
Publishing Documents with Pillar

7.0

Stéphane Ducasse and Guillermo Polito

April 29, 2020

Copyright 2018 by Stéphane Ducasse and Guillermo Polito.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: copy and redistribute the material in any medium or format,

• to Adapt: remix, transform, and build upon the material for any purpose, even
commercially.

Under the following conditions:

Attribution. You must give appropriate credit, provide a link to the license, and indi-
cate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

Share Alike. If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
https://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 About Pillar 1

1.1 Introduction . 1

1.2 Pillar users . 2

1.3 Pillar future features . 3

1.4 Conclusion . 3

2 Getting Started 5

2.1 Installing the zip . 5

2.2 A First Pillar Project . 6

2.3 Versionning your Project . 7

2.4 Building Pillar from Sources . 8

2.5 Getting Pillar Dependencies . 10

3 Pillar core syntactic elements 13

3.1 Headings: Chapters & sections . 13

3.2 References and links . 14

3.3 Lists . 14

3.4 Commented lines . 16

3.5 Escaping characters . 16

3.6 Formatting . 16

3.7 Pictures . 16

3.8 Tables . 16

3.9 Preformatted . 17

3.10 Code block . 17

3.11 Annotated paragraphs . 19

3.12 Raw . 20

3.13 Meta-Information . 20

3.14 Annotations: supporting extensions . 21

4 Specific markup 23

4.1 Generate a part of your document with a script 23

4.2 LaTeX . 24

4.3 Slides . 24

i

Contents

5 Pillar cheatsheet 27

6 Building automatically your document with Travis 29

6.1 Configuring your github account . 29

6.2 Add and edit the .travis.yml file . 29

6.3 Some explanations . 31

6.4 Using badges to indicate build status . 32

6.5 Conclusion . 32

7 Testing Your Documents 33

7.1 Typical codeblocks . 33

7.2 Testing codeblock examples . 34

7.3 Testing method and class definitions . 34

7.4 Practical testing . 35

7.5 From within Pharo . 36

7.6 What can not be tested . 36

8 Improving Book Writability 39

8.1 Loading your code . 39

8.2 Support test-driven development writing 39

8.3 Helping Tools . 41

8.4 Conclusion . 42

9 Migrating from Pillar 50 to Pillar 70 43

9.1 Uninstall Pillar 50 . 43

9.2 Install Pillar 70 . 43

9.3 Updating the templates . 44

9.4 Converting the pillar.conf . 44

ii

Illustrations

1-1 An example Pillar output . 2

3-1 Caption of the picture. 17

3-2 My code block that works . 18

6-1 Enabling the travis service in your github account. 30

6-2 Enabling your github project on travis. 30

iii

CHA P T E R 1
About Pillar

Pillar is a system to manage documents (books, presentations, and web sites).
From a common format, it is able to generate documents in multiple formats
(html, markdown, latex, AsciiDoc). It is composed of several modules such as
importers, transformers, document model and outputers.

This book describes Pillar in its current version 7.0. Pillar is currently devel-
oped and maintained by Stéphane Ducasse and Guillermo Polito. The original
author of Pillar was Damien Cassou. Many people have also contributed to
Pillar: Ben Coman, Guillermo Polito, Lukas Renggli (original author of the
PierCMS from which a first version of Pillar has been extracted), Benjamin
van Ryseghem, Cyril Ferlicot-Delbecque, Thibault Arloing, Yann Dubois,
Quentin Ducasse and Asbathou Sama Biyalou. Special thanks to Asbathou
Sama Biyalou!

This book adapts, extends, and clarifies the chapter explaining Pillar in the
Enterprise Pharo: a Web Perspective book.

Pillar was sponsored by ESUG1.

1.1 Introduction

Pillar (hosted at http://github.com/pillar-markup) is a markup language and as-
sociated tools to write and generate documentation, books (such as this one),
web sites, and slide-based presentations. The Pillar screenshot in Figure 1-1
shows the HTML version of chapter Voyage.

Pillar has many features, helpful tools, and documentation:

1http://www.esug.org

1

http://www.esug.org
http://github.com/pillar-markup
http://www.esug.org

About Pillar

Figure 1-1 An example Pillar output

• simple markup syntax with references, tables, pictures, captions, syntax-
highlighted code blocks;

• export documents to HTML, LaTeX, Markdown, AsciiDoc, ePuB and
Pillar itself, and presentations to Beamer and Deck.js;

• many tests with good coverage (94% with more than a 2100 executed
tests), which are regularly run by a continuous integration job2

• a command-line interface and dedicated plugins for several text edi-
tors: Emacs3, Vim4, TextMate5, and Atom6

• a cheat sheet (see Chapter 5).

1.2 Pillar users

This book was written in Pillar itself. If you want to see how Pillar is used,
have a look at its source code (http://github.com/SquareBracketAssociates/

Booklet-PublishingAPillarBooklet), or check the following other real-world
projects:

2https://ci.inria.fr/pharo-contribution/job/Pillar
3https://github.com/pillar-markup/pillar-mode
4https://github.com/cdlm/vim-pillar
5https://github.com/Uko/Pillar.tmbundle
6https://github.com/Uko/language-pillar

2

https://ci.inria.fr/pharo-contribution/job/Pillar
https://github.com/pillar-markup/pillar-mode
https://github.com/cdlm/vim-pillar
https://github.com/Uko/Pillar.tmbundle
https://github.com/Uko/language-pillar
http://github.com/SquareBracketAssociates/Booklet-PublishingAPillarBooklet
http://github.com/SquareBracketAssociates/Booklet-PublishingAPillarBooklet
https://ci.inria.fr/pharo-contribution/job/Pillar
https://github.com/pillar-markup/pillar-mode
https://github.com/cdlm/vim-pillar
https://github.com/Uko/Pillar.tmbundle
https://github.com/Uko/language-pillar

1.3 Pillar future features

• the Updated Pharo by Example book (https://github.com/SquareBracketAssociates/

UpdatedPharoByExample),

• the Pharo MOOC - Massive open online course (https://github.com/

SquareBracketAssociates/PharoMooc,

• Any of the Pharo booklets (https://github.com/SquareBracketAssociates/

Booklet-XXXX,

• the PillarHub open-access shared blog (http://pillarhub.pharocloud.com).

1.3 Pillar future features

Pillar 70 saw some major refactorings and cleaning: it does not rely on Grease
and Magritte anymore. Its architecture is a lot cleaner.

Still some issues are missing. Here is a little list of features that we are work-
ing on or will soon:

• Incremental recompilation. Since we remove the use of make (so that
Windows users can use Pillar) we should introduce a way to avoid to
recompile complete book when just one chapter changed.

• Markdown syntax.

• Release of Ecstatic. Pillar supports the deployment of web sites named
Ecstatic and we are working on a second version of Ecstatic.

• Better table support.

1.4 Conclusion

Pillar is still in active development: maintainers keep improving its imple-
mentation. The current version of Pillar is Pillar 70. This booklet only docu-
ments Pillar 70. This booklet will be synchronised with future enhancements.

3

https://github.com/SquareBracketAssociates/UpdatedPharoByExample
https://github.com/SquareBracketAssociates/UpdatedPharoByExample
https://github.com/SquareBracketAssociates/PharoMooc
https://github.com/SquareBracketAssociates/PharoMooc
https://github.com/SquareBracketAssociates/Booklet-XXXX
https://github.com/SquareBracketAssociates/Booklet-XXXX
http://pillarhub.pharocloud.com

CHA P T E R2
Getting Started

In this section we give the basic steps to get you started with your first Pil-
lar project. We show first how to install Pillar in different platforms and how
to test your installation. This chapter covers also the installation of LaTeX,
which is required to generate pdf documents. Installing LaTeX is not needed
if you use the Travis build integration to automatically generate your docu-
ments once committed.

Once Pillar is installed, we will proceed to create a first Pillar project. A Pillar
project is a directory that will contain several .pillar files with your con-
tent, a pillar.conf configuration file and a _suppert directory containing
several template-related files which will manage the style of your document.

2.1 Installing the zip

On https://github.com/pillar-markup/pillar/releases, Pillar comes up on all plat-
forms as a zipped distribution.

This is the easiest way to get started.

Installing it in your System

You can then proceed to install that pillar build where you want. For exam-
ple, you can place it in a hidden directory in your home directory:

move the pillar directory to your HOME
$ mv pillar ~/.pillar

Then add that directory to the PILLAR_HOME and HOME environment vari-
ables, for example, by modifying your .bashrc (or .zshrc) with:

5

https://github.com/pillar-markup/pillar/releases

Getting Started

export PILLAR_HOME="$HOME/.pillar/build"
export PATH="$PATH:$PILLAR_HOME"

Now you are ready to use Pillar.

2.2 A First Pillar Project

A Pillar project is a directory containing several .pillar files with your con-
tent, a pillar.conf configuration file and a _support directory containing
several template-related files which will manage the look-and-feel of your
document. The complete project structure is setup by Pillar itself, you do not
need to do it manually.

Setup the Project

Let’s then procceed to create a new empty directory for our project and tell
Pillar that we want to use the book archetype on it.

$ mkdir my-pillar-project
$ cd my-pillar-project
$ pillar archetype book

The archetype command sets up the project structure for you: it installs a
configuration file pillar.conf prod with default values, it creates several Pillar
files with some sample content, and it imports the basic styling files inside
_support.

Build your Project

At this point, you can already generate your book using the command pil-
lar build [output_format] followed by the desired output. For example,
to generate your project in html:

$ pillar build html

Or in pdf using your system’s LaTeX installation:

$ pillar build pdf

Inspect your Project’s Output

Once build has finished, the build results are written into the _result di-
rectory. The _result directory contains the output in different subdirecto-
ries depending on the used format, and is structured as follows:

your_project\
pillar.conf
file1.pillar
file2.pillar

6

2.3 Versionning your Project

_results\
format1\

file1.format1
file2.format1

format2\
file1.format2
file2.format2

For example, if you generated your files in html and pdf you will see

your_project\
pillar.conf
file1.pillar
file2.pillar
_results\
html\

file1.html
file2.html

pdf\
file1.pdf
file2.pdf

Building a Single File

Pillar generates all .pillar files it finds in your project by default. We can
instruct it otherwise by specifying the files to build as argument. For exam-
ple, if you want to build only index.pillar to html you can use the pillar
build command as follows:

$ pillar build html index.pillar

This will generate only the output related to the index.pillar file.

2.3 Versionning your Project

In this section we explain how to share your project in a source code repos-
itory such as Git. This section guides you through the setup of a Git reposi-
tory, the selection of the correct files to commit, and the creation of a .git-
ignore file to avoid auto-generated files.

Setting up a Git Repository

There are two main ways to setup a Git repository:

• we can clone an existing repository and add our files there, or

• we can create a new repository and push it to an existing remote

This first option is the more practical in case you previously created a Git
repository in GitHub. If that is the case, or if you prefer to start by creating

7

Getting Started

a repository on GitHub or your favorite Git repository hosting, then this step
consists on cloning that existing repository in a new directory and adding
your files to it.

$ git clone git@github.com:[your_username]/[your_repository].git
$ cp path_to_your_project

cd your_repository

Versioning your Book

Now to version simply you book you should version all the files except _re-
sult. Later we will show you how to add travis and bintray support for au-
tomatic compilation so that you do not need to install locally LaTeX on your
machine.

$ git add pillar.conf
$ git add _support
$ git add Chapters
$ git add book.pillar

Adding a .gitignore

Not all the downloaded files are worth versionning. We suggest the following
.gitignore configuration.

more .gitignore
/_result/

You can remove the folder figures and the chapter samples. Now you are
ready to commit your files.

2.4 Building Pillar from Sources

This section explains how to build and install Pillar both in Unix based sys-
tems (like OSX and Linux) and Windows. The first part of this section covers
how to download an already built version of pillar or how to build one your-
self.

Build Requirements

Building Pillar from sources requires that you have some dependencies in-
stalled in your system:

• Git: a Git installation is required to get the Pillar repository from git@github.com:pillar-
markup/pillar.git.

8

2.4 Building Pillar from Sources

• wget: is required to do several file downloads. For OSX users, you
might need to install wget via brew following for example the follow-
ing instructions:

The following lines will install both Homebrew and wget, ignore
the first one if Homebrew is already installed

$ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

$ brew install wget --with-libressl

1. @@note Windows is not able to deal with .sh and makefile scripts
natively, so you have to install tools providing shell-like capabilities
#such as https://www.cygwin.com/. If you decide to install cygwin you
should be able to follow the Mac OS X and Linux installation section.

Downloading and Building Pillar

You can build Pillar from sources on Unix-like systems such as OSX and Linux.
This approach is also valid using msys and cygwin like terminals on Win-
dows. To get Pillar source code, we can use a git clone command as fol-
lows:

$ git clone git@github.com:pillar-markup/pillar.git

Once we got the repository, we should execute the build.sh script found in
the scripts directory:

$ cd pillar
$./scripts/build.sh

Installing it in your System

You can then proceed to install that pillar build where you want. For exam-
ple, you can place it in a hidden directory in your home directory:

Go back to the previous directory and
move the pillar directory to your HOME
$ cd ..
$ mv pillar ~/.pillar

Then add that directory to the PILLAR_HOME and HOME environment vari-
ables, for example, by modifying your .bashrc (or .zshrc) with:

export PILLAR_HOME="$HOME/.pillar/build"
export PATH="$PATH:$PILLAR_HOME"

Test your Installation

To test your pillar installation, open a new terminal and execute the pillar
--version command. If everything is ok, that should print out (as in the cur-

9

https://www.cygwin.com/

Getting Started

rent version) the version of the Pharo VM. For example:

$ pillar --version
M: CoInterpreter VMMaker.oscog-eem.2380 uuid: c76d...

2.5 Getting Pillar Dependencies

If you’re going to build pdf documents using Pillar, then you will required
to install LaTeX also. We recommend that you install a complete TeX Live
installation, like that different LaTeX templates can reuse existing modules.
You can get a full installation from https://tug.org/texlive/ or by using your
favorite package manager on Linux. For example using apt-get you can do:

sudo apt-get install texlive-full

Also, a manual LaTeX installation can be done by downloading TeX live’s de-
fault distribution as a tarball and installing several packages on top. This in-
stallation procedure is already distributed with Pillar as it is used by our con-
tinuous integration jobs. You can find our installation script in the script-
s/ci/ensureLatex.sh file that you can find in:

scripts/ci/ensureLatex.sh

#!/bin/bash
From

https://github.com/y-yu/install-tex-travis/blob/master/install-tex.sh

#Enable to not exit on error
#set -o errexit

#Enable to trace bash execution
#set -o xtrace

DIRNAME=tl-`date +%Y_%m_%d_%H_%M_%S`

echo "make the install directory: $DIRNAME"
mkdir $DIRNAME
cd $DIRNAME

wget
http://mirror.ctan.org/systems/texlive/tlnet/install-tl-unx.tar.gz

tar zxvf install-tl-unx.tar.gz
cd install-tl-*

BASE_PROFILE=$(cat << EOS
selected_scheme scheme-small
TEXDIR $HOME/texlive/2017
TEXMFCONFIG $HOME/.texlive2017/texmf-config
TEXMFHOME $HOME/texmf
TEXMFLOCAL $HOME/texlive/texmf-local

10

https://tug.org/texlive/

2.5 Getting Pillar Dependencies

TEXMFSYSCONFIG $HOME/texlive/2017/texmf-config
TEXMFSYSVAR $HOME/texlive/2017/texmf-var
TEXMFVAR $HOME/.texlive2017/texmf-var
option_doc 0
option_src 0
EOS
)

if [[$TRAVIS_OS_NAME == 'osx']]; then
echo "$BASE_PROFILE\nbinary_x86_64-darwin 1" > ./small.profile
export PATH=$PATH:$HOME/texlive/2017/bin/x86_64-darwin

else
echo "$BASE_PROFILE\nbinary_x86_64-linux 1" > ./small.profile
export PATH=$PATH:$HOME/texlive/2017/bin/x86_64-linux

fi

./install-tl -profile ./small.profile
tlmgr init-usertree
tlmgr install latexmk
tlmgr install luatex85

cd ../..

echo "remove the install directory"
rm -rf $DIRNAME

Now you are ready to write your document in Pillar and get them exported in
PDF and HTML.

Once the basic installation is installed you can procceed to install all your re-
quired dependencies using TeXLives tlmgr package manager. You’ll find an
up-to-date bash script that performs the installation of the minimal required
packages in:

scripts/ci/ensure_book_dependencies.sh

This script installs packages to manage fonts and better LaTeX rendering
such as fira, gentium-tug, footmisc, tcolorbox, environ, trimspaces, import,
multirow and ifetex.

11

CHA P T E R3
Pillar core syntactic elements

In this chapter, we present the Pillar syntax. Have a look at the Chapter 5: it
contains a two pages summary. We use the current text as example, notice
however, that some results may be different on other support like HTML be-
cause of different common practices (for example creating an anchor with
the reference instead of a footnote for an external link).

It is important to see that since Pillar is extensible, plugins may extend the
default markup. The extension mechanisms allow one not to learn new syn-
tax but just new tags and parameters as will present later.

3.1 Headings: Chapters & sections

A line starting with ! represents a heading. Use multiple ! to create sections
and subsections.

!!!Headings: Chapters & Sections

is the way the current section is created. The exporter and template may
interpret the section the way they want (.i.e., for example outputing subsec-
tion instead of section).

Some exporters support the possibility to specify a level of interpretation for
!. headingLevelOffset controls how to convert from the level of a Pillar
heading to the level of heading in your exported document. For example, a
headingLevelOffset of 3 converts a 1st level Pillar heading to an <h4> in
HTML.

"headingLevelOffset" : 3

This feature does not work in Pillar 7.0 and it is planned to reintroduce it.

13

Pillar core syntactic elements

3.2 References and links

Anchor definition

To refer to a section or chapter, put an anchor (equivalent to \label{chap-
terAndSections} in LaTeX) using the @chapterAndSections syntax on a
separate line.

@chapterAndSections

Anchor reference

When you want to refer to an anchor (equivalent to \ref{chapterAndSec-
tions} in LaTeX), use the *@chapterAndSections* syntax. Anchors are
invisible and links will be rendered as: 3.1. If you get a Fig. without a number
this is probably that you forgot the @ in the reference.

@chapterAndSections

Alias

You can create alias for links. This is especially adapted for web sites con-
taining reference to other pages.

Chapters>chapterAndSections

creates the link Chapters. Again the template may interpret this differently.

To create a link to another pillar file, use the *Alias>File.pillar@Anchor-
Name*. The alias and anchor parts are optional but you will need them in
some cases (for example if you have an inter-file link and you export in La-
TeX, or if you have an inter-file link and you export all your file in the same
html file).

External links

To create links to external resources, use the *Pharo>http://pharo.org/*
syntax which is rendered as Pharo1.

http://www.pharo.org

The same syntax can also represent email addresses: write *dupond@free.fr*
to get dupond@free.fr.

3.3 Lists

Pillar offers three default lists: Bullet, numbered and labelled.

1http://pharo.org/

14

http://pharo.org/
mailto:dupond@free.fr
http://pharo.org/

3.3 Lists

Bulleted lists

-A block of lines,
-where each line starts with ==-==
-is transformed to a bulleted list

generates

• A block of lines,

• where each line starts with -

• is transformed to a bulleted list

Numbered lists

#A block of lines,
#where each line starts with ==#==
#is transformed to a numbered list

generates

1. A block of lines,

2. where each line starts with #

3. is transformed to a numbered list

Definition lists

Definition lists (aka. description lists) are lists with labels:

;blue.
:color of the sky
;red.
:color of the fire

generates

blue. color of the sky

red. color of the fire

List nesting

-Lists can also be nested.
-#Thus, a line starting with ==-#==
-#is an element of an unordered list that is part of an ordered list.

generates

• Lists can also be nested.

1. Thus, a line starting with -#

2. is an element of a bulleted list that is part of an ordered list.

15

Pillar core syntactic elements

3.4 Commented lines

Lines that start with a % are considered comments and will not be rendered
in the resulting document.

3.5 Escaping characters

Special characters (e.g., + and *) must be escaped with a backslash: to get a +,
you actually have to write \+. The list of characters to escape is:

^, _, :, ;, =, @, {, |, !, ", #, $, %, ', *, +, [, -

3.6 Formatting

There is some syntax for text formatting:

• To make something bold, write ""bold"" (with 2 double quotes)

• To make something italic, write ''italic'' (with 2 single quotes)

• To make something monospaced, write ==monospaced==

• To make something strikethrough, write --strikethrough--

• To make something subscript, write @@subscript@@

• To make something superscript, write ^^superscript^^

• To make something underlined, write __underlined__

3.7 Pictures

To include a picture, use the syntax +caption>file://filename|parame-
ters+:
+Caption of the

picture.>file://figures/pharo-logo.png|width=50|label=pharoLogo+

generates Figure 3-1 (this reference has been generated using *@pharoL-
ogo*).

Parameters are pairs "label"="value" separated by |.

3.8 Tables

To create a table, start the lines with | and separate the elements with |.
Each new line represents a new row of the table. Add a single ! to let the cell
become a table heading.

16

3.9 Preformatted

Figure 3-1 Caption of the picture.

|!Country |!Capital
|France | Paris
|Belgium | Brussels

Country Capital

France Paris
Belgium Brussels

The contents of cells can be aligned left, centered or aligned right by using
|{, || or |} respectively.

||centered||!centered header||centered
|{ left |} right || center

generates:

centered centered header centered
left right center

3.9 Preformatted

To create a preformatted block, begin each line with =. A preformatted block
uses equally spaced text so that spacing is preserved. In general you should
prefer code block over preformatted blocks. Code blocks more powerful.

= this is preformatted text
= this line as well

3.10 Code block

Use code blocks when you want to add code snippets to your document. Code
blocks are delimited by [[[and]]].

[[[
foo bar
]]]

generates

17

Pillar core syntactic elements

Listing 3-2 My code block that works

self foo bar

foo bar

Code block with a label or caption

If you want either a label (to reference the code later) or a caption (to give a
nice title to the code block), write the following:

[[[label=foobar|caption=My code block that works|language=smalltalk
self foo bar
]]]

which produces script 3-2 (this reference is produced with *@foobar*).

Code block syntax highlighting

To specify the syntax a code block is written in, you need to use the lan-
guage parameter. For example on 3-2 we used the smalltalk value for the
language parameter.

Note The currently supported languages are bash, css, html, http, json,
javascript, pillar, sql, ston, shellcommands and smalltalk

If you don’t want syntax highlighting for a particular script, specify no lan-
guage as value to the language parameter.

Code block with line numbers

If you need to explain a long piece of code, you may want a code block to
have line numbers:

[[[lineNumber=true
self foo bar.
self bar foo.
]]]

produces

self foo bar.
self bar foo.

18

3.11 Annotated paragraphs

Code block from an external file

If you want you can also include a code block from a external file. For exam-
ple if you have a file ‘myProject.html‘ and you want to take the code from
line 15 to line 45, instead of copy/pasting the code you can use:

[[[language=html|fromFile=myProject.html|firstLine=15|lastLine=45
]]]

The firstLine and lastLine parameters are optional.

Code block whose contents is computed

Sometimes you would like to program the contents of a code block. You can
do it using the eval=tag and the system offers you a stream variable that
you can use to emit the contents of the code block.

=[[[eval=true

| languages |
stream nextPutAll: '@@note The currently supported languages are '.
languages := PRRealScriptLanguage withAllConcreteClasses collect: #standardName.
...

=]]]

Note that since this feature is a potential security holes it has to be enable via
a plugin declaration.

{
"title":"A simple reflective object kernel",
"attribution":"Stéphane Ducasse",
...
"plugins": ["PRScriptEvaluator"],
...

}

3.11 Annotated paragraphs

An empty line starts a new paragraph.

An annotated paragraph starts with @@ followed by a keyword such as todo
and note. For example,

@@note this is a note annotation.

generates

19

Pillar core syntactic elements

Note this is a note annotation.

And,

@@todo this is a todo annotation

generates a todo annotation

To do this is a todo annotation

By default the templates support @@todo and @@note.

3.12 Raw

If you want to include raw text into a page you must enclose it between {{{
and }}}, otherwise Pillar ensures that text appears as you type it which
might require transformations.

A good practice is to always specify for which kind of export the raw text
must be outputted by starting the block with {{{latex: or {{{html:. For
example, the following shows a formula, either using LaTeX or plain text de-
pending on the kind of export.

{{{latex:
\begin{equation}

\label{eq:1}
\frac{1+\sqrt{2}}{2}

\end{equation}
}}}
{{{html:
(1+sqrt(2)) / 2
}}}

Take care: Avoid terminating the verbatim text with a } as this will confuse
the parser, better add a space or two. So, don’t write {{{\begin{script-
size}}}} but {{{\begin{scriptsize} }}} instead.

3.13 Meta-Information

Meta-information of a particular file is written at the start of the file be-
tween curly braces using the STON syntax (a super set of JSON). A meta-
information starts with a word between quotation marks acting as a key, is
followed by a colon :, and finishes with a value.

For example, the following Pillar file,

20

3.14 Annotations: supporting extensions

{
"title": "A first document",
"author": "John Doe"

}

!Hello World

represents a Pillar document with the title and author set. You can use what-
ever keys you like. The metadata keys can be used in templates (see Chapter
?? for more information about templating).

For example the template for the current book uses the following template
variables: attributions, title, series, and keywords. You can see this in the file
main.mustache in the _support/template/latex folder.

3.14 Annotations: supporting extensions

Pillar proposes two extensions mechanisms: tags and parameters. Pay atten-
tion that each plugin should handle the tag or parameter processing.

Annotations are the Pillar way to have extensible syntax. An annotation has
this syntax:

${tag:parameter=value|parameter2=value2}$

InputFile annotation

You can include a file into another pillar file. The inputFile annotation
takes as parameter the path of the file relative to baseDirectory (if you
don’t change the base directory, it is your working directory). In this exam-
ple, 2 files are included:

${inputFile:path=test.pillar}$

${inputFile:path=chapter2/chapter2.pillar}$

Footnote annotation

You can add footnotes to explain or annotate words. The footnote annota-
tion takes as parameter the note which will appear at the end of the docu-
ment. In this example, one footnote is added.

Foo${footnote:note=Some Explanation for Foo}$

In addition we should add the plugin as follows in the pillar.conf file.

"plugins": ["PRFootnoteTransformer"],

21

Pillar core syntactic elements

Citation annotation

You can add citations to refer to publications or books. The citation anno-
tation takes as parameter the reference using the ref.

In this chapter we will explore a minimal reflective class-based
kernel, inspired

from ObjVlisp ${cite:ref=Coin87a}$.

You have to declare the plugins as follow.

{
"title":"A simple reflective object kernel",
"attribution":"Stéphane Ducasse",
"series": "The Pharo TextBook Collection",
"keywords": "bootstrap, reflective, meta system, Pharo,
Smalltalk",
"latexWriter" : #'latex:sbabook',
"plugins": ["PRCitationTransformer"],
"bibFile": "others.bib",
"newLine": #unix,
"htmlWriter": #html

}

Parameters

Pictures and scripts are both using parameters to specify different options
and variations. Parameters are pairs "label"="value" separated by |.

Here are two examples within the same expressions: Code blocks and cap-
tions use parameters.

[[[label=foobar|caption=My code block that works|language=pillar
+Caption of the picture.>file://figures/pharo-logo.png|width=50|label=pharoLogo+
]]]

22

CHA P T E R4
Specific markup

This chapter presents some extensions specific to a given support such as
LaTeX or slides.

4.1 Generate a part of your document with a script

If you want you can also evaluate a script to generate a part of your docu-
ment. Notice that some pillar version may disable it for security reasons.

For example if you write a project’s documentation and want to give some
metrics about its code, you can write something like this:

[[[eval=true
| packages classes |
packages := RPackageOrganizer default packages select: [:each |

each name includesSubstring: 'Pillar'].
classes := packages flatCollect: [:each | each classes].
stream

nextPutAll: 'The Pillar project contains:';
lf;
nextPutAll: '- ==';
print: packages size;
nextPutAll: ' packages==.';
lf;
nextPutAll: '- ==';
print: classes size;
nextPutAll: ' classes=='.

]]]

will generate:

23

Specific markup

The Pillar project contains:

• 41 packages.

• 455 classes

To enable this feature, you should declare that you want to use the corre-
sponding plugin in the pillar.conf ("plugins": ["PRScriptEvalua-
tor"]).

{
"title": "Publishing Documents with Pillar 7.0",
"attribution": "Stéphane Ducasse and Guillermo Polito",
"series": "Square Bracket tutorials",
"keywords": "Pillar, HTML, PDF, Markdown, EPUB, AsciiDoc, Beamer,

Pharo, Smalltalk",
"newLine": #unix,
"plugins": ["PRScriptEvaluator"],
"htmlWriter": #html
}

4.2 LaTeX

Citations

Citations are only available for LaTeX. You can add citations to your docu-
ment to reference an element in a LaTeX bibliography. The cite annotation-
takes as parameter the key of the reference in the bibliography.

${cite:ref=Duca17a}$

The example above will render as cite{Duca17a}

If you want to use other type of citations like citep or citet, please over-
write the command in your LaTeX template: renewcommand{cite}{citep}

Future versions will support also the definition in pillar.conf of the bibliogra-
phy file. Right now you should harcode it in the template.

\bibliographystyle{alpha}
\bibliography{rmod,others,new}

You have to add a plugin in the pillar.conf file to manage the creation of bib-
liography.

4.3 Slides

Pillar offers the possibility to define slides. Slides requires the use of the pre-
sentation archetype.

24

4.3 Slides

Slide annotation

This annotation is used to create slides structure for a beamer or a deck.js
export. The parameter title is required. The label parameter can be used to
refer to this slide in another slide:

${slide:title=My slide|label=sld:mySlide}$

Columns

With Pillar you can put text and other contents in columns. To do that, you
need to delimit an environment with the columns and endColumns annota-
tions. Then you can create columns with the column annotation. The column
annotation takes 1 required parameter: the width of the column. Here is an
example:

${columns}$

${column:width=60}$
bla

${column:40}$
bla

${endColumns}$

Note The column annotations currently works only for the beamer,
HTML and Deck.js export.

25

CHA P T E R5
Pillar cheatsheet

Headings

! Heading Heading 1 !!! Heading Heading 3
!! Heading Heading 2 !!!! Heading Heading 4

Anchors and links

@anchor anchor
@Internal Link Internal link
http://www.pharo.org External link
Pharo>http://www.pharo.org Alias external link

Lists

-bullet Creates one bullet
#numbered Creates one numbered item
;description :definition Creates a description definition item

Formatting

""bold"" bold
''italic'' italic
==monospaced== monospaced
--strikethrough-- strikethrough
@@subscript@@ subscript

^^superscript^^ superscript

__underlined__ underlined

27

Pillar cheatsheet

Characters to be escaped using \ are

^, _, :, ;, =, @, {, |, !, ", #, $, %, ', *, +, [, -

% commented line each line starting with % is ignored

Pictures

+Caption.>file://figures/pharo-logo.png|width=50|label=pharoLogo+

Tables

|! Column1 | Column2 Two column header
|| centered
|{ left left
|} right right

Annotated paragraphs

==@@note== Produce a note paragraph
==@@todo== Produces a todo

Code blocks

[[[
self foo bar
]]]

[[[label=foobar|caption=My code block that works|language=smalltalk
self foo bar
]]]

Raw

{{{latex:
latex code here
}}}
{{{html:
plain html here
}}}

28

CHA P T E R6
Building automatically your

document with Travis

Travis is a service similar to Jenkins that is useful to automate your pro-
cesses. Once configured, a travis job will run each time you commit to your
book github repository. We will show now how we can use Travis to auto-
matically build the pdf. In addition we will show how we can automatically
publish the pdf on the github repository itself.

6.1 Configuring your github account

The first to start with is to enable the travis integration from your github
repository. You will find the integration in Settings and the menu integra-
tion services. You should look for Travis CI and enable it as shown in Figure
6-1.

Once this is done, you should go to your travis account http://travis-ci.com and
enable your project as shown in Figure 6-2.

Note that this setup may take a while to sync. So do not worry if these sys-
tems start to off right in the minute. It may take a while, so let us pass to the
next item.

6.2 Add and edit the .travis.yml file

Here is the .travis.yml of this booklet. You can find it online at https://
github.com/SquareBracketAssociates/Booklet-PublishingAPillarBooklet:

29

http://travis-ci.com
https://github.com/SquareBracketAssociates/Booklet-PublishingAPillarBooklet
https://github.com/SquareBracketAssociates/Booklet-PublishingAPillarBooklet

Figure 6-1 Enabling the travis service in your github account.

Figure 6-2 Enabling your github project on travis.

6.3 Some explanations

language: smalltalk
sudo: false

os:
- linux

smalltalk:
- Pharo-7.0

install:
- git clone https://github.com/pillar-markup/pillar.git -b v7.4.1

Run pillar build script. Pillar will be built in `pwd`/build!
- cd pillar && ./scripts/build.sh && cd ..

Install latex
- . pillar/scripts/ci/ensure_latex.sh
Install latex dependencies required by pillar
- ./pillar/scripts/ci/ensure_book_dependencies.sh

script:
- ./pillar/build/pillar build pdf

after_success:
- wget -c

https://github.com/probonopd/uploadtool/raw/master/upload.sh
- mv _result/pdf/book.pdf pillarBooklet-wip.pdf
- bash upload.sh pillarBooklet-wip.pdf

branches:
except:
- /^(?i:continuous)$/

Add a similar configuration file to your repository. Once the travis github get
synchronised and travis is kicked in, you will be able to check on the travis
log that your project has been successfully built.

6.3 Some explanations

Let us explain some parts: the after_success section of the configuration is
using a script to release continuously on each green commit. The documen-
tation is available at https://github.com/probonopd/uploadtool/.

after_success:
- wget -c

https://github.com/probonopd/uploadtool/raw/master/upload.sh
- mv _result/pdf/book.pdf pillarBooklet-wip.pdf
- bash upload.sh pillarBooklet-wip.pdf

branches:
except:

31

https://github.com/probonopd/uploadtool/

Building automatically your document with Travis

- /^(?i:continuous)$/

6.4 Using badges to indicate build status

You can now use the status of a travis build right in the github repository
using markdown badges in the project README.md file.

A booklet explaining how to build a booklet

[![Build status][badge]][travis]

[travis]:
https://travis-ci.org/SquareBracketAssociates/Booklet-PublishingAPillarBooklet

[badge]: https://travis-ci.org/SquareBracketAssociates/
Booklet-PublishingAPillarBooklet.svg?branch=master

To contribute
- Fork
- Do pull Request

To latex it locally

```
pillar build pdf
```

At the stage you should get already important feedback since you will know
if your project fully builds or not.

How to add a new released file in your git hub account

To release a pdf that will be stored on github in the booklet repository, we
should issue an annotated tag as follow:

git tag -a v1.0-Pharo50
git push --tags

6.5 Conclusion

Now you are ready to manage and automatically build documents in various
formats. s

32

CHA P T E R7
Testing Your Documents

What does it mean to ‘test a book’ and why would you do it? Testing a book
means checking the code it displays is up to date. This can be done by check-
ing if examples are correct or verifying that method and class definitions
compile without raising an error in the last Pharo version. Being able to test
a book means updating it more easily and therefore more frequently. On the
long term, easier updates means more frequent updates but also a documen-
tation improvement along with more ressources available for the commu-
nity.

Pillar comes with a book tester.

7.1 Typical codeblocks

Pillar syntax allows you to write codeblocks, showing a part of code. The
body of a codeblock allows one to display any part of code you might want
to. For instance, example, method and class definitions can be tested.

Examples

[[[
1 + 1

>>> 2
]]]

Method definition

This codeblock presents a method definition.

33

Testing Your Documents

[[[
YourClass >> yourMethod
^ 'bla'

]]]

Class definition

This codeblock presents a class definition.

[[[
Object subclass: #YourClass

instanceVariableNames: ''
classVariableNames: ''
package: 'YourPackage'

]]]

As we show next, using parameters we can indicate that the expression in-
side a codeblock should be validated

7.2 Testing codeblock examples

Using the parameter example and the >>>= helps you to validate your exam-
ples. For example

[[[example=true
3 + 4
>>> 7
]]]

The book tester interprets the previous parametrized codeblock as an asser-
tion self assert: (3 + 4) equals: 7.

The book tester follows the following pattern with only one >>> per code-
block.

[[[example=true
Action
>>> ExpectedResult

]]]

7.3 Testing method and class definitions

The booktester checks that class and method definitions are valid (do not
raise syntactical errors at compilation). You should use the following pa-
rameters: methodDefinition=true or classDefinition=true as code block. It
makes sure your book is up to date with the latest Pharo version.

34

7.4 Practical testing

Method definitions

Method definitions should follow this format:

[[[methodDefinition=true
YourClass >> yourMethod
methodBody

]]]

with an emphasis laid on the >> between your class and method.

It is important to understand that the class (here YourClass) should be
present in the system producing the Pillar book. To load code, see the ${loader}$
annotation presented in the following chapter.

Class definitions

Class definitions should follow this format:

[[[classDefinition=true
YourSuperClass subclass: #YourClass

instanceVariableNames: ''
classVariableNames: ''
package: 'YourPackage'

]]]

In addition to validate that the class definition is valid, the parameter defines
the class in the environment in which the book is defined. It supports the
definition of testing other methods.

As a general principle, any method definition refering to classes not defined
in the system, should be defined after by a class definition or a loading in-
struction (see $loader$ as shown in the following).

7.4 Practical testing

There are currently two ways of testing your book: (1) using the command
line and (2) from within Pharo. Now from the command line two options are
supported.

Check file

> $PHARO_VM $IMAGE clap checkFile yourfolder/f1.pillar

When a path is not explicitely stated, the book tester takes the first file match-
ing *.pillar.

To do Add the help output.

35

Testing Your Documents

Check all files

> $PHARO_VM $IMAGE clap checkRepository yourfolder/f1.pillar

When a path is not explicitely stated, the book tester takes the first file match-
ing *.pillar.

> $PHARO_VM $IMAGE clap checkRepository --help

Check full book

> $PHARO_VM $IMAGE pillar build checkBook --baseDirectory=`pwd`

This second version uses the already existing build command for Pillar. Pay
attention the key difference is that the build version works on expanded text
version where annotations have been processed while the clap version only
on the pillar textual input.

However, using one method or the other leads you to obtaining a report on
all tests made. The passed ones are not displayed, however the failed ones
are shown by stating first the explanation of the failure (name of the ex-
ception or if the assertion failed). Note that only codeblocks with one of the
three following parameters will be tested: example, methodDefinition and
classDefinition. And they will be tested using the methods used above.

To do Add a report

7.5 From within Pharo

You can also test a pillar file from within Pharo itself. To do so you should
use a PRBookTesterVisitor to check a file using checkFileNamed:. This
can be useful to inspect each of the results. In particular the successful one.

PRBookTesterVisitor new checkFileNamed: aFile

7.6 What can not be tested

Some codeblocks can not be tested. For example, nested results to show what
happens after some iterations such as:

[[[
1 + 1
>>> 2
>>> 3
>>> 4

]]]

Local variable definitions are not validated:

36

7.6 What can not be tested

[[[
| tmp |
tmp := 0.
tmp >>> 0

]]]

Or examples that show an error should be raised such as:

[[[
String \+
>>> Error

]]]

Or examples without concrete values

[[[
Date today
>>> aDate

]]]

37

CHA P T E R8
Improving Book Writability

BookTester can do a lot more for you. Indeed you can load a specific version
of your code and display it instead of copying it from your code repository to
your pillar. In addition you can run your tests.

8.1 Loading your code

How to test something you have defined but not loaded? This certainly is
the question, especially when using class or methods that you just defined
(which happens in nearly every book you might want to write). To answer
that question, the following annotation has been implemented:

${loader:account=YourGitAccount|
project=YourGitProject|
tag=YourGitTag|
baseline=YourBaselineName}$

This annotation loads your git project at the given tag. The tag is useful to
specify your chapter’s prerequisites (precedent chapter for example). Note
that a proper use of this annotation requires you to tag every step of your
code to create milestones. The baseline parameter takes by default the name
of the project, but it is present in case they are different.

8.2 Support test-driven development writing

When writing book to teach TDD, authors often place test first and only after
method definitions. This is why validating a test just after its definition may
be not work.

39

Improving Book Writability

This is why every codeblock with the parameter methodDefinition has its
compilation tested but a test will not be run until the run annotation is en-
countered.

${run:testClass=YourTestClassName}$

The run annotation executes every test defined with methodDefinition
within a given test class and report the results in the booktester report.

Typical TDD booklet

A typical sequence will be then:

[[[classDefinition=true
TestCase subclass: #MyTestCase

]]]

[[[methodDefinition=true
MyTestCase >> testFoo

self assert: Foo new name equals: 'foo'
]]]

[[[methodDefinition=true
MyTestCase >> testFoo2
self assert: Foo new friendName equals: 'bar'

]]]

[[[classDefinition=true
Object subclass: #Foo
]]]

[[[methodDefinition=true
Foo >> name

^ 'foo'
]]]

${run:testClass=MyTestCase}$

[[[methodDefinition=true
Foo >> friend

^ 'bar'
]]]

${run:testClass=MyTestCase}$

About method definition

It is possible to define a method that will be used in a test but without show-
ing its definition in the text using the hidden parameter. For example, when
the author does not want to show accessors but want to use them in tests.

40

8.3 Helping Tools

The following method will be compiled to the class Foo but will not be shown
in the book output.

[[[methodDefinition=true,hidden=true
Foo >> addedButNotShown

^42
]]]

8.3 Helping Tools

In addition to the previous annotations, book tester offer three other annota-
tions: showClass, showMethod, and screenshot.

showClass

The showClass annotation allows you to display the class definition of your
choice and is used as follows

${showClass:class=YourClassName}$

For example, using the annotation like this:

${showClass:class=Integer}$

displays the following in the text

Number subclass: #Integer
instanceVariableNames: ''
classVariableNames: ''
package: 'Kernel-Numbers'

Note that currently the displayed class definition is not parametered as class-
Definition because we supposed there is no need to test the compilation of
it. Whether you defined it somewhere else and want to show it again or it is
already defined in the system and therefore does not need to be compilation-
tested.

showMethod

The showMethod annotation allows you to display the class definition of your
choice and is used as follows

${showMethod:method=isPowerOfTwo|class=Integer}$

displays the following method in the document:

Integer>>isPowerOfTwo
"Return true if the receiver is an integral power of two."
^ self ~= 0 and: [(self bitAnd: self-1) = 0]

41

Improving Book Writability

For the same reasons as showClass, the displayed method definition is not
parametered as methodDefinition.

screenshot

The screenshot annotation is used as follows:

${screenshot:class=YourClassName|method=yourMethodName|caption=yourCaption|width=yourWidth|label=yourLabel}$

This annotation uses the class and method names to create both:

• PNG File corresponds to a System Browser opened on the given method
definition found in the given class method dictionary ; this file is stored
under YourChapter/figures/screenshot/YourClassName»YourMethodName-
Date.png

• Figure Reference replaces the annotation with the fresh created PNG
file and given caption/width/label

The default value of caption is YourClassName>>YourMethodName. The de-
fault value of label is lbl_yourMethodName. The default value of width is
50.

8.4 Conclusion

This chapter shows that Pillar offers strong support to synchronise your code
and its documentation. First it provides ways to test that examples or defi-
nitions are correct. Second it offers ways to link your versioned code can be
loaded and displayed. Finally, even tests in the code loaded can be verified.

42

CHA P T E R9
Migrating from Pillar 50 to Pillar

70

9.1 Uninstall Pillar 50

rm Pharo.image
rm Pharo.changes
rm pharo
rm pharo-ui
rm -r pharo-vm
rm mustache
rm pillar
rm Makefile
rm -r support/makefiles
rm download.sh

9.2 Install Pillar 70

git clone git@github.com:pillar-markup/pillar.git -b newpipeline
_pillar

./_pillar/scripts/build.sh

To keep a local pillar

mv build _pillar/bin/
export PATH=_pillar/bin:$PATH

43

Migrating from Pillar 50 to Pillar 70

9.3 Updating the templates

pillar updateTemplate book

9.4 Converting the pillar.conf

Old pillar.conf

{
"metadata" : {

"title": "The Pillar Super Book Archetype",
"attribution": "The Pillar team",
"series": "Square Bracket tutorials",
"keywords": "project template, Pillar, Pharo, Smalltalk"

},
"outputDirectory": "build",
"mainDocument": "book",
"latexTemplate": "support/templates/main.latex.mustache",
"latexChapterTemplate":
"support/templates/chapter.latex.mustache",
"htmlTemplate": "support/templates/html.mustache",
"htmlChapterTemplate": "support/templates/html.mustache",
"chapters": [
"Chapters/Chapter1/chapter1",
"Chapters/Chapter2/chapter2"],
"newLine": #unix,
"configurations": {

"LaTeX" : {
"outputType": #'latex:sbabook',
"separateOutputFiles": true

},
"HTML" : {
"outputType": #html,
"separateOutputFiles": true

}
}

}

• We need to first flatten the metadata tag from this:

{
"metadata" : {
"title": "The Pillar Super Book Archetype",
"attribution": "The Pillar team",
"series": "Square Bracket tutorials",
"keywords": "project template, Pillar, Pharo, Smalltalk"

},
...

}

44

9.4 Converting the pillar.conf

to this:

{
"title": "The Pillar Super Book Archetype",
"attribution": "The Pillar team",
"series": "Square Bracket tutorials",
"keywords": "project template, Pillar, Pharo, Smalltalk",
...

}

• We then need to replace the configurations entries configure a writer
for each of the possible outputs we will use:

{
...
"latexWriter": #'latex:sbabook',
...

}

45

	Illustrations
	About Pillar
	Introduction
	Pillar users
	Pillar future features
	Conclusion

	Getting Started
	Installing the zip
	Installing it in your System

	A First Pillar Project
	Setup the Project
	Build your Project
	Inspect your Project's Output
	Building a Single File

	Versionning your Project
	Setting up a Git Repository
	Versioning your Book
	Adding a .gitignore

	Building Pillar from Sources
	Build Requirements
	Downloading and Building Pillar
	Installing it in your System
	Test your Installation

	Getting Pillar Dependencies

	Pillar core syntactic elements
	Headings: Chapters & sections
	References and links
	Anchor definition
	Anchor reference
	Alias
	External links

	Lists
	Bulleted lists
	Numbered lists
	Definition lists
	List nesting

	Commented lines
	Escaping characters
	Formatting
	Pictures
	Tables
	Preformatted
	Code block
	Code block with a label or caption
	Code block syntax highlighting
	Code block with line numbers
	Code block from an external file
	Code block whose contents is computed

	Annotated paragraphs
	Raw
	Meta-Information
	Annotations: supporting extensions
	InputFile annotation
	Footnote annotation
	Citation annotation
	Parameters

	Specific markup
	Generate a part of your document with a script
	LaTeX
	Citations

	Slides
	Slide annotation
	Columns

	Pillar cheatsheet
	Headings
	Anchors and links
	Lists
	Formatting
	Pictures
	Tables
	Annotated paragraphs
	Code blocks
	Raw

	Building automatically your document with Travis
	Configuring your github account
	Add and edit the .travis.yml file
	Some explanations
	Using badges to indicate build status
	How to add a new released file in your git hub account

	Conclusion

	Testing Your Documents
	Typical codeblocks
	Examples
	Method definition
	Class definition

	Testing codeblock examples
	Testing method and class definitions
	Method definitions
	Class definitions

	Practical testing
	Check file
	Check all files
	Check full book

	From within Pharo
	What can not be tested

	Improving Book Writability
	Loading your code
	Support test-driven development writing
	Typical TDD booklet
	About method definition

	Helping Tools
	showClass
	showMethod
	screenshot

	Conclusion

	Migrating from Pillar 50 to Pillar 70
	Uninstall Pillar 50
	Install Pillar 70
	Updating the templates
	Converting the pillar.conf

