

Stéphane Ducasse and Guillermo Polito

Modularity 2017
Brussels

Modularity		
from		

the	trenches	

A	context:	Large	Systems	

•  Several	thousands	of	classes	
•  Mul:ple	Millions	of	LOC	
•  Long	living	systems	~	15	to	25	years	
•  Successful	systems	

SoBware	Entropy	
•  You	have	success	
•  Your	soBware	grows	
•  Complexity	too	

 Code for future use
 Duplicated
 Obsolete code
 DO-NOT-TOUCH

Roadmap	

-  Analyses	to	help	modularizing	so4ware	
-  PhD	of	H.	Abdeen:	using	simula:ng	annealing	to	

repackage	
-  PhD	of	J.	Laval:	characterising	cycles	and	layers	

-  The	story	of	the	Pharo	Kernel	mission	
-  Removing	vs.	Bootstrap		
-  PhD	of	G.	Polito	

-			Towards	go	Module	system	

Iden:fying	cyclic	dependencies?	

7

i. Graph abstraction

ii. Strongly Connected Components
(SCC) detection [Tarjan, 1972]

A	large	soBware	applica:on	

8

‣  One big SCC J

• Pharo Core 1.1, 115 packages

Packages	in	SCC	

9

‣  Cycles are not visible

‣  No information about dependencies

• Pharo Core 1.1, 78 packages in cycle

What are the differences between these
dependencies ?

Building	a	DSM	

10

weight = Inheritance +
invocation + reference +
extension

DSM	for	soBware	architecture	

11
• PharoCore 1.1, 115 packages - 78 in
cycle

[Sangal 2005]

There	is	a	need	to	understand		
package	dependencies	

Some	tools	

•  Package	Blueprints	(ICSM2007)	
•  Extended	DSM	

A	cell	expresses	a	dependency	
•  From	Package	A	to	Package	B	

Number of
dependencies:

inheritance, invocation,
reference, extension

Grey, Pink/Red,
Yellow

eCell	example	
•  From	Components-Tools	to	PlaZorm	

16

6 dependencies:

6 references (6 classes to 1
class)

In a direct
cycle

rate of impacted
classes

eDSM	with	eCell:	Zoom	on	a	SCC	

17

A direct cycle:

The red dependency
seems better to
remove

2 other candidate
dependencies

Exis:ng	approaches	to		
layer	iden:fica:on	

‣  La]x	move	each	SCC	in	a	layer	
–  [La%x	2005]	
– Does	not	work	with	undesired	cycles	

‣  Minimum	Feedback	Arc	Set	(MFAS)	break	the	
minimum	of	edges.	

–  [Melton	2007]	
– Does	not	take	into	account	the	seman:cs	

‣  Regression	and	Integra:on	tes:ng	technics	
–  [Le	Traon	2000,	Da	Veiga	Cabral	2010]	
– =>	Minimiza:on	of	ver:ces	vs	minimiza:on	of	
arcs	

18

oZone	strategy	to	iden:fy	layers	

19

‣  Selecting edges that can break direct cycles.

‣  Selecting edges that are shared dependencies.

‣  User interaction to improve the results

Results are:

A list of dependencies that are interesting to
remove.

A layered structure of the application to
understand it.

oZone:	example	

20

remove direct cycles
by ignoring a
dependency

remove other
cycles
by ignoring shared
dependencies

Roadmap	

-  Analyses	to	help	modularizing	soBware	
-  PhD	of	H.	Abdeen:	using	simula:ng	annealing	
-  PhD	of	J.	Laval:	characterising	cycles	and	layers	

-  The	story	of	the	Pharo	Kernel	mission	
-  Removing	vs.	Bootstrap		
-  PhD	of	G.	Polito	

-			Towards	go	Module	system	

Pharo	as	a	real	experimental	setup	

	Pharo	this	is		
– 465	packages	
– more	than	3000	thousands	external	
projects	

– 98	commieers	
– 30	universi:es	teaching	with	Pharo		
– 16	worldwide	research	groups	

New libraries
New tools
New tests
More documentation

Pharo is growing

Pharo	evolu:on	

Pharo	Kernel	Mission		

From top

- cleaning
- shrinking
- reloading

From bottom

- bootstrapping
- reloading

From	top	shrinking	and	modulariza:on	

•  started	before	Pharo	
•  removing	of	code	is	easy	
•  clean	removing	is	not	easy	
•  reloading	is	even	harder	

Morphic reloaded
by Pavel Krivanel [22.07.2006]

Kernel	image	evolu:on	in	shortcut	

• BROKEN!	
• works	again	

• BROKEN!	
• works	again	

• BROKEN!	
• works	again	

• BROKEN!	
• works	again	

• BROKEN!	
• works	again	

• BROKEN!	
• works	again	

• BROKEN!	
• works	again	

Broken again... [18.8.2016]

Why	so	hard	and	long?	

Everyone	must	
take	of	care	of	
modularity	

Should be integrated in
development process
(tests, rules, CI jobs)

CI	jobs	for	Pharo	modulariza:on	

• 	since	Pharo	2.0	
• 	shrink	image	
• 	increase	granularity	of	reloaded	modules	
• 	tests	
• 	coverage	tes:ng	

• heps://ci.inria.fr/pharo/view/6.0-SysConf/	

Roadmap	

-  Analyses	to	help	modularizing	soBware	
-  PhD	of	H.	Abdeen:	using	simula:ng	annealing	
-  PhD	of	J.	Laval:	characterising	cycles	and	layers	

-  The	story	of	the	Pharo	Kernel	mission	
-  Removing	vs.	Bootstrap		
-  PhD	of	G.	Polito	

-			Towards	go	Module	system	

Let's	talk	about		
BOOTSTRAP	

Bootstrap
« The process that builds the
minimal infrastructure of a langage
reusable to define the language itself »

Why	do	we	need	a	bootstrap	?	

l Have	a	known	ini:al	state	

l Be	able	to	reproduce	the	state	of	a	system	

l Ensure	we	can	reini:alize	the	system	at	any	:me	

l Ease	kernel	evolu:on	

l  Iden:fy	a	small	subset	of	the	language	allowing	the	
defini:on	of	the	language	itself	

Why	bootstraping	is	difficult?	

Archaelogy

Deadcode	

Strange	logic	

The	missing	ini:aliza:on	

The	dependency	hell	

How	to	fix	bad	dependencies?	

• 	Create	a	new	package	to	isolate	func:onnali:es	
• 	Move	methods	as	extensions	to	another	package	
• 	Kill	facades	(there	are	global	thinking)	
• 	Components	made	to	be	customized			

– 	Se]ngs	
• 	Registra:on	mechanism	
• 	Re-design	completely	a	func:onality	

– 	e.g.	startup	list	
• 	...	

Tools	support	

Dependencies analyser

Dependency Dashboard

Dependency	visualiza:on	

heps://c i . inr ia . f r/pharo/ job/Pharo-6 .0-
DependencyAnalysis/ws/bootstrap-dependency-
report-graph.html	

The	bootstrap	process	

Bootstrap	process	insight	
	
1) 	crea:on	of	stub	objects	:	nil,	false,	true	
2) 	defini:on	of	classes	and	metaclasses	
3) 	compila:on	of	methods	
4) 	crea:on	of	the	ini:al	process	
5) 	system	serializa:on	

1

Day

2

Day

3

Day

4

Day

5

Day

process

6

Day

CI	jobs	for	Pharo	modulariza:on	

• Kernel	(shrinked	/	bootstrapped)	
• 	Mon:cello		
• 	Network	support	
• 	Remote	repositories	support	
• 	Metacello	
• =	minimal	Pharo	
• 	SUnit,	Display	support,	UFFI	
• 	Morphic	core,	Morphic	
• 	UI,	Basic	tools,	IDE	
• =	Pharo		

Bootstrapped & reloaded from GIT

7

Day

More	details	

Cf PhD Guillermo Polito:

https://hal.inria.fr/tel-01251173

Story	#2	

Dependencies analyser

Road to a working bootstrap

Bootstrap	challenge	
>	language	side	bootstrap	

• Language	ini:aliza:on	generally	done	VM	side	

• We	want	to	do	it	language	side:	
• 	Need	to	run	code	on	top	of	a	language	under	
construc:on	

Bootstrap	challenge	
>	language	side	bootstrap	

	

Road	to	a	working	bootstrap	

•  First	bootstrapped	image!	

Road	to	a	working	bootstrap	

Road	to	a	working	bootstrap	

•  Execute	the	system	….	
	
																												the	VM	crashes	

Road	to	a	working	bootstrap	
>	some	debugging	examples	

•  Missing	class	in	the	boostrap	
	e.g.	Float	

•  superclass	not	set	
•  superclass	set	to	a	wrong	value	

Road	to	a	working	bootstrap	
•  Compile	VM	in	debug	mode	

•  Run	bootstrapped		
system	through		
Xcode	/	LLDB	

Road	to	a	working	bootstrap	
>	verifying	the	bootstrap	

•  Rely	on	Pharo	tests	(>8	000	tests)	
l  Load	SUnit	

l  Load	test	packages	

l  Run	tests	

Wants	to	know	more?	

•  Bootstrap	process	hosted	on	Pharo	CI	server	
•  heps://ci.inria.fr/pharo/view/
Pharo%20bootstrap/	

•  GitHub	repository	
•  heps://github.com/guillep/PharoBootstrap	

Bootstrapped	Pharo	

	
Soon	in	produc:on	(Pharo	7.0)	
All	packages	reloaded!	
Architectural	rules	
Tools	to	the	rescue	
	

Metalo	

•  Designing	a	module	system	
•  For	live	programming:	programmer	feel	and	
feedback	

•  Should	be	usable	by	normal	programmers	
•  Should	be	applicable	and	bootstrappable	on	
plain	Pharo	

Objec:ve	1	-	Namespace	

...

Smalltalk globals

Kernel Network Compiler

Objec:ve	2	
Beeer	Dependency	Management	

Kernel

Network Compiler

uses uses

Objec:ve	3	
Module	tes:ng	

Workspace

Old Compiler Opal Compiler

Workspace'

uses uses

Current	Design	

•  No	nes:ng	
•  No	name	lookup	
•  Explicit	import	
•  To	be	introduced	incrementally	(module	and	
monolithic	side	by	side	for	a	while)	

•  Tools	should	support	it	
	

Current	Design	

•  A	module	has	its	own	namespace	
•  Shared	bindings	between	modules	as	current	
	

Shared	Bindings	

#OrderedCollection

add:
collect:

array
OrderedCollection

Module A

Module B

#OrderedCollection

From Module A import #OrderedCollection

Tools	

•  All	the	tools	should	be	module-aware	
•  Live	programming	

– Workspace	
– Debugger	
–  Inspector	
– Class	browser	
– Refactorings	

Conclusion	

•  Working	with	real	system	is	rewarding	
•  Modularisa:on	is	a	baele	
•  Tools	are	good	weapon	against	entropy	
•  We	are	ge]ng	there!	

