _
30 goooo 2 |)
33 E _D - _ ServerDirectory HTML::Tokenizer UUID
34 SuperSwikiServer E|
35 OldSimpleClientSocket HTTPSocket ooo
L
36 HtmiEntity HtmiTextualEntity Htmilnput
37 HTML::Parser HTML::ParserEntities HTML::Forms
38 < =i 0 — . A 5] 3 _m<———— Forminput
39 ooo (= I = = 1= @Geoonoon oo nﬁnn’c‘fﬁi— Textinput
40 oo goooo oOogooooogn — Filelnput
o
41 HTML ::Formatter MailReader::Spam MailReader::Filters MailReader::AdressBook MailReader::Categorizer
42 w<— 1 HimiFormatter w<—— TextClassifier| _ m [|
43 GU<«——— DHtmiFormatter] b<—————1 SpamFilter oomn L [=]
44
45
46 Figure 11. Inheritance global view in Network application
47
48
49 are darker than those of NetNameResolver, thus the former has only one surface (the head surface), such as SqueakPage and
50 a bigger number of incoming references than the latter. TelNetWordNet packages.
51 Similarly we detefct dominant referenced.classes into otht?r Low test coverage. During our analysis we found that
52 packages: the dominant referenced class in Url package is aimost no class is tested. For Protocols package, only the class
53 MIMEDocument; ir} PVOtOCOIS package, it is HTTPSocket; in g\MTPClient has incoming references from a test class within
54 RFC822 package, it is MailAddressParser. Protocols::Tests, while the most referenced class HTTPSocket
55 Leaf packages. Figure clearly shows Network leaf has none (see the surface denoted by Protocols::Tests within
56 packages (i.e., packages which are referenced by only one the package blueprint of Protocols). Also for Url package, only
57 package) such as MailReader::Filters which is only referenced four classes from twelve have incoming references from a
58 by MailReader, or HTML::ParserEntities by HTML::Parser. We test class within Url::Tests. Similarly for Kernel package, onl
y y y p g y
gg also identify packages which are completely isolated (i.e., are two classes have incoming references from Kernel::Test and the

not referenced by any package), since their blueprints contain

class NetNameResolver has none. We thus deduce that the core

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

packages of Network are not well tested, particularly their most
important classes (classes which are heavily referenced from
other packages) are not tested.

Internal/No Internal use. Package Blueprint stresses the
different nature of packages. At first, we was surprised to
see that some packages contain classes without any reference
among them, while they are heavily referenced by external
classes. For example, the reference package blueprint of
MailReader::Filters (Figure [10) shows that it contains classes
without any package internal reference — since there is no
gray boxes within the head surface. On the other hand, almost
all classes of MailReader::Filters (four classes from five) are
referenced by classes into the package MailReader (see the
surface denoted by MailReader within the package blueprint
of MailReader::Filter). The package HTML::Forms also presents
such characteristics.

During our inspection, we found that these packages are de-
fined around class inheritance instead of inter-class references:
HTML::Forms is defined around the inheritance hierarchy of the
class Forminput; similarly the package MailReader::Filters does
(see inheritance package blueprint in Figure [TT).

Co-Referencers. Figure |10] shows that the packages Remote-
Directory and TelNetWordNet are referencing together the same
set of packages within Network: both refer to classes into Kernel,
Protocols and Url packages (see the green and orange surfaces
within the body of blueprints). This gives us an idea about the
similarity between RemoteDirectory and TelNetWordNet packages
in terms of package co-referencing within Network.

Looking more closely at the referenced packages (in Kernel,
Protocols and Url blueprints), we see that the similarity between
RemoteDirectory and TelNetWordNet is improper at the class
granularity level: the referencing classes of RemoteDirectory
and TelNetWordNet packages do not reference the same classes
within the cited referenced packages.

Except for Protocols package, the classes ServerDirectory and
SuperSwikiServer of RemoteDirectory package, Portugueselexi-
conServer and WordNet of TelNetWordNet package, all refer to
the class HTTPSocket.

For Url package, the classes SuperSwikiServer, Portuguese-
LexiconServer and WordNet refer to the class MIMEDocument
class, while ServerDirectory refers to FileUrl.

However, we see that the classes PortugueselexiconServer
and WordNet of TelNetWordNet package, both refer to the same
set of classes (HTTPSocket within Protocols and MIMEDocument
within Url). It is worth to note that WordNet is a superclass
of PortugueselLexiconServer (we can see that in the inheritance
blueprint of TelNetWordNet, Figure [IT)). Thus PortugueseLexi-
conServer inherits the behavior of WordNet. We think that it
is a design defect that a subclass references the same set of
classes as its superclass.

C. Inheritance Package Blueprint Overview

Finally during our case studies, thanks to the inheritance
package blueprint, we identified a few remarkable usage pat-
terns: a package can mainly contain big inheritance hierarchies
(potentially a single one); classes in a package may inherit from
superclasses within the application itself or from frameworks

or the base system; or a package can specialize functionality
and have few internal inheritance relationships.

Mispackaged inheritance root. Figure shows all the
inheritance package blueprints of the Network subsystem in
Squeak. It shows that there are only two places where classes
inherit from classes within the Network subsystem scope:
HtmlEntity and OldSimpleClientSocket. HtmlEntity is defined in
HTML::Parser package and directly inherited by a lot of classes
within HTML::ParserEntities package; OldSimpleClientSocket is
defined in Kernel package and inherited by the class HTTPSocket
within Protocols package. Note however that HtmlEntity class
has blue fill color; this indicates that it is an abstract class.

Clicking on the HtmlEntity box, we can see that it is defined
in the HTML::Parser package, away of all its subclasses defined
in HTML::ParserEntities. We consider that it is defined in the
wrong package.

Heavy inheritance structured packages. We can immedi-
ately spot that some packages are heavily structured around
inheritance. Examples are: the package HTML::ParserEntities
where the main class, in terms of inheritance, is HtmlTex-
tualEntity; the package Url is structured around Url class which
is internally inherited by almost all Url package classes;
HTML::Forms or MailReader::Filters where both define a single
hierarchy.

Heavy referencing classes. The overview also shows
classes doing a lot of references (indicated as black boxes)
such as HTTPSocket in Protocols package, HtmlFormatter in
HTML::Formatter package, Htmllnput in HTML::ParserEntities
package, Filelnput in HTML::Forms package and TextClassifier in
MailReader::Spam package.

However, in the context of inheritance, we should pay
attention to the fact that all the subclasses of a class in-
herit its behavior and references. The case of Htmllnput in
HTML::ParserEntities package and Filelnput in HTML::Forms
package is interesting: while they are inheritance leaves,
they are darker than other classes, in particularly than their
superclasses, which means that they make direct references
radically more than their superclasses; this indicates that such
classes are complex and may heavily specialize their superclass
inherited behavior.

This case is the reverse of that of DHtmlFormatter in
HTML::Formatter package and SpamFilter in MailReader::Spam
package — since these classes do direct references radically
less than their superclasses.

D. The views together

While the views are simple, they convey powerful infor-
mation. With inheritance package blueprints, we can see that
the percentage of black-bordered boxes reveals the amount of
internal reuse. Orange-bordered classes that inherit from a cyan
class indicate reuse of functionality from outside the application.
Note that this is different from many orange-bordered classes
inheriting from a black-bordered one (like with HtmIEntity in
HTML::ParserEntities), since a lot of classes inherit from Object
and indeed do not share the same domain. In contrast, inheriting
from HtmlEntity clearly reuses its domain.

In addition to that, inheritance package blueprint is an
interesting complementary view to reference package blueprint.

http://mc.manuscriptcentral.com/tse-cs

Page 10 of 25

Page 11 of 25

O©oOoONOOPAWN =

ParseNodes

Support
Decompiler]
Constructor O

-

Ll L]
H H
"n = Parse
II -
" L
o L
n L]
H TextColor H
" o
u TextEmphasrstE n_ Text
: Os =
i i
. H Kernel m= Kernel
ﬁ 3 ﬁ SyntaxAttribute
E []
: =
TextColor ﬁ " B
TextEmphasis : Text g n Support
Text E LT TextStylefg] Text
E H Om
O = g - L]
O=] O=
O= L] . (=[]
U/Manager(—a] ToolBuilder
- M Node MethodeNod
D lessageNode lethodeNode
Te?%g:ph TextSupport
E] Support
e Tests
O= .
Color<—E& s Graphics Om=

V3 N
Encoder ColoredCodeStream

(a) Outgoing Reference Blueprints for Compiler packages

Transactions on Software Engineering

this case as we are familiar with the Squeak compiler and we
developed the next compiler. So we can better appreciate the
information that the view provides. As in addition, compilers
are systems that every one knows more or less, and, it is

Nodes easier for testers to make hypotheses. Another argument is that

compilers generally contain interesting patterns and are not
too small nor too big in terms of size and complexity.

A. Experimental Setup

We first explained the visualization to the testers and gave
them the paper [12] as well as related slides. Then we showed
them how to use our tool for detecting patterns in the Network
application. The demo helps them learn how to use the views.
Such demo is important since it shows step by step how to
quickly get information from the views.

To define the questions, we have tested them internally to
know if they are understandable and meaningful. Hereafter are
the questions with comments on the rationale behind them:
1) Can you identify the main abstractions/classes of each

package?

With this question we want to know if the reader can

quickly identify the main entities, and learn if they are
meaningful.

We know that the main classes in Compiler are: the class

Encoder

(b) Inheritance Blueprints for Compiler packages

Figure 12. Global view in Compiler application. In this view, the class
Parser is highlighted in green, the class ParseNode in red and the class
DecompilerConstructor in blue.

For example, in Section we proposed to move
the classes InternetConfiguration and SocksSocket from Kernel
package to Protocols package — since these classes are not
referenced within Kernel and reference the class HTTPSocket
defined in Protocols package. The inheritance package blueprint
of Kernel package (Figure [[T)) shows that InternetConfiguration
class has no inheritance relationship within Kernel, thus moving
InternetConfiguration to Protocols package will not break any
inheritance hierarchy within the package. Package Blueprint
also shows that SocksSocket class inherits from Socket class
within Kernel. Indeed the package Protocols has an inheritance
relationship with Kernel package (HTTPSocket in Protocols
inherits from OldSimpleClientSocket in Kernel) that does not
affect SocksSocket. Moving SocksSocket to Protocols package
will then not change the inheritance layering within Network
application.

VIII. USER CASE STUDY ON SQUEAK COMPILER

We performed a controlled user study to assess whether
developers could easily use the blueprints. The case study
we proposed is the Squeak Compiler application, which is
composed of 4 packages (Kernel, ParseNodes, Support and
Tests) containing a total of 33 classes (Figure [I2). We chose

ParseNode <€—
Kernel ParseNodes Support
—
| & Dﬁﬁﬂ'g‘m
E a
oo DecompilerConstructor
Al
PrimitiveNode Tests

ParseNode defined in ParseNodes package, which is the
top super class for all the parser node classes. It is also
the super class of the classes Encoder and Decompiler-
Constructor (see Figure (b)). The classes Parser and
Encoder in Kernel package and DecompilerConstructor in
Support package are main classes in Compiler. These
classes uses heavily the ParseNodes classes and are the
responsible of code parsing and compiling.

2) Can you identify how these main classes interact within
the package and within the application? Are there classes
doing most of the internal/external references?

This question checks if testers get how a package
blueprint helps them get the relationship between pack-
ages. The user learns how to select classes and find if
they are referenced or if they make references.

It was clear for us that the ParseNode class and its
subclasses are heavily referenced and used from the
classes DecompilerConstructor, Parser and Encoder.

3) How would you qualify the references from MessageNode
class? Compare it to MethodNode?

This question checks if the testers are focusing on the
understanding of a single package and comparing its
classes.

We know that MessageNode is the main referencing class
in ParseNodes package: it refers and uses 5 classes of
ParseNodes package and does few references to classes
outside ParseNodes. While MethodNode class does not
refer to any class in ParseNodes package and does many
references to classes outside this package.

4) How would you qualify the cohesion of Support package?
This question brings the user to focus on the head of
the package blueprint as it gives information about the
cohesion among enclosed classes. We check if the testers
have understood that.

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

5) Do you identify some misplaced dependencies with

packages outside the compiler application?
By inspecting Compiler package view, we noticed several
misplaced dependencies and we want to know if the
user can find them. Those misplaced dependencies
are: in Kernel package, the class ColoredCodeStream
references classes Text, TextColor and TextEmphasis in Text
package; the class Parser references TextMorphEditor class
in TextSupport package and UIManager class in ToolBuilder
package.

6) Under the assumption that a package containing classes

referenced by other packages should be loaded first, can
you identify a loading order for the application?
We noticed that the three packages of the Compiler
application depend on each other cyclicly, this just by
clicking on each of them in the view. Does the user
easily capture this?

7) Using the inheritance view, what can you say about the

shape of the ParseNodes package?
The parse node classes belong to the same hierarchy tree
and are defined in one package. This is the common way
of declaring a parser tree. It allows one to define visitors
to walk the tree and it is easier to annotate it. We would
know if the user arrive to this conclusion.

8) Can you tell us something about the class ParseNode

hierarchy?
We took the strangest things in the hierarchical view of
the compiler to see whether the user can spot it out or
not. All nodes inherit from ParserNode class except for
PrimitiveNode class. This is not a good design since the
node should be polymorphic to ParseNode.

9) Do you think that you would have got the answers to
our question in the time allocated without the help of
visualization?

We want to know if the user finds our views handy to
understand the compiler application. We also want to
have suggestion to improve the usability of the view.

B. Results

The case study was conducted with 20 people, from master
students to experienced researchers, with various programming
skills and experience with software projects. We gave them a
limited amount of time: one hour to perform the study.

For the first question, most of users identified the classes
ParseNode and MessageNode in ParseNodes package, Parser in
Kernel package, and DecompilerConstructor in Support package,
as the main classes of the packages. This was expected: they
did not identified Encoder class as a main class. They based
their conclusions on the quantity of references and inheritance
relationships with these classes, and whether the referenced
classes were within or outside of the application boundary.
The remainder of users had exactly our estimation: they also
identified Encoder as a main class in Kernel package — since it
is referenced by the main class Parser.

For the second and third questions, all users have been able
to correctly answer those questions.

For the 4th question, about 50% (11 users) of testers have
identified the Support package cohesion as very low. Two

users have identified Support package as very cohesive, without
justifying their answers. The remainder of the users (9) skipped
this question. We think that we had to define what we mean
by package cohesion. On another hand, in the first version of
the Package Blueprint [12]], packages that have not internal
references do not have a head surface. Some users have found
that such a visual mapping is not helpful, since they cannot
analyze what they cannot see (e.g., the package size, classes
and internal references). In this version, we optimized the
visualization in a way that users always see package size,
classes and internal references, if any.

For the 5th question, only five users were not able to
identify the misplaced dependencies that we identified. Some
of them have declared that they did not understand the question.
Similarly for the 6th question, most of users have found that
the three packages (Kernel, ParseNodes and Support) depend
on each other cyclicly and we cannot know the loading order
of Compiler packages. Some of those users added that it is
more probable to load the package ParseNodes at first — since
other packages depend heavily on ParseNodes and extend its
class ParseNode — this was a good answer. A couple of users
said that we can easily and quickly answer this question by
doing an automatic dependency analysis using Smalltalk cross
referencer, rather than using the Package Blueprint.

For the 7th and 8th questions, more than 50% (12 users)
captured that ParseNodes package contains a single domain
defined by the class ParseNode. They found that the hierarchy
of ParseNode class is coherent. They also spotted that it is
not normal that the class PrimitiveNode does not belong to the
hierarchy of ParseNode class. The remainder of users skipped
these questions and mentioned that the questions are confusing.

Almost all the users concluded positively to the last question
indicating that the visualization was useful. They underlined
that the package blueprint was helpful to extract information
about the Compiler application in a very short time and indicate
that they would need really more time to do the same thing
without the package blueprint.

Some of the testers proposed enhancements such as adding
a fly-by-help to explain the nodes to ease the learning curve
of the visualization. All those propositions were integrated in
the package blueprint new version presented in this paper.

IX. EVALUATION AND DISCUSSION

A. Evaluation

As illustrated in Section package blueprints allow
software engineer to extract information from the internal
structure of a package, its clients as well as packages it uses.
Now we revisit some of the information that we listed in the
beginning of the paper.

Size: Package Blueprint highlights the complexity of the
observed package in several dimensions. For outgoing reference
blueprints, the height of the body indicates the amount of
external classes referenced, whereas the number of surfaces
shows the number of referenced packages. Each individual
surface height shows how many classes are referenced in
the corresponding package. This gives us an estimate of the
coupling between the package and this surface; to further

http://mc.manuscriptcentral.com/tse-cs

Page 12 of 25

Page 13 of 25

O©oOoONOOPAWN =

evaluate the coupling strength, we should also look at the
intensity of referencing classes in the surface because it
represents the number of references. In addition, surface width
indicates the number of referencing classes.

Combined together these visual properties offer a quick
impression not just about the visualized package, but also
about its classes: a thin package with a long body depends on
a lot of classes because of few internal classes. If moreover the
blueprint is heavily lined, i.e., it references a lot of packages,

so some of its referencing classes may be complex and fragile.

The same situation occurs with incoming reference and
inheritance blueprints but from the view point of referencing
packages/classes and inheritance relationships.

Central or Peripheral: For outgoing reference blueprints,
by looking at the border color of external classes (cyan or
black), we can easily see if a package depends a lot on
the framework or on the application. Also, through incoming
reference blueprints, we can see if a package is used by different
subsystems (central) or just by specific ones (peripheral).

Cohesion and Coupling: package blueprint also makes it
possible to roughly compare how several packages are coupled
with the observed one: larger surfaces indicate coupling to more
classes and are positioned nearer to the head surface, while
surfaces with more darker class squares represent packages

which are more coupled in term of sheer number of references.

We can also estimate cohesion by comparing internal coupling
(size and overall intensity of the head surface) and external
coupling.

Co-changes and Impact Analysis: Because package
blueprint details how packages depend on each other, it hints
at the fragility of the observed package to changes. Selecting a
package or a class highlights surfaces or classes that reference
the selected entity and are thus sensitive to its changes.

B. Discussion

Our approach has worked well on our case studies (it helped
us to get important structural information efficiently). It should
be noted that we were not familiar with the case studies such as
the Network application before applying our approach. We have
been able to locate many conceptual bugs. Our first evaluation
with end-users is also promising, even if we are aware that the
number of participants was not significant for drawing larger
conclusions.

In conjunction with other tools: We do not consider
that package blueprint should be used in isolation. In our
recent work on remodularisation, we use DSM to spot cyclic
dependencies, then we zoom on the packages and use package

blueprint to get a finer understanding of the package references.

The synergy between DSM and package blueprint proved to
be really useful. In addition, sometimes we complement the
view using Distribution Map [?] to understand how a property
(such as developers) spreads on a set of packages.
Let us now discuss the visualization choices we made.
Position Choices: We grouped the internal references at
the top of the package blueprint, then ordered the surfaces
from the ones having the most external references at the top
to the least at the bottom; inside a surface, we also ordered
the rows from the most referencing ones to the least. This way,

Transactions on Software Engineering

we do not force the reader to scroll through big visualizations,
and use the fact that the reader pays more attention to the
top elements than to the bottom ones. We also tried to layout
surfaces compactly so that we can easily move them. According
to this principle, internal classes that do not do any reference
are placed in the bottom of the left most column in the head.

Seriation: Rows within a surface are sorted according to
the number of references they contain. In an earlier version
we applied the dendrogram seriation algorithm [18] to group
lines having similar referencing classes. However the resulting
views were not as meaningful as with a simple ordering. We
thus plan to use seriation to group packages having similar
surfaces i.e., packages using similar packages.

In a package blueprint head, internal classes are ordered so
that the head presents a symmetric matrix. This way, when the
user focuses on the i column (i.e., a column reserved for class x)
s/he can easily see the information about the internal references
within the package of this class by looking to the i row in
the package blueprint head. Such an ordering reveals also the
direct cyclic references within the package under consideration.
In previous versions, the head only showed classes performing
references [12]] and our users suggested such a change to be
able to grasp package size.

Impact of Boundaries: We color classes that do not
belong to the application in cyan. This way, users distinguish
clearly the dependencies from/to classes packaged outside
the analyzed application, from the dependencies among the
analyzed application classes. This is a bit limited in inheritance
blueprints because we do not distinguish well the true root
classes —e.g., Object or Model in Squeak — from other classes
that are packaged outside the analyzed application.

We found it really effective to color surfaces so that the
user can interactively mark entities on which he wants to
focus on; this increases the usability of the tool and speeds up
understanding packages.

Shapes: For the time being we represent the classes with
squares only. We could convey more information by using
several visually distinct shapes. But it is not clear which ones
and how efficient the results will be since the shape size is
intentionally quite small to provide a compact overview.

Package Nesting: Currently we do not support package
nesting. A solution like the one proposed by Lungu et al. seems
complementary to ours and interesting to deal with package
nesting [20].

Outgoing vs. incoming: Having two views showing
different flows of relationships can be confusing and it took
us several attempts and experiments to find a solution so that
the reader can distinguish the incoming and outgoing flows.

X. RELATED WORK

Several works provide or visualize information on packages.
Many of these approaches treat software co-change, looking
at coupling from a temporal perspective, whereas in this paper
we focus on the static structure of relationships [5], [L3], [14],
[28], [32], [34].

Abdeen et al. provide the Package Fingerprint visualization
[[L]. They focus on the package’s contextual cohesion, coupling
and the co-use and co-usage of internal classes. Although that

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

Package Fingerprints are good for fast overview on packages,
they do not provide a good map for internal references and
inheritance relationships.

Lungu er al. guide exploration of nested packages based
on patterns in the package nesting and in the dependencies
between packages [20]; their work is integrated in Softwarenaut
and adapted to system discovery.

Sangal et al. adapt the dependency structure matrix from
the domain of process management to analyze architectural
dependencies in software [27]]; while the dependency structure
matrix looks like the package blueprint, it has no visual
semantics.

Storey et al. offer multiple top-down views of an application,
but these views do not scale very well with the number of
relationships [29].

Ducasse et al. present Butterfly, a radar-based visualization
that summarizes incoming and outcoming relationships for a
package [11]], but only gives a high-level client/provider trend.

In a similar approach, Pzinger et al. use Kiviat diagrams to
present the evolution of package metrics [24]].

Chuah and Fick use rich glyphs to characterize software
artefacts and their evolution (number of bugs, number of deleted
lines, kind of language...) [7]. In particular, the time wheel
exploits preattentive processing, and the infobug presents many
different data sources in a compact way.

D’ Ambros et al. propose an evolution radar to understand
the package coupling based on their evolution [§]. The radar
view is effective at identifying outliers but does not detail the
structure.

Those approaches, while valuable, fall short of providing a
fine-grained view of packages that would help understanding
the package shapes (the number of classes it defines, the
inheritance relationships of the internal classes, how the
internal classes inherit from external ones...) and support the
identification of their roles within an application.

XI. CONCLUSION

In this paper, we tackled the problem of understanding the
details of packages with a focus on their relationships. We
described package blueprint, a visual approach for understand-
ing package relationships. Package Blueprint is a compact
visualization supporting large overview without losing the
essential details (references and inheritance among classes).
Therefore it can be used to get a first impression of a system
and also to understand fine-grained structures and relations.

While designing package blueprint, we tried to exploit gestalt
visualization principles and preattentive processing. We success-
fully applied the visualization to several large applications and
we have been able to point out core classes, misplaced ones,
and badly designed packages. We also introduced interactivity
to help the user focus and navigate within the system. We
validated the package blueprint usability by conducting tests
with several independent software maintainers. The results were
positive, even if the numbers of testers was low (20). Testers
concluded that the package blueprint is useful for understanding
and analyzing packages. They specially underlined that the
package blueprint helps them to reduce the time and effort
during maintenance tasks.

[1]

[2

—

[3

=

[4]
[5]

[6]

[7]
[8]
[9]
[10]
(1]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
(21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]
[31]
(32]
[33]

[34]

REFERENCES

H. Abdeen, 1. Alloui, S. Ducasse, D. Pollet, and M. Suen. Package
reference fingerprint: a rich and compact visualization to understand
package relationships. In CSMR, 213-222. IEEE Comp. Soc., 2008.
N. Anquetil and T. Lethbridge. Experiments with Clustering as a Software
Remodularization Method. In WCRE, 235-255, 1999.

E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling measurement
for object-oriented software. IEEE TSE, 30(8):491-506, 2004.

J. Bertin. Semiology of Graphics. University of Wisconsin, 1983.

D. Beyer. Co-change visualization. In ICSM, Industrial and Tool vol.,
89-92, 2005.

L. C. Briand, J. W. Daly, and J. K. Wiist. A Unified Framework for
Coupling Measurement in Object-Oriented Systems. IEEE TSE, 25(1):91—
121, 1999.

M. C. Chuah and S. G. Eick. Information rich glyphs for software
management data. Comp. Graphics and Applications, 18(4):24-29, 1998.
M. D’Ambros and M. Lanza. Reverse engineering with logical coupling.
In WCRE, 189 — 198, 2006.

X. Dong and M. Godfrey. System-level usage dependency analysis of
object-oriented systems. In ICSM, 375-384, Oct. 2007.

S. Ducasse, T. Girba, and A. Kuhn. Distribution Map In ICSM, 203-214.
IEEE Comp. Soc., 2006.

S. Ducasse, M. Lanza, and L. Ponisio. Butterflies: A visual approach to
characterize packages. In METRICS, 70-77. IEEE Comp. Soc., 2005.
S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui. Package
surface blueprints: Visually supporting the understanding of package
relationships. In ICSM, 94-103, 2007.

S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster. Visualizing
software changes. [EEE TSE, 28(4):396-412, 2002.

J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual
tool for distributed software development teams. In /CSE, 387-396, 2004.
IEEE Comp. Soc.

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive
software evolution. In /WPSE 2005, 113-122. IEEE Comp. Soc., 2005.
C. G. Healey. Visualization of multivariate data using preattentive
processing. Ms. thesis, CS Dep, Bristish Columbia Univ., 1992.

C. G. Healey, K. S. Booth, and E. J. T. Harnessing preattentive processes
for multivariate data visualization. In Graphics Information, 1993.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Computing Surveys, 31(3):264-323, 1999.

M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

M. Lungu, M. Lanza, and T. Girba. Package patterns for visual
architecture recovery. In CSMR, 185-196, 2006. IEEE Comp. Soc.

S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A
Clustering Tool for the Recovery and Maintenance of Software System
Structures. In ICSM, 1999. IEEE Comp. Soc.

R. C. Martin. Design principles and design patterns, 2000.

B. S. Mitchell and S. Mancoridis. On the automatic modularization of
software systems using the bunch tool. IEEE TSE, 32(3):193-208, 2006.
M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing multiple
evolution metrics. In SoftVis, 67-75, 2005.

D. Pollet and S. Ducasse. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE TSE. To appear.

L. Ponisio and O. Nierstrasz. Using context information to re-architect
a system. In SMEF, 91-103, 2006.

N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using dependency
models to manage complex software architecture. In OOPSLA, 167-176,
2005.

M.-A. D. Storey, D. Cubranic’, and D. M. German. On the use of
visualization to support awareness of human activities in software
development: a survey and a framework. In SoftVis, ACM, 2005.
M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Miiller. On
integrating visualization techniques for effective software exploration. In
InfoVis 97, 38-48. IEEE Comp. Soc., 1997.

A. Treisman. Preattentive processing in vision. Computer Vision,
Graphics, and Image Processing, 31(2):156-177, 1985.

E. R. Tufte. The Visual Display of Quantitative Information. Graphics,
2nd edition, 2001.

L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: visualization of code
evolution. In Softviz 2005, 47-56, 2005.

C. Ware. Information visualization: perception for design. Morgan
Kaufmann Publishers, 2000.

X. Xie, D. Poshyvanyk, and A. Marcus. Visualization of CVS repository
information. In WCRE, 231-242, 2006. IEEE Comp. Soc.

http://mc.manuscriptcentral.com/tse-cs

Page 14 of 25

Page 15 of 25

O©oOoONOOPAWN =

Transactions on Software Engineering

Package Surface Blueprints:
Visually Supporting the Understanding of Package Relationships

Accepted at ICSM’2007: International Conference on Software Maintenance

Stéphane Ducasse* Damien Pollet

Mathieu Suen

Hani Abdeen ITham Alloui

Language and Software Evolution Group — Université de Savoie, France

Abstract

Large object-oriented applications are structured over
large number of packages. Packages are important but com-
plex structural entities that may be difficult to understand
since they play different development roles (i.e., class con-
tainers, code ownership basic structure, architectural ele-
ments...). Maintainers of large applications face the problem
of understanding how packages are structured in general
and how they relate to each others. In this paper, we present
a compact visualization, named Package Surface Blueprint,
that qualifies the relationships that a package has with its
neighbours. A Package Surface Blueprint represents pack-
ages around the notion of package surfaces: groups of rela-
tionships according to the packages they refer to. We present
two specific views one stressing the references made by a
package and another showing the inheritance structure of
a package. We applied the visualization on two large case
studies: ArgoUML and Squeak.

This paper makes heavy use of colors in the figures. Please
obtain and read an online (colored) version of this paper to better
understand the ideas presented in this paper.

1 Introduction

To cope with the complexity of large software systems,
applications are structured in subsystems or packages. It
is now frequent to have large object-oriented applications
structured over large number of packages. Ideally, packages
should keep as less coupling and as much cohesion as possi-
ble [25] 15]], but as systems inevitably become more complex,
their modular structure must be maintained. It is thus useful
to understand the concrete organization of packages and their
relationships. Packages are important but complex structural
entities that can be difficult to understand since they play

*We gratefully acknowledge the financial support of the french ANR
(National Research Agency) for the project “COOK: Réarchitecturisation
des applications industrielles objets” (JC05 42872).

1

different development roles (i.e., class containers, code own-
ership basic structure, architectural elements...). Packages
provide or require services. They can play core roles or
contain accessory code features. Maintainers of large appli-
cations face the problem of understanding how packages are
structured in general and how packages are in relation with
each others in their provider/consumer roles. This problem
was experienced first-hand by the first author while preparing
the 3.9 release of Squeak, a large open-source Smalltalk [8].
In addition, approaches that support application remodular-
ization [1} 20, 22| succeed in producing alternative views for
system refactorings, but proposed changes remain difficult
to understand and assess. There is a good support for the
algorithmic parts but little support to understand their results.
Hence it is difficult to assess the multiple solutions.

Several previous works provide information on packages
and their relationships, by visualizing software artifacts, met-
rics, their structure or their evolution [6, 7, 110} [19, 23] 28]].
However, while these approaches are valuable, they fall short
of providing a fine-grained view of packages that would help
understanding the package shapes (the number of classes it
defines, the inheritance relationships of the internal classes,
how the internal class inherit from external ones...) and help
identifying their roles within an application.

In this paper, we propose Package Surface Blueprint, a
compact visualization revealing package structure and re-
lationships. A package blueprint is structured around the
concept of surface, which represents the relationships be-
tween the observed package and its provider packages. The
Package Surface Blueprint reveals the overall size and in-
ternal complexity of a package, as well as its relation with
other packages, by showing the distribution of references to
classes within and outside the observed package. We applied
the Package Surface Blueprint to several large case studies
namely Squeak the open-source Smalltalk comprising more
than 2000 classes, ArgoUML and Azureus.

Sections |2| & |3| present the challenges in supporting pack-
age understanding, and summarize the properties wanted for
effective visualizations. Section[d presents the structuring
principles of a package blueprint, which are then declined

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

to support a reference view and an inheritance view in Sec-
tion[3] Section[6]then describes some recurring patterns. In
sections|[/| & [8] we discuss our visualization and position it
w.r.t. related work before concluding.

2 Challenges in Understanding Packages

Although languages such as Java offer a language mecha-
nism for modelling the dependencies between packages (i.e.,
via the import statement), this mechanism does not really
support all the information that is important to understand
a package. We present a coarse list of useful information
to understand packages. Our goal here is to identify the
challenges that maintainers are facing and not to define a list
of all the problems that a particular solution should tackle.

Size. What is the general size of a package in terms of
classes, inheritance definition, internal and external
class references, imports, exports to other packages?
For example, do we have only a few classes communi-
cating with the rest of the system?

Cohesion and coupling. Transforming an application will
follow natural boundaries defined by coupling and cohe-
sion [5,12]]. Assessing these properties is then important.

Central vs. Peripheral. Two correlated pieces of informa-
tion are important: (1) whether a package belongs to
the core of an application or if it is more peripheral, and
(2) whether a package provides or uses functionality.

Developers vs. Team. Knowing who are the developers
and maintainers of the application and packages helps
in understanding the architecture of the application and
in qualifying package roles [[13, 24]. Approaches such
as the distribution map may help in this task [9].

In addition, packages reflect several organizations: they
are units of code deployment, units of code ownership, can
encode team structure, architecture and stratification. Good
packages should be self-contained, or only have a few clear
dependencies to other packages [3 2 [18]. A package can
interact with other ones in several ways: either as a provider,
or as a consumer or both. In addition a package may have
either a lot of references to other packages or only a couple
of them. If it defines subclasses, those can form either a flat
or deep subclass hierarchy. It can contain subpackages.

Figure[T|shows situations where the same group of classes
can be dispatched. Note that for the purpose of illustration,
Figure[l|only shows references but the same idea holds for
inheritance between classes distributed in several packages.
In both cases [(a)] and [(b)] there are only two packages but
in case [(a) most of the classes of P4 inherit directly from
a class in P1 while in case|(b)| all the classes of P4 inherit

2

internally from B2 which is a root of an inheritance hierar-
chy. Revealing this difference is important since we want to
understand if we can change the relationships between P1
and P4 during a refactoring process. In cases|(a)|and we
have exactly the same relationships between classes but the
package structure is different. As mentioned by R. Martin
importing a class equals importing the complete package
[21]], therefore importing two classes from the same package
is quite different from importing them from two different
packages since in the latter case we import all the classes of
the two packages.

Note that understanding packages is also important in the
context of remodularization approaches [1, 20, 22]. There
it is important to understand how the proposed remodular-
isation compares with the existing code. This problem is
particularly stressed in presence of legacy applications that
consist of thousands of classes and hundreds of packages.

3 Visualization Challenges

We researched the characteristics that an efficient visual-
ization should hold [3} 30, 132]. As our focus is on providing
a first impression of a package and its context, we want to
exploit the gestalt principles of visualization and preattentive
processing'|as much as possible to help spotting important
information [29 14} [15] 32]].

To support the understanding of packages, we want the
visualization to highlight the characteristics of a package in
terms of its internal size, internal and external references.
In particular we want to spot classes or dependencies that
stand out in a given package. We stress that our visualization
should take into account the following properties:

Good mapping to reality. The visualization should offer a
good representation of the situation that the maintainer
can trust and from which it can draw and validate hy-
pothesis.

We want the visualization to highlight the general ten-
dency of a package in terms of its internal size, internal
and external references. In particular we want to spot
classes or dependencies that stand out in a given pack-
age.

Scalability and simple navigation. The maintainer should
easily access the information. The visualization should

! Researchers in psychology and vision have discovered a number of
visual properties that are preattentively processed. They are detected imme-
diately by the visual system: viewers do not have to focus their attention on
a specific region in an image to determine whether elements with the given
property are present or absent. An example of a preattentive task is detect-
ing a filled circle in a group of empty circles. Commonly used preattentive
features include hue, curvature, size, intensity, orientation, length, motion,
and depth of field. However, combining them can destroy their preattentive
power (in a context of filled squares and empty circles, a filled circle is
usually not detected preattentively). Some of the features are not adapted to
our needs. For example, we do not consider motion as applicable.

http://mc.manuscriptcentral.com/tse-cs

Page 16 of 25

Page 17 of 25

O©oOoONOOPAWN =

P1

P4
() (b)

Transactions on Software Engineering

P1

i
T
N

(BB

© (d)

Figure 1. Different package configurations over the same number of classes.

scale i.e., we should be able to have system overview as
well as focusing on a particular package. We want a vi-
sualization that scales well with the number of packages
and of dependencies, so we prefer to avoid depicting
dependencies with graphs. Given that the graph will
contain more than thousands of nodes and much more
edges, this will result a unusable view [16].

Low visual complexity. By being regular and well struc-
tured, i.e., reusing the same conventions of color or
position, the visualization should help the maintainer
to learn it and understand it. In addition, while the visu-
alization should offer a lot of information, it should not
be complex to analyze.

4 Package Surface Blueprints

A package blueprint represents how the package under
analysis references other packages. Figure [2] presents the
key principles of a Package Blueprint. These principles will
be realized slightly differently when showing direct class
references or inheritance relationships.

4.1 Basic Principles

The package blueprint visualization is structured around
the “contact areas” between packages, that we name surfaces.
A surface represents the conceptual interaction between the
observed package and another package. In Figure the
package P1 is in relation with three packages P1, P2, and P4,
via different relationships between its own classes and the
classes present in the other packages, so it has three surfaces.

A package blueprint shows the observed package as a rect-
angle which is vertically subdivided by each of the package’s
surfaces. Each subdivision represents a surface between the
observed package and a referenced package, and will be
more or less tall, depending on the strength of the relation
between the two packages. In Figure 2(b) the package
blueprint of P1 is made from three stacked boxes because

3

I I — in P1
67]
.
3 A
NN]"“ i
E -I P2 P
AT] [BT] il 22 A1)
LI P3 P1
S surface between P1 Qexternal P1
P1: analyzed package ul 51 and FV::‘ lasses

(a) Analyzed package (b) Stacked surfaces (c) With classes
Figure 2. Consider P1 that references four
classes in three other packages [[al A
blueprint shows the surfaces of the observed
package as stacked subdivisions Small
boxes represent classes, either in the ob-
served package (right white part) or in refer-

enced packages (left gray part)[(c)}

P1 references three other packages. The box of the surface
between P1 and P4 is taller because P1 references more
classes in P4 than in P2 or P3.

In each subdivision, we show the classes involved in the
corresponding surface. By convention, we always show
the classes in the referenced packages in the leftmost gray-
colored column of each surface, and the classes of the ob-
served package on the right. In Figure the topmost
surface shows that classes D1 and E1 reference class B4, and
that C1 references A4. If many classes reference the same
external class, we show them all in an horizontal row; we can
thus assess the importance of an external class by looking at
how many classes there is in the row: in Figure 2] the row of
B4 stands out because the two referring classes D1 and E1
make it wider.

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

ne
(5

-
L
%I;

P4]

| Ad |
3

:

o]
prd

C1

E

external references

most—least
internal referencing classes

P1

4 1 B =
89 : I R 8
=2 |k z z ool

S

g

| =

.

i

external—internal
referenced classes

Figure 3. Surface package blueprint detailed
view.

4.2 Detailed Explanation

To convey more information, we add variations to the
basic layout described above, as illustrated in Figure 3]

Internal References. To support the understanding of ref-
erences between classes inside the observed package, we
add a particular surface with a thick border at the top of the
blueprint. We name this surface the head of the blueprint,
and the rest its body. In the head, the first column repre-
sents the internal classes that are referenced from within the
package itself: here A1 and G1 are the classes referenced
respectively by B1 and C1 and H1 and I11. The height of
the head surface indicates the number of classes referenced
within the package.

Position. Internal classes are arranged by columns: each
column (after the leftmost one) refers to the same internal
class for all the surfaces. The width of the surface indicates
the number of referencing classes of the package. Figure
shows that class C1 internally references A1, and externally
references A3 and B3.

We order classes in both horizontal and vertical direction
to present important elements according to the (occidental)
reading direction. Horizontally, we sort classes from left to

4

Internal classes
Al
E1

F1
G1

Package under analysis P1

External classes
B

Figure 4.
blueprint.
from external classes directly.

Inheritance package surface
Orange bordered classes inherit

right according to the number of external classes they refer-
ence from the whole package. Hence classes referencing the
most occupy the nearest columns from the gray area.

We apply the same principle for the vertical ordering,
both of surfaces within a blueprint, and of rows (i.e., external
classes) within a surface. Within a package, we position
surfaces that reference the most classes the highest. Within a
surface, we order external classes from the most referenced
at the top, to the least referenced are at the bottom of the
surface. This is why in Figure [3| the surface with P3 is the
highest and why the surface with P2 is above P4, since there
are more classes references from P2 than from P4.

Color. We want to distinguish referenced classes depend-
ing on whether they belong to a framework or the base sys-
tem, or are within the scope of the application under study.
When a referenced class is not part of the application we
are currently analyzing, we color its border in cyan. In ad-
dition the color intensity of a node conveys the number of
references it is doing: the darker the more references. Both
intensity and horizontal position represent the number of
references, but position is computed relative to the whole
package, while intensity is relative to each surface. Thus,
while classes on the left of surfaces will generally tend to
be dark, a class that makes many references in the whole
package but few in a particular surface will stand up in this
surface since it will be light grey.

The Case of Inheritance. Up to now, we only discussed
references, but inheritance is a really important structural
relationship in object-oriented programming. We adapt the
Package Surface Blueprint to offer a view specific to inheri-
tance, as shown in Figure In this variation, we consider
only single inheritance so we don’t need the head surface: we
can display all classes and subclasses transitively inheriting
from external classes on the same row. We distinguish the
direct subclasses of external classes by showing them with

http://mc.manuscriptcentral.com/tse-cs

Page 18 of 25

Page 19 of 25

O©oOoONOOPAWN =

OldSocket
OldSimpleClientSocket ~ Socket /1 >
leocket Object om
NetNameResolver — - Stream —>]
Socket | = Error —>
ooooo
L]
OldSocket Network-Kernel
Inheritance
| = —

L)
InternetConfiguration B T System-Support Ha
E Collection-String ﬁ

Kernel-Chronology

-
-
L]
Tools-Menus
L1}

L) 5 Kernel-Process

oo

HttpSocket — O

Network-Kernel

-
References

Telnet-Wordnet
References

Figure 5. Analysing the Network-Kernel Pack-
age.

an orange border; indirect subclasses are black-bordered and
arranged in trees under their superclass. In addition, root
classes such as Object are filled in cyan and abstract classes
in blue. In Figure[d] A1 inherits from A2 defined in package
P2, while B1, C1, and D1 inherit from A1.

The fill color of classes in the inheritance view still repre-
sents the number of references, but relative to the package
and not to the surface like in the references views. This
makes it possible to correlate inheritance and references. For
instance, the top-right view in Figure [5|shows that most ref-
erences come from a subclass (Socket) of Object; in other
cases, references might come from classes that are lower in
the hierarchy as HTMLInput in Figure 6]

4.3 An Example: The Network Subsystem

We are now ready to have a deeper look at an example.
The Squeak Network subsystem contains 178 classes and 26
packages — this package contains on the one hand a library
and a set of applications such as a complete mail reader.
The blueprint on the left in Figure [5] shows the references
package blueprint of the Network-Kernel package in Squeak.

Glancing at it we see that the package blueprint of the
Network-Kernel package has nearly a square top-red surface
indicating that most internal classes are referenced internally.
This conveys a first impression of the package’s cohesion
even if not really precise [S)]. Contrast it with the package
blueprint of the Telnet-Wordnet package which clearly shows
little internal references.

5

Transactions on Software Engineering

We see that Network-Kernel is in relation with thirteen
other packages. Most of the referenced classes are cyan,
which means that they are not part of the network subsystem.
What is striking is that all except one of the referenced
classes are classes outside the application (see (HTTPSocket)
in Figure [5). However, since the package is named kernel,
it is strange that it refers to other classes from the same
application, and especially only one. We see that half of the
referred packages have strong references (indicated by their
dark color).

Using the mouse and pointing at the box shows using a fly-
by-help the class and package names (indicated in italics in
Figure[5). The Tools-Menus surface indicates some improper
layering. Indeed it shows that Network-Kernel is referencing
Ul classes via the package Tools-Menus which seems inap-
propriate. We learn that the class making the most internal
references is named OldSocket; this same class also makes
the most external references, to three packages (Collection-
String, Tools-Menus, and Kernel-Chronology). The second
most referencing class is named OldSimpleClientSocket. It is
worth to notice that OldSocket is only referencing itself and
that even OldSimpleClientSocket does not refer to it, so it
could be removed from this package without problems. The
third most referencing class is Socket. Having two classes
named Socket and OldSocket clearly indicates that the pack-
age is in a transition phase where a new implementation
has been supplanting an old one. We learn that the most
internally referenced class is NetNameResolver and the sec-
ond most is Socket. So this is a sign of good design since
important domain classes are well used within the package.

The inheritance package blueprint shows that the
Network-Kernel package is bound to three external packages
containing the three superclasses Object, Error, and Stream.
In addition the package, while inheriting a lot from external
packages, is inheriting from the same class, here Object. The
difference between the two main surfaces is interesting to
discuss: the topmost surface shows that most of the classes
are directly inheriting from one external superclass (here Ob-
ject), while the second one shows that errors are specialized
internally to the package. All in all, this makes sense and
provides a good characterization of the package.

S Packages Within Their Application

Understanding a package in isolation (mainly as a con-
sumer) is interesting but lacks information about the over-
all context i.e., is a selected class used by other packages?
which packages is a selected surface about? As shown in
the following subsections, our approach also supports the
understanding of the situation of a class/package within the
context of a complete application.

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

HTMLEntity OldSimpleClientSocket

HTML-Formatter | H{ML-Parser RFC822 Kemel-Test Kemel Url-Tests RemoteDirectory
] L L]
. L e T e
— oo
RFCB22-Test MailSending [=[=]
-Tests
EE—]
EE]
un
Mail Reader-Spa HTML-Tokenizer HTML-Tests

H [ooe | ™ gt i
oom@ Ll

Protocols-Test {TL-Parser Entities

O 0
oogmoso opoo ooo oo o o o o
Kernel-Tests oo Dooooo0ooo ooooo
1
uuID i -, -~ i

HTML-Forms Mail Reader-AddressBook Mail Reader-Categorizer

SaueakPage E 5 f:‘
oooooo

E ﬂ- UUID-Tests Mail Reader-Filters

Filelnput ~ HTMLInput

Figure 6. Inheritance global view in Network

5.1 Inheritance package blueprint Overview

Overviewing all the package blueprints of an application
gives a first impression of how the packages were built and
structured. During our case studies, we identified a few
remarkable usage patterns: a package can mainly contain big
inheritance hierarchies (potentially a single one); classes in a
package may inherit from superclasses within the application
itself or from frameworks or the base system; or a package
can specialize functionality and have few internal inheritance
relationships.

First Case: Squeak’s Network. For example, Figure [§]
shows all the package blueprints of the Network subsystem
in Squeak, which groups library and application classes. It
shows that there are only two places where classes inherit
from classes within the Network subsystem scope: HTMLEn-
tity and OldSimpleClientSocket. Note however that OldSim-
pleClientSocket has a lighter shade of gray than HTMLEntity;
this indicates that the former is not referencing other classes
as much as the latter.

Clicking on the HTMLEntity box, we can see that it is
defined in the Network-HTML-Parser package, away of all
its subclasses, and then directly consider that it is defined in
the wrong package. We can immediately spot that some
packages are heavily structured around inheritance, like
the package Network-HTML-Parser Entities or Network-Mail
Reader-Filters which define a single hierarchy.

The overview also shows classes doing a lot of references
(indicated as black boxes) such as HTMLEntity, Filelnput
and HTMLInput. However, in the context of inheritance, we
should pay attention to the fact that all the subclasses of a
class inherit its behavior and references. While we can spot
classes doing a lot of references, the view does not convey
the tree ordering so it is difficult to evaluate the subclasses
of a given class. The case of Filelnput is interesting: while

6

Page 20 of 25

DictionaryInspector Inspector
Browser-Tests Process Browser-Tests Inspe\§t0r Explorer Debugger
[=] [] v N
nnnnngu =
ArchiveViewer FileList-Tests
I Process Browser =]
5 B |.a.|/C
oooo
oo
Browser M geSet .
FileList Menus Browser Changes .
S File Contents Browser
om T oo | me]
oo oo o T
o u 0 oooo ooo
8] o o oo o
oo
L
o

Figure 7. Inheritance global view in Tools

it is a leaf in the inheritance tree, it makes a lot of direct
references, indicating that the class is complex.

While the views are simple, they convey powerful infor-
mation. If we analyze a bit, we can see that the percentage
of black-bordered boxes reveals the amount of internal reuse.
Orange-bordered classes that inherit from a cyan class in-
dicate reuse of functionality from outside the application.
Note that this is different from many orange-bordered classes
inheriting from a black-bordered one (like with HTMLEntity
in HTML-Parser Entities), since a lot of classes inherit from
Object and indeed do not share the same domain. In contrast,
inheriting from HTMLEntity clearly reuses its domain.

Second Case: Squeak’s Tools. Figure [/| shows the
blueprints of the Tools packages which contain all the Squeak
development tools: code browsers, debuggers... Without go-
ing into details, we immediately see different shapes. Here,
the blueprints are thinner but often higher, showing that there
is less internal reuse than in Network. Note that even if the
Tools packages contain a large set of development tools, in-
heritance is actually used to reuse abstractions: The blueprint
of Tools-Browser shows that the class Browser, even if it de-
fines a tool, is inherited several times. Other tools reuse the
abstraction of Browser: for instance, its subclass Message-
Set allows one to browse a group of methods and is reused
and extended in Tools-Debugger.

The blueprint of Tools-Debugger shows an interesting
shape: it is narrow and has a nearly flat inheritance hierarchy.
Moreover, all its classes are inheriting from classes outside
the package. Note that this behavior makes sense because
the package aggregates functionality defined elsewhere, and
the view easily reveals it. The package Tools-FileList defines
a tool to browse external files and shows a similar shape.

http://mc.manuscriptcentral.com/tse-cs

Page 21 of 25

O©oOoONOOPAWN =

Network-RemoteDirectory Network-Url Network-Protocols

u| = ~ o | H [1]
HE . H -8
H = ServerDirectory H . H
] - L]]
H Url H H H
L] n u -
n] -
L} L] .|
i - w3
L L) L] "
L] L]
o H HH H
: . = B:
= H
"
5 : ;
a an .I " -
H
- e :
Network-Kemel-Tests g n:
B Ll -
L] L]
L] L]
Network-HTML-Parser Entities H
L]
H u
H H HTTPSocket
HE Network-TelNet Wordhet
. Ha B
= { | H ="
H
: il
- n
Network-HTML-Parser B
] . -
E L1}
- -
T . g

Figure 8. In this view, the Network-Kernel
package was selected in red, surfaces with
Collections-Strings annotated in yellow, and
class HTTPSocket selected in blue.

5.2 Interactively Querying the Blueprint

The maintainer can also query the system by clicking
either on a class or on a surface. This highlights in red all
occurences of the class, or all surfaces referring to the same
package. In addition, colors can be assigned to a surface to
help the maintainer identify all the surfaces communicating
with the same packages.

Figure[8]shows the blueprints of all the Network packages
referencing and defining HTTPSocket. It is striking to see
that HTTPSocket is a central class of the package Network-
Protocols as it refers to most of the classes referred by that
package. In addition, the surface referencing the package
Collections-Strings is annotated in yellow and we see how
all the packages refer to this package.

By clicking on the head surface, it gets colored in red and
shows the package usage by coloring the surfaces referencing
it in red. Figure[8]shows how the package Network-Kernel is
used within the application.

7

Transactions on Software Engineering

0000 COMOOOOOOEOOEED
. «EE T
-
. . " mam
H H H

uml.cognitive.Critics

Figure 9. A Sumo Blueprint: the Critics pack-
age in ArgoUML.

6 Striking Shapes

While applying blueprints to large applications we iden-
tified some striking shapes that the blueprint, a surface or a
class within a blueprint would produce. We present here the
most frequent ones.

6.1 Shapes of Packages and Surfaces

Sumo Package. A very large and tall reference blueprint
denotes a package that makes a lot of references from many
classes. Figure[9]shows an example: the package Critics of
ArgoUML that defines all the rules for assessing the quality
of models.

Small House Package. A small inheritance blueprint with
only a couple of surfaces and few inheritance hierarchies
often denotes a package that offers a well packaged function-
ality, like Tools-Debugger or Tools-FileList (Figure . These
blueprints are usually taller than larger.

Flat Head Package. A reference blueprint with a wide
but flat head indicates limited internal references. Network-
TelNet WordNet and Network-HTML-Parser Entities in Fig-
ure] are flat head blueprints.

Exclusive External Referencer Package. When the first
column in a blueprint is almost or completely cyan, the pack-
age makes most or all of its external references to classes
outside the scope of the analyzed application. These pack-

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

ages typically extend a framework or a core library; Network-
Kernel in Figure [8]is an example.

Loner Package. A loner is a package that contains only
a couple of classes. It is often containing a single test case
class. The blueprint Network-Kernel-Tests in Figure [8| or
Network-Mail Reader-Categorizer, Network-UUID, Network-
Mail Reader-Spam of Figure [6] are loners. Some of these
packages are clearly good candidates for remodularisation.

Large External Surface. When the topmost external sur-
faces are really large, like the four surfaces below the head
in Figure 9] they identify packages that we must pay atten-
tion to, because changes in these external packages will very
probably impact the package under analysis.

Square Head Package. A package that references all its
own classes will have a blueprint with a square internal
surface; this denotes a package that is quite cohesive. In
Figure 8] Network-Kernel has a square head and appears to
be relatively well packaged.

Tower Package. A reference blueprint with a small head
and a thin body denotes a package with few internal refer-
ences but that makes many external references. This package
may not be cohesive but highly coupled with the external
packages. The package peer in Azureus is an extreme of
this shape, as shown in Figure [I0] In Figure [8] Network-
RemoteDirectory has a more cohesive head and three classes
intensively referencing external packages.

6.2 Shapes of Classes

Main Referencer Class. A vertical alignment of dark
squares in the body of a blueprint denotes a class that is
responsible for many references to classes in other pack-
ages. The classes HTTPSocket and ServerDirectory are
the main referencers in packages Network-Protocols and
Network-RemoteDirectory; they are candidates to be central
package classes (Figure [g).

i

0ooooooom

oo

Figure 10. Peer in Azureus:

a Tower Blueprint ui.swt.views.Peer

8

Main Internal Referencer Class. When vertical align-
ments are limited to the head, they reveal classes doing
many internal and few external references. These classes
often define the abstraction of the application. In Figure[3]
the class Url only references classes within Network-Url.

Omnipresent Referenced Class. Classes of this kind are
referenced by almost all the internal classes, and easily iden-
tifiable by filled rows in a surface. This makes sense for a
facade class if it occurs a few times, but in ArgoUML we
see this shape in most packages for Facade and Model (see
Figure [09); we may thus assess that the Facade pattern is
misused.

7 Evaluation and Discussion
7.1 Evaluation

The Package Surface Blueprint shows the internal num-
ber of classes as well as the number of classes externally
referenced. Hence it conveys whether the package is using a
lot of information or not.

Size. The Package Surface Blueprint shows the complexity
of the observed package in several dimensions. The height
of the body indicates the amount of external classes refer-
enced, whereas the number of surfaces shows the number of
referenced packages. The height of each individual surface
shows how many classes are referenced in the corresponding
package. This gives us an estimate of the coupling between
the package and this surface; to further evaluate the coupling
strength, we should also look at the intensity of referencing
classes in the surface because it represents the number of
references. In addition, the width of the surface indicates the
number of referencing classes.

Those visual properties combine to give a quick impres-
sion not just about the visualized package, but also about
its classes: a thin package with a long body depends on a
lot of classes because of few internal classes. If moreover
the blueprint is heavily lined, i.e., it references a lot of pack-
ages, so some of its referencing classes may be complex and
fragile.

Central or Peripheral. By looking at the border color
of external classes (cyan or black), we can easily see if a
package depends a lot on the framework or on the application.
Also, by using the selection mechanism, we can interactively
see if a package is imported by different subsystems (central)
or just by specific ones (peripheral).

Cohesion and Coupling. The package blueprint also
makes it possible to roughly compare how several packages
are coupled with the observed one: larger surfaces indicate
coupling to more classes and are positioned nearer to the
head surface, while surfaces with more darker class squares

http://mc.manuscriptcentral.com/tse-cs

Page 22 of 25

Page 23 of 25

O©oOoONOOPAWN =

represent packages which are more coupled in term of sheer
number of references. We can also estimate cohesion by
comparing internal coupling (size and overall intensity of
the head surface) and external coupling.

Co-changes and Impact Analysis. Because the package
blueprint details how packages depend on each other, it
hints at the fragility of the observed package to changes.
Selecting a package or a class highlights surfaces or classes
that reference the selected entity and are thus sensitive to its
changes.

7.2 Discussion

Our approach has worked well on our case studies. It
should be noted that we were not familiar with the case
studies before applying our approach. We have been able to
locate many conceptual bugs; for instance we found some
clearly unwanted dependencies, like the package Network-
Telnet WordNet referencing a class in the user interface
framework. However one of our future works is to evaluate
the view with users. The Package Surface Blueprint answers
the main challenges proposed in Section [2|and in Section
we further intend to address some remaining challenges.

Position Choices. We grouped the internal references at
the top of the package blueprint, then ordered the surfaces
from the ones having the most external references at the
top to the least at the bottom; inside a surface, we also
ordered the rows from the most referencing ones to the least.
This way, we do not force the reader to scroll through big
visualizations, and use the fact that the reader pays more
attention to the top elements than to the bottom ones. We
also tried to layout surfaces compactly so that we can easily
move them.

Seriation. Rows within a surface are sorted according to
the number of references they contain. In an earlier version
we applied the dendrogram seriation algorithm [[17]] to group
lines having similar referencing classes. However the result-
ing views were not as meaningful as with a simple ordering.
We plan to use seriation to group packages having similar
surfaces i.e., packages using similar packages.

Properties. Instead of the number of references, we could
map different properties to the color of classes and surfaces.
This can create new striking shapes, adapted to a specific
maintenance problem.

Impact of Boundaries. We color classes that do not be-
long to the application in cyan; this is a bit limiting since we
do not distinguish well the true root classes —e.g.,Object or
Model in Squeak— from the classes of a domain library that
the analyzed application would extend. We found it really
effective to color surfaces so that the user can interactively

9

Transactions on Software Engineering

mark entities on which he wants to focus; this increases the
usability of the tool and speeds up understanding packages.

Shapes. For the time being we represent the classes with
squares only. We could convey more information by using
several visually distinct shapes. But it is not clear which
ones and how efficient the results will be.

Package Nesting. Currently we do not support the nesting
of packages. A solution like the one proposed by Lungu et
al. seems complementary to our approach and interesting
to deal with package nesting [19]. We also consider two
types of relationships between packages (direct reference
and inheritance); therefore we can extend our approach to
other types of relationships like method invocation.

Other Views. So far we only presented blueprints to un-
derstand how a package was referencing or inheriting from
other packages and classes. However we developed the
reverse view: blueprints that present incoming references
made by external classes on the observed package. Due to
space limitation we did not present it. This information is
useful when supporting package splitting or merging.

8 Related Works

Several works provide or visualize information on pack-
ages. Many of these approaches treat software co-change,
looking at coupling from a temporal perspective, whereas in
this paper we focus on the static structure of relationships
(4] 111 120127, 1311, 33]].

Lungu et al. guide exploration of nested packages based
on patterns in the package nesting and in the dependencies
between packages [19]; their work is integrated in Software-
naut and adapted to system discovery.

Sangal et al. adapt the dependency structure matrix from
the domain of process management to analyze architectural
dependencies in software [26]; while the dependency struc-
ture matrix looks like the package blueprint, it has no visual
semantics. Storey et al. offer multiple top-down views of an
application, but these views do not scale very well with the
number of relationships [28]].

Ducasse et al. present Butterfly, a radar-based visualiza-
tion that summarizes incoming and outcoming relationships
for a package [10]], but only gives a high-level client/provider
trend. In a similar approach, Pzinger et al. use Kiviat di-
agrams to present the evolution of package metrics [23]].
Chuah and Eick use rich glyphs to characterize software arte-
facts and their evolution (number of bugs, number of deleted
lines, kind of language...) [6]. In particular, the timewheel
exploits preattentive processing, and the infobug presents
many different data sources in a compact way. D’ Ambros
et al. propose an evolution radar to understand the package
coupling based on their evolution [7]. The radar view is
effective at identifying outliers but does not detail structure.

http://mc.manuscriptcentral.com/tse-cs

O©oOoONOOPAWN =

Transactions on Software Engineering

Those approaches, while valuable, fall short of providing
a fine-grained view of packages that would help understand-
ing the package shapes (the number of classes it defines,
the inheritance relationships of the internal classes, how the
internal classes inherit from external ones,...) and support
the identification of their roles within an application.

9 Conclusion

In this paper, we tackled the problem of understanding
the details of package relationships. We described the Pack-
age Surface Blueprint, a visual approach for understanding
package relationships. While designing Package Surface
Blueprint, we tried to exploit gestalt visualization principles
and preattentive processing.

We successfully applied the visualization to several large
applications and we have been able to point out badly de-
signed packages. To help users interpret views, we have
identified a list of recurrent striking blueprint shapes. We
also introduced interactivity to help the user focus and navi-
gate within the system. We were however rather knowledge-
able about both the visualization and the studied systems; in
future work, we will validate the package blueprint usabil-
ity by conducting tests with several independant software
maintainers.

References

[1] Anquetil and Lethbridge. Experiments with clustering as a
software remodularization method. In WCRE, 1999.

[2] Arisholm, Briand, and Foyen. Dynamic coupling measure-
ment for object-oriented software. IEEE TSE, 30(8), 2004.

[3] Bertin. Semiology of Graphics. 1983.
[4] Beyer. Co-change visualization. In /CSM, 2005.

[5] Briand, Daly, and Wiist. A unified framework for coupling
measurement in oo systems. IEEE TSE, 25(1), 1999.

[6] Chuah and Eick. Information rich glyphs for software man-
agement data. /[EEE Computer Graphics and Applications,
18(4), July 1998.

[7]1 D’Ambros and Lanza. Reverse engineering with logical
coupling. In WCRE, 2006.

[8] Denker and Ducasse. Software evolution from the field: an
experience report from the Squeak maintainers. In ERCIM
Working Group on Soft. Evolution, vol. 166 of Electronic
Notes in Theoretical Computer Science, Jan. 2007.

[9] Ducasse, Girba, and Wuyts. Object-oriented legacy system
trace-based logic testing. In CSMR, 2006.

[10] Ducasse, Lanza, and Ponisio. Butterflies: A visual approach
to characterize packages. In Int’l Soft. Metrics Symposium
(METRICS), 2005.

[11] Eick, Graves, Karr, Mockus, and Schuster. Visualizing soft-
ware changes. IEEE TSE, 28(4), 2002.

[12]

[13]

(14]

(15]

[16]

(17]

(18]
(19]

[20]

(21]
(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]
(31]

(32]
(33]

10

Froehlich and Dourish. Unifying artifacts and activities in a
visual tool for distributed software development teams. In
ICSE, 2004.

Girba, Kuhn, Seeberger, and Ducasse. How developers drive
software evolution. In Int’l Workshop on Principles of Soft.
Evolution (IWPSE), 2005.

Healey. Visualization of multivariate data using preattentive
processing. Master’s thesis, Univ. Bristish Columbia, 1992.

Healey, Booth, and T. Harnessing preattentive processes for
multivariate data visualization. In Graphics Interface, 1993.
Herman, Melancon, and Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE
Trans. on Visualization and Comp. Graphics, 6(1), 2000.
Jain, Murty, and Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3), 1999.

Lanza and Marinescu. OO Metrics in Practice. 2006.

Lungu, Lanza, and Girba. Package patterns for visual archi-
tecture recovery. In CSMR, 2006.

Mancoridis, Mitchell, Chen, and Gansner. Bunch: A cluster-
ing tool for the recovery and maintenance of software system
structures. In ICSM, 1999.

Martin. Design principles and design patterns, 2000.

Mitchell and Mancoridis. On the automatic modularization
of software systems using the bunch tool. IEEE TSE, 32(3),
2006.

Pinzger, Gall, Fischer, and Lanza. Visualizing multiple evo-
lution metrics. In SoftVis, May 2005.

Pollet, Ducasse, Poyet, Alloui, Cimpan, and Verjus. To-
wards a process-oriented software architecture reconstruction
taxonomy. In CSMR, Mar. 2007.

Ponisio and Nierstrasz. Using context information to re-
architect a system. In Soft. Measurement Eur. Forum, 2006.
Sangal, Jordan, Sinha, and Jackson. Using dependency mod-
els to manage complex software architecture. In OOPSLA,
2005.

Storey, éubranié, and German. On the use of visualization to
support awareness of human activities in software develop-
ment: a survey and a framework. In SoftVis, 2005.

Storey, Wong, Fracchia, and Miiller. On integrating visualiza-
tion techniques for effective software exploration. In /[EEE
Symposium on Information Visualization (InfoVis), 1997.
Treisman. Preattentive processing in vision. Computer Vision,
Graphics, and Image Processing, 31(2), 1985.

Tufte. The Visual Display of Quantitative Information. 2001.
Voinea, Telea, and van Wijk. CVSscan: visualization of code
evolution. In SoftVis, May 2005.

Ware. Information Visualization. 2000.

Xie, Poshyvanyk, and Marcus. Visualization of CVS reposi-
tory information. In WCRE, 2006.

http://mc.manuscriptcentral.com/tse-cs

Page 24 of 25

Page 25 of 25 Transactions on Software Engineering

The work presented in this article extends our previous paper, published in ICSM'07 (Package Surface
Blueprints: Visually Supporting the Understanding of Package Relationships), in the following points:

(a) Visualization improvements based on the feedback and conclusion of a first user study.

(b) Addition and complementary visualization for incoming references (in addition to outgoing references).

O©oOoONOOPAWN =

10 (c) A detailed presentation of a case study as well as a user study.

http://mc.manuscriptcentral.com/tse-cs

