Building ObjVlisp a Minimal, Uniform and Reflective
Object-Oriented Language

Stéphane Ducasse
(Alexandre Bergel and Simon Denier)
Language and Software Evolution
INRIA - Lille Nord Europe, CNRS UMR 8022 - LIFL-USTL
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr

December 17, 2013

1 Objectives

During the lecture you saw the main points of the ObjVLisp model, now you will implement it. The goals
of this implementation are to give a concrete understanding of the concepts presented in the lecture. Here
are some of the points you can deeply understand while doing the exercise.

e What is a possible object structure?

What is object allocation and initialization?

What is class initialization?

What the semantics of the method lookup?

e What is a reflective kernel?

What are the roles of the classes Class and Object?

What is the role of a metaclass?

2 Before Starting

In this section we discuss the files that you will use, the implementation choices and the conventions that
we will follow during all this tutorial.

2.1 Provided Files

You need to download and install Pharo from http://www.pharo-project.org/. You need a virtual machine,
and the couple image and changes. You can use the http://get.pharo.org to get a script to download Pharo.
You can use the book Pharo by Example from http://www.pharo.project.org/PharoByExample/ for an
overview of the syntax and the system. You can check some old videos available at http://stephane.ducasse.
free.fr/Videos SqueakOriginalMov/.

All the necessary files are provided as Monticello package. It contains all the classes, the method
categories and the method signatures of the methods that you have to implement. It provides additional
functionality such as a dedicated inspector and some extra methods that will make your life easy and help
you to concentrate on the essence of the model. It contains also all the tests of the functionality you have

to implement. For each functionality you will have to run some tests. For example to run a particular test
named testPrimitive you have to evaluate the following expression (ObjTest selector: #testPrimitiveStruc-
ture) run or to click on button run once you selected the method named testPrimitiveStructure.

Note that since you are developing the kernel, to test it we implemented manually a mock of the kernel.
This is the setup method of the test classes that build this kernel.

To load the code open a monticello browser, add a file repository to point to the ObjVLispSkeleton
project under StephaneDucasse at http://www.smalltalkhub.com and select and load the package.

To do this, use the following expression in the smalltalkhub repository creation pop up.

MCSmalltalkhubRepository
owner: ’'StephaneDucasse’
project: "ObjVLispSkeleton’
user: '’
password: '’

Select the latest file ObjVSkeleton-StephaneDucasse.ducasse.11.mcz

2.2 Conventions

We use the following conventions: we name as primitives all the Smalltalk methods that participate in the
building of ObjVLisp. These primitives are mainly implemented as methods of the class Obj. Note that in
a Lisp implementation such primitives are just lambda expressions, in a C implementation such primitives
will be represented by functions.

In the same way to help you to distinguish between classes in the implementation language (Smalltalk)
and the ObjVLisp model, we prefix the ObjVLisp classes by Obj. Finally, some of the crucial and confusing
primitives (mainly the class structure ones) are all prefixed by obj. For example the primitive that given an
objlnstance returns its class is named objClassld.

We also talk about objlnstances, objObjects and objClasses to refer to specific instances, objects or
classes defined in ObjVLisp. For example, #(#ObjPoint 10 15) is an objlnstance of the class ObjPoint.
ObjPoint is the name of an objClass. #(#ObjClass #ObjPoint #0bjObject #(class x y) #(:x :y) nil) is the
array that represents an objClass.

2.3 Implementation Choices

Every object in the Object-Lisp world is instance of Obj in our implementation world (Smalltalk). In
Smalltalk Obj is a subclass of Array.

2.3.1 Implementation Inheritance.

We do not want to implement a scanner, a parser and a compiler for ObjVLisp but concentrate on the
essence of the language. That’s why we chose to use as much as possible the implementation language,
here Smalltalk. As Smalltalk does not contain an easy way to define macroes, we will use as much as
possible the existing classes to avoid extra syntaxic problems.

About representation choices. We could have implemented ObjVLisp functionality at the class level
of a class named Obj inheriting only from Object. However, to use the ObjVlisp primitive (a Smalltalk
method) objlnstanceVariableValue: anObject for: anlnstanceVariable that returns the value of the instance
variable in anObject, we would have been forced to write the following expression:

Obj objinstanceVariableValue: 'x’ for: aPoint.

We chose to represent any ObjVLisp object by an array and to define the ObjVLisp functionality in
a subclass of Array named Obj. That way we can write in a more natural and readable way the previous
functionality as:

aPoint objlnstanceVariableValue: 'x’.

2.3.2 Facilitating ObjVLisp class access.

We need a way to declare, store and access ObjVLisp classes. As a solution, on the class level of the
class Obj we defined a dictionary holding the defined classes. This dictionary acts as a namespace for our
language. We defined the following methods to store and access defined classes.

e declareClass: anObjClass stores an ObjClass in the class repository (here a dictionary whose keys
are the names of the classes and values the ObjVLisp classes themselves).

e giveClassNamed: aSymbol returns if it exists the ObjVLisp class whose name is aSymbol. The class
should have been declared previously.

With such methods we can write code like the following one that looks for the class of the class Obj-
Point.

(Obj giveClassNamed: #0bjPoint) objClass

Now you are ready to start.

3 Structure and Primitives

The first issue is how to represent objects. We have to agree on an initial representation. In this implemen-
tation we chose to represent the objects using arrays, in fact instances of Obj a subclass of Array. Note that
we could extend the model so that the metaclasses support possible instance structure changes but in the
current implementation we will simply hardcode the class structure.

Your job: Check that the class Obj exists and inherits from Array.

3.1 Structure of a Class

As one of the first objects that we will create is the class ObjClass we focus now on the minimal structure
of the classes in our language. Given an array (in the following we used the terms array for talking about
instances of the class Obj) a class has the following structure: an identifier to its class, a name, an identifier
to its superclass (we limit the model to single inheritance), a list of instance variables, a list of initialization
keywords, and a method dictionary.

For example the class ObjPoint has then the following structure:

#(#ObjClass #ObjPoint #ObjObject #(class x y) #(:x :y) nil))

It means that ObjPoint is an instance of ObjClass, is named ObjPoint, inherits from ObjObject, has
three instance variables, two initialization keywords and an uninitialized method dictionary. To access this
structure we define some primitives.

To help you to implement ObjVLisp, we provide you an inspector dedicated to the inspection of Ob-
jVLisp objects. You can invoke this inpector sending the message debug to an objlnstance or sending the
message openOn: to ObjClassInspector with the objInstance as parameter.

| pointClass |
pointClass := Obj giveClassNamed: #ObjPoint.
pointClass debug.

| pointClass |
pointClass := Obj ObjPoint.
pointClass debug.

| pointClass |
pointClass := Obj ObjPoint.
ObjClasslnspector openOn: pointClass

laPt|

aPt := Obj new: 3.

aPt at: 1 put: #0bjPoint3.
aPt debug

Your job: The test methods of the class ObjTest that are in the categories ’structure of objects’ and
’structure of classes give some examples of structure accesses. Implement the primitives that are missing
to run the following tests testPrimitiveStructureObjClassld, testPrimitiveStructureObjlVs, testPrimitiveStruc-
tureObjKeywords, testPrimitiveStructureObjMethodDict, testPrimitiveStructureObjName, testPrimitiveStruc-
tureODbjlVs and testPrimitiveStructureObjSuperclassld.

You can execute them by selecting the following expression (ObjTest selector: #testPrimitiveStructure-
ObjClassld) run. Note that arrays start at 1 in Smalltalk. Below is the list of the primitives that you should
implement.

Implement in category ‘object structure primitives’ the primitives that manage:

o the class of the instance represented as a symbol. objClassld, objClassld: aSymbol. The receiver is
an objObject.

Implement in category ‘class structure primitives’ the primitives that manage:
e the class name. objName, objName: aSymbol. The receiver is an objClass.
e the superclass objSuperclassld, objSuperclassid: aSymbol. The receiver is an objClass.
e the instance variables objlVs, objlVs: anOrderedCollection. The receiver is an objClass.
e the keyword list objKeywords, objKeywords: anOrderedCollection. The receiver is an objClass.

e the method dictionary objMethodDict, objMethodDict: anldentityDictionary. The receiver is an obj-
Class.

3.2 Finding the class of an object

Every object keeps the identifier of its class (its name). We do not keep directly its class to avoid endless
recursion.

For example an instance of ObjPoint has then the following structure: #(#ObjPoint 10 15) where #Obj-
Point is a symbol identifying the class ObjPoint.

Your job: Implement the following primitives:

o Using the primitive giveClassNamed: aSymbol defined at the class level of Obj, define the primitive
objClass in the category 'object-structure primitive’ that returns the objlnstance that represents its
class (Classes are objects too in ObjVLisp).

Evaluate: (ObjTest selector: #testClassAccess) run.
o In the category 'iv management’ define a method called offsetFromClassOfinstanceVariable: aSymbol

that returns the offset of the instance variable represented by the symbol. It returns O if the variable
is not defined. Look at the tests #testlVOffset. (Hints: Use the Smalltalk method indexOf:).

Evaluate: (ObjTest selector: #testlVOffset) run.

e Using the preceeding method define in the category ’iv management’ (a) the method offsetFromOb-
jectOfInstanceVariable: aSymbol that returns the offset of the instance variable and (b) the method
valueOflnstanceVariable: aSymbol that returns the value of this instance variable in the given object.
Look at the tests #testlVOffsetAndValue. Note that for the method offsetFromObjectOfinstanceVari-
able: you can check that the instance variable exists in the class of the object and else raise an error
using the method error:.

Evaluate: (ObjTest selector: #testlVOffsetAndValue) run.

4 Allocation and Initialization

The creation of an object is the composition of two elementary operations: its allocation and its initializa-
tion. We now define all the primitives that allow us to allocate and initialize an object. Remind that (a)
the allocation is a class method that returns a nearly empty structure, nearly empty because the instance
represented by the structure should at least knows its class and (b) the initialization of an instance is an
instance method that given a newly allocated instance and a list of initialization arguments fill the instance.

4.1 Allocation

Your job: Inthe category 'instance allocation’ implement the primitive called allocateAnInstance that sent
to an objClass returns a new instance whose instance variable values are nil and whose classId represents
the objClass.

As shown in the class ObjTest, if the class ObjPoint has two instance variables: ObjPoint allocateAnin-
stance returns #(#ObjPoint nil nil).
Evaluate: (ObjTest selector: #testAllocate) run.

4.2 Keywords Primitives

The original implementation of ObjVLisp uses the facility offered by the lisp keywords to ease the specifi-
cation of the instance variable values during instance creation then providing an uniform and unique way
to create object. We have to implement some functionality to support keywords. However as this is not
really interesting that you lose time we give you all the necessary primitives.

Your job: All the functionality for managing the keywords are defined into the category 'keyword man-
agement’. So look at the code and the associated test called testKeywords in the class ObjTest.
Evaluate: (ObjTest selector: #testKeywords) run.

4.3 Initialization

Once an object is allocated, it may be initialized by the programmer by specifying a list of initialization
values, called initargs-list. We can represent an initargs-list by an array containing alternatively a keyword
and a value like #(#toto 33 #x 23) where 33 is associated with #toto and 23 with #x.

Your job: Read in the category 'instance initialization’ the primitive initializeUsing: anArray that sent an
object with an initargs-list returns an initialized object.

5 Static Inheritance of Instance Variables

Instance variables are statically inherited at the class creation time. The simplest form of instance variable
inheritance is to define the complete set of instance variables as the ordered fusion between the inherited
instance variables and the locally defined instance variables. For simplicity reason and as most of the
languages, we chose to forbid duplicated instance variables in the inheritance chain.

Your job: In the category ’iv inheritance’ read the primitive computeNewIVFrom: superlVOrdCol with:
locallVOrdCol. The primitive takes two ordered collections of symbols and returns an ordered collection
containing the union of the two ordered collections but with the extra constraint that the order of elements
of the first ordered collection is kept. Look at the test method testInstance VariableInheritance for examples.
Evaluate: (ObjTest selector: #testlnstanceVariablelnheritance) run.

6 Method Management

A class stores the behavior (expressed by methods) shared by all its instances into a method dictionary. In
our implementation, we represent methods by associating a symbol to a Smalltalk block i.e., an anonymous
method. The block is then stored in the method dictionary of an objClass. In this implementation we do not
offer the ability to access directly instance variables of the class in which the method is defined. This could
be done by sharing a common environment among all the methods. The programmer has to use accessors
or the setlV and getlV objMethods defined on ObjObject to access the instance variables.

The following code describes the definition of the method x defined on the objClass ObjPoint that in-
vokes a field access

ObjPoint
addMethod: #bar
args:
withBody: objself binarySend: #getlV with: #x.

As a first approximation this code will create he following block that will get stored into the class
method dictionary. [:objself | objself binarySend: #getlV with: #x]. As you may notice, in our implementa-
tion, the receiver is always an explicit argument of the method. Here we named it objself.

In the ObjVLisp world, we do not have a syntax for message passing. Instead of we call the primitives
using the Smalltalk syntax.

Defining a method and sending a message. While in Smalltalk you would write the following method
definition:

bar: x

self foo: x
In our implementation of ObjVlisp you write:

anObjClass
addMethod: #bar
args: 'x’
withBody: ‘objself binarySend: #foo: with: #x’.

Note the the block is not part of the syntax of ObjectLisp since we need to attach extra information the
block that will be created.

Invoking Super. To invoke a superclasses’ hidden method, in Java and Smalltalk you use super, which
means that the lookup up will start above the class defining the method containing the super expression. In
fact we can consider that in Java or Smalltalk, super is a syntactic sugar to refer to the receiver but changing
where the method lookup starts. This is what we see in our implementation where we do not have syntactic
support.

bar: x

super foo: x

In our implementation of ObjVlisp we do not have a syntactic construct to express super, you have to write:

anObjClass
addMethod: #bar
args: ’x’
withBody: ‘objself binarySuper: #foo: with: #x from: superClassOfClassDefiningTheMethod'.

Note that superClassOfClassDefiningTheMethod is a variable that is bound to the superclass of anObj-
Class i.e., the class defining the method #bar (see later).

As we want to keep this implementation as simple as possible and that Smalltalk does not support
the concept of argument representing a list of values like the dot notation in C or Lisp. We will ask you
to define 6 primitives (which could be only two in fact) to send messages to an object corresponding to

{unary binary or keyword} cross {super or self} send. For a clearer view take a look at the Table 1

Smalltalk Syntax

ObjectLisp equivalent

Temporary: | a |
Assignment: a :=3

a:=3

Sends

Unary: self odd

objself unarySend: #odd

Binary: a + 4 | abinarySend: #+ with: #(4)
Keyword: a max: 4 | s send: #max: withArguments: #(4)
Super Sends

Unary: super odd
Binary: super + 4

Keyword: super max: 4

objself unarySuper: #odd from: superClassOfClassDefiningTheMethod
objself binarySuper: #+ with: #(4) from: superClassOfClassDefiningTh-
eMethod

objself super: #max: withArguments: #(4) from: superClassOfClassDefin-

ingTheMethod

Table 1: ObjectLisp Syntax

Your job: We provide you all the primitives that deals with method definition. In the category 'method
management’ look at the methods addMethod: aSelector args: aString withBody: aStringBlock, removeMethod:
aSelector and doesUnderstand: aSelector. Implement bodyOfMethod: aSelector. Evaluate: (ObjTest se-
lector: #testMethodManagement) run.

7 Message Passing and Dynamic Lookup

Sending a message is the result of the composition of method lookup and execution. The following unary-
Send: aSelector primitive just implements it. First it looks up the method into the class or superclass of the
receiver then binds the method (returned block) parameters to the only argument of the message, here the
receiver object (self).

Obj>>unarySend: selector
| ans |
ans := (self objClass lookup: selector for: self) value: self.

ans

7.1 Method Lookup

Your job: Implement the primitive lookup: selector for: anObjObject that sent to an objClass with a
method selector, a symbol and the initial receiver of the message, returns the method-body of the method
associated with the selector in the objClass or its superclasses. Moreover if the method is not found, the
message #error is sent to an objInstance with aString representing the error. Note here that error should be
sent to the receiver. Evaluate: (ObjTest selector: #testMethodLookup) run.

7.2 Send Methods

Your job: Implement the other primitives for message passing: one for binary messages binarySend:
selector with: argument and one for n-ary messages send: selector withArguments: arguments. Evaluate:
(ObjTest selector: #testMethodSelfSend) run.

7.3 Representing super

We would like to explain you where the superClassOfClassDefiningTheMethod variable comes from. For
super sends we add a parameter to the primitive. This parameter corresponds to the super class where the
method is defined. This argument should always have the same name, i.e., superClassOfClassDefiningTh-
eMethod. This variable will be bound when the method is added in the method dictionary of an objClass.

In fact, a method is not only a block but it needs to know the class that defines it or its superclass.
We added such information using currification. (a currification is the transformation of a function with n
arguments into function with less argument but an environment capture: f(x,y) = (+ « y) is transformed
into a function f(z) = f(y)(+ = y) where we bind x to a value and obtain a function generator).

In Smalltalk we wrapped the block representing the method around another block with a single param-
eter and binds this parameter with the superclass of the class defining the method. When the method is
added to the method dictionary, we evaluate the first block with the superclass as parameter as illustrated
as follows:

method := [: superClassOfClassDefiningTheMethod |
[:objself :otherArgs |
... Method core ...

I

method value: Obj giveClassNamed: self objSuperclassld

So now you know where the superClassOfClassDefiningTheMethod variable comes from. Evaluate:
(ObjTest selector: #testMethodLookup) run.

7.4 Implementing Super Sends

Your job: Implement three different primitives for super message passing invocation: one for unary
messages unarySuper: selector from: anObjClass, one for binary messages binarySuper: selector with:
argument from: aSuperClass: and one for n-ary messages super: selector withArguments: arguments from:
aSuperclass.

You can get inspired by the methods you should have written earlier.
Obj>>binarySend: selector with: argument
| ans |
ans := (self objClass lookup: selector for: self) value: self value: argument.

ans

Obj>>send: selector withArguments: arguments
| ans |
ans := (self objClass lookup: selector for: self)
valueWithArguments: (Array with: self) , arguments.

ans

8 Bootstrapping the system

Now you have implemented all the behavior we need and you are ready to bootstrap the system: this means
creating the kernel consisting of ObjObject and ObjClass classes from themselves. The idea of a bootstrap
is to be as lazy as possible and to use the system to create itself. Three steps compose the bootstrap, (1)
we create by hand the minimal part of the objClass ObjClass and then (2) we use it to create normally
ObjObject objClass and then (3) we recreate normally and completely ObjClass.

These three steps are described by the following bootstrap method of Obj class. Note the bootstrap is
defined as class methods of the class Obj.

Obj class>>bootstrap
"self bootstrap”

self initialize.

self manuallyCreateObjClass.
self createObjObject.

self createObjClass.

To help you to implement the functionality of the objClasses ObjClass and ObjObject, we defined
another set of tests in the class ObjTestBootstrap. Read them.

8.1 Manually creating ObjClass

The first step is to create manually the class ObjClass. By manually we mean create an array (because we
chose an array to represent instances and classes in particular) that represents the objClass ObjClass, then
define its methods. You will implement/read this in the primitive manuallyCreateObjClass as shown below:

Obj class>>manuallyCreateObjClass
”self manuallyCreateObjClass”

| class |

class := self manualObjClassStructure.
Obj declareClass: class.

self defineManuallnitializeMethodIn: class.
self defineAllocateMethodIn: class.

self defineNewMethodln: class.

“class

For this purpose, you have to implement/read all the primitives that compose it.

Your job: At the class level in the category 'bootstrap objClass manual’ read or implement

e the primitive manualObjClassStructure that returns an objObject that represents the class ObjClass.

Evaluate: (ObjTestBootstrap selector: #testManuallyCreateObjClassStructure) run.

e As the initialize of this first phase of the bootstrap is not easy we give you its code. Note that the
definition of the objMethod initialize is done in the primitive method defineManuallnitializeMethodin:.

Obj class>>defineManuallnitializeMethodIn: class
class addMethod: #initialize
withBody:
[:aclass :initArray |
| objsuperclass |
aclass initializeUsing: initArray.
"Initialize a class as an object. In the bootstrapped system will be done via super”
objsuperclass := Obj giveClassNamed: aclass objSuperclassld ifAbsent: [nil].
objsuperclass isNil
ifFalse: [aclass objlVs: (aclass computeNewlVFrom: objsuperclass objlVs
with: aclass objlVs)]
ifTrue: [aclass objlVs: (aclass computeNewlIVFrom: #(#class)
with: aclass objlVs)].
aclass objKeywords: (aclass generateKeywords: (aclass objlVs copyWithout: #class)).
aclass objMethodDict: (IdentityDictionary new: 3).
Obj declareClass: aclass.
aclass]

Note that this method works without inheritance since the class ObjObject does not exist yet.

e the primitive defineNewMethodIn: anObjClass that defines in anObjClass (the class passed as argu-
ment) the objMethod new. new takes two arguments: a class and an initargs-list.

o the primitive defineAllocateMethodIn: anObjClass that defines in anObjClass (the class passed as
argument) the objMethod allocate. allocate takes only one argument: the class for which a new
instance is created.

Evaluate: (ObjTestBootstrap selector: #testManuallyCreateObjClassAllocate) run.

Your job: Read carefully the following remarks below and the code.

e In the objMethod manualObjClassStructure, the instance variable inheritance is simulated. Indeed
the instance variable list contains #class that should normally be inherited from ObjObject as we will
see in the third phase of the bootstrap.

e Note that the class is automatically declared into the class repository using the method declareClass:.

e Note the method #initialize is method of the metaclass Class: when you create a class the initialize
method is invoked on a class! The initialize objMethod defines on ObjClass has two aspects: the first
one dealing with the initialization of the class like any other instance (first line). This behavior is
normally done using a super call to invoke the initialize method defined in ObjObject. The second
one dealing with the initialization of classes: performing the instance variable inheritance, then
computing the keywords of the newly created class. Note in this final step that the keyword list does
not contain the #class: keyword because we do not want to let the user modify the class of an object.

8.2 Creation of ObjObject

Now you are in the situation where you can create the first real and normal class of the system: the class
ObjObject. To do that you send the message new to class ObjClass specifying that the class you are creating
is named #ObjObject and only have one instance variable called class. Then you will add the methods
defining the behavior shared by all the objects.

Your job: Implement/read

o the primitive objObjectStructure that creates the ObjObject by invoking the new message to the class
ObjClass

The class ObjObject is named ObjObject, has only one instance variable class and does not have a
superclass because it is the inheritance graph root.

Now implement the primitive createObjObject that calls objObjectStructure to obtain the objObject
representing objObject class and define methods in it. To help you we give here the beginning of such a
primitive
Obj class>>createObjObject

| objObject |
objObject := self objObjectStructure.

objObject addMethod: #class withBody: [:object | object objClass].
objObject addMethod: #isClass withBody: [:0bject | false].

"objObject
Implement the following method in ObjObject

o the objMethod class that given an objlnstance returns its class (the objInstance that represents the
class).

10

o the objMethod isClass that returns false.
o the objMethod isMetaClass that returns false.

e the objMethod error that takes two arguments the receiver and the selector of the original invocation
and raises an error.

o the objMethod getlV that takes the receiver and an attribute name, aSymbol, and returns its value for
the receiver.

o the objMethod setlV that takes the receiver, an attribute name and a value and sets the value of the
given attribute to the given value.

o the objMethod initialize that takes the receiver and an initargs-list and initializes the receiver accord-
ing to the specification given by the initargs-list. Note that here the initialize method only fill the
instance according to the specification given by the initargs-list. Compare with the initialize method
defined on ObjClass.

Evaluate: (ObjTestBootstrap selector: #testCreateObjObjectStructure) run.
In particular notice that this class does not implement the class method new because it is not a metaclass
but does implement the instance method initialize because any object should be initialized.
Evaluate: (ObjTestBootstrap selector: #testCreateObjObjectMessage) run.
Evaluate: (ObjTestBootstrap selector: #testCreateObjObjectinstanceMessage) run.

8.3 Creation of ObjClass

Following the same approach, you can now recreate completely the class ObjClass. The primitive cre-
ateObjClass is responsible to create the final class ObjClass. So you will implement it and define all the
primitive it needs. Now we only define what is specific to classes, the rest is inherited from the superclass
of the class ObjClass, the class ObjObject.

To make the method createObjClass working we should implement the method it calls. Implement
then:

e the primitive objClassStructure that creates the ObjClass class by invoking the new message to the
class ObjClass. Note that during this method the ObjClass symbol refers to two different entities
because the new class that is created using the old one is declared in the class dictionary with the
same name.

Evaluate: (ObjTestBootstrap selector: #testCreateObjClassStructure) run.
Now implement the primitive createObjClass that starts as follow:
Obj class>>createObjClass
| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self definelnitializeMethodIn: objClass.
"objClass
o the objMethod isClass that returns true.

o the objMethod isMetaclass that returns true.

11

Note that we could have an alternate implementation for isClass and isMetaclass as shown hereafter.

objClass
addUnaryMethod: #isMetaclass
withBody: 'objself objlVs includes: #superclass’.
"an object is a class if is class is a metaclass. cool”

objClass
addUnaryMethod: #isClass
withBody: "objself objClass unarySend: #isMetaclass’.

o the primitive definelnitializeMethodIn: anObjClass that adds the objMethod initialize to the objClass
passed as argument. The objMethod initialize takes the receiver (an objClass) and an initargs-list and
initializes the receiver according to the specification given by the initargs-list. In particular, it should
be initialized as any other object, then it should compute its instance variable (i.e., inherited instance
variables are computed), the keywords are also computed, the method dictionary should be defined
and the class is then declared as an existing one. We provide the following template to help you.

Obj class>>definelnitializeMethodlIn: objClass

objClass
addMethod: #initialize
args: 'initArray’
withBody:
‘objself binarySuper: #initialize with: initArray from: superClassOfClassDefiningTheMethod.
objself objlVs: (objself
computeNew!VFrom:
(Obj giveClassNamed: objself objSuperclassld) objlVs
with: objself objlVs).
objself computeAndSetKeywords.
objself objMethodDict: IdentityDictionary new.
Obj declareClass: objself.
objself’

Evaluate: (ObjTestBootstrap selector: #testCreateObjClassMessage) run.
Note the following points

e The locally specified instance variables now are just the instance variables that describe a class. The
instance variable class is inherited from ObjObject.

e The initialize method now does a super send to invoke the initialization performed by ObjObject.

9 First User Classes: ObjPoint and ColoredObjPoint

Now ObjVLisp is created and we can start to program some classes. Implement the class ObjPoint and
ObjColoredPoint as follow.

9.1 ObjPoint

You can choose to implement it at the class level of the class Obj.

o First just create the class ObjPoint.
e Create an instance of the class ObjPoint.

e Send some messages defined in ObjObject to this instance.

12

Define the class Point so that we can create points as follows:

aPoint := pointClass send: #new withArguments: #((#x: 24 #y: 6)).
aPoint binarySend: #getlV with: #x.

aPoint send: #setlV withArguments: #(#x 25).

aPoint binarySend: #getlV with: #x.

Then add some functionality to the class ObjPoint like x, x:, display which prints the receiver.
Then test these new functionality.

aPoint unarySend: #x.
aPoint binarySend: #x: with: #(33).
aPoint unarySend: #display

9.2 ObjColoredPoint

Define the class ObjColored.
Create an instance and send it some basic messages.

aColoredPoint := coloredPointClass
send: #new
withArguments: #((#x: 24 #y: 6 #color: #blue)).

aColoredPoint binarySend: #getlV with: #x.
aColoredPoint send: #setlV withArguments: #(#x 25).
aColoredPoint binarySend: #getlV with: #x.
aColoredPoint binarySend: #getlV with: #color.

Define some functionality and invoke them: the method color, implement the method display so that it
invokes the superclass and adds some information related to the color.

aColoredPoint unarySend: #x.
aColoredPoint unarySend: #color.
aColoredPoint unarySend: #display

10 A First User Metaclass: objabstract

Now implement the metaclass ObjAbstract that defines instances (classes) that are abstract i.e., that cannot
create instances. This class should raise an error when it executes the new message.
Then the following shows you a possible use of this metaclass.

ObjAbstractClass send: #new
withArguments: #(#(#name: #0bjAbstractPoint
#iv: #()
#superclass: #0bjPoint)).

ObjAbstractPoint send: #new
withArguments: #(#(#x: 24 #y: 6)) "should raise an error”

Note that the ObjAbstractClass is an instance of ObjClass because this is a class and inherits from of
because this is a metaclass.

11 New features that you could implement

You can:

e define a metaclass that automatically defines accessors for the specified instances variables.

13

e avoid that we can change the selector and the arguments when calling a super send.

o Note that contrary to the proposition made in the 6th postulate of the original ObjVLisp model, class
instance variables are not equivalent of shared variables.

According to the 6th postulate, a shared variable will be stored into the instance representing the
class and not in an instance variable of the class representing the shared variables.

For example if a workstation has a shared variable named domain. But domain should not be an extra
instance variable of the class of Workstation. Indeed domain has nothing to do with class description.

The correct solution is that domain is a value hold into the list of the shared variable of the class
Workstation. This means that a class has an extra information to describe it: an instance variable
sharedVariable holding pair. So we should be able to write

Obj Workstation getlV: #sharedVariable
or
Obj Workstation sharedVariableValue: #domain

and get
#((domain ’iam.unibe.ch’))

introduce shared variables: add a new instance variable in the class ObjClass to hold a dictionary of
shared variable bindings (a symbol and a value) that can be queried using specific methods: shared-
VariableValue:, sharedVariableValue:put:.

12 About super Implementation

Sending a message is the result of the composition of the method lookup and the method application. Now
we discuss an alternative way of implementing super. The idea is to keep a stack of classes.

The following unarySend: aSelector primitive just implements it. First it looks up the method into the
class or superclass of the receiver then binds the method (returned block) parameters to the only argument
of the message, here the receiver object (self).

Obj>>unarySend: selector
| ans |
ans := (self objClass lookup: selector for: self) value: self.
ClassesImplementingLookupMethod removelast.
ans

The variable ClasseslmplementingLookupMethod represents a stack of classes.

The Problem. Whenever a message is sent to an object, the class where the lookup has to start is given
by the receiver object. The lookup starts in its class. The same is true when a message is sent to self or
this pseudo-variables. But things are slightly more complicated when the receiver is super. The question
is: From which class the lookup has to start whenever the receiver of a message is super? The answer is
the superclass of the class defining the method (the one which sends a message to super). The problem is
this class need to be referenced, and that is what ClassesimplementingLookupMethod is doing.

In the implementation suggested before as well as in Java and Smalltalk there is no such a problem
because during the compilation of a method, whenever super is encountered, the compiler knows what
the super class is: it corresponds to the superclass of the class being compiled, and the compiler marks
this information within the compiled method itself. Note that this superclass has nothing to do with the
receiver!

In the case of this alternate implementation, when executed, a method has a reference to the receiver, but
has not a reference to the class which defines this method. And it is necessary to know it when super is used.
This information has to be computed at run-time, while in Java or Smalltalk it is computed as compile-time.
The trick for always keeping the class defining the actual method executed is to maintain a stack of classes

14

implementing the method currently executed. As there is a stack related to methods execution, a stack for
classes is required. Can you explain why such a solution is not adequate conceptually even if it works in
practice?

Maintaining a Stack. The method Obj class>>initializeStack initializes the shared variable ClassesIm-
plementingLookupMethod to an empty ordered collection. This variable represents the stack. During the
lookup process, when a method is found, the class which defines the method found is added at the end of
this collection. And the last element of this stack is removed when a method is found, just before returning
to its caller. This is illustrated in the given method unarySend: selector

Method Lookup. While implementing the method lookup, you should pay attention of adding a class
when a method is found.

Modify the primitive lookup: selector for: anObjObject that sent to an objClass with a method selector,
a symbol and the initial receiver of the message, returns the method-body of the method associated with the
selector in the objClass or its superclasses. Moreover if the method is not found, the message #error is sent
to an objlnstance with aString representing the error. Note here that error should be sent to the receiver.
Implement also the primitive classToLookForSuperSend that returns the objClass where the lookup should
start in case of super send.

15

